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Abstract: Studies of a physical problem (cf. [4]) led to the functional equa-
tion

(1) flgz) = :—q(f(:c +1)+ f(—1)+2f(z)) forall z€R
with the boundary condition
(2) f()=0 forallz with |z|>Q:= %

where ¢ €]0,1[ is a fixed real number. In this paper the general solution of
(1) with unbounded support is given. It can be shown that in the case of
unbounded support a function on a special interval can be chosen arbitrarily
and then uniquely extended to a solution of (1). Furthermore, investigations
are done on the continuity, differentiability, measurability and integrability of
such solutions.

Studies of a physical problem (cf. [4]) led Prof. R. Schilling to the
functional equation given below. It was known that in the case ¢ = %—
there is a continuous solution with bounded support. Now the question
arose to find all the solutions of this equation. At the moment the
problem is far from being solved completely, but in the sequel there
will be given some partial answers:

Let the functional equation

(1) f(q:r:):%q—(f(z-l—l)—{—f(:c—l)+2f(:c)) forallz €R

and the boundary condition
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(2) f(z)=0 forall z with |z|>@Q:= i—_q_;i
be given, where ¢ €]0,1[ is a fixed real number. First of all we conduct
some investigations on the boundary condition (2). As in our consid-
erations the set {z | f(z) # 0} plays a more important role than the
support supp (f), which denotes the closure of this set, we abbreviate

S(f) :=A{z| f(=) # 0}.

I. The boundary condition

In this chapter we show that the boundary condition (2) is natural
in some sense. This is done in the subsequent theorem. Therefore, let
q €]0,1[ be a fixed real number, Q = 1%3. First we give a short lemma
and start with a remark:

Remark 1. ¢(Q + 1) = @, which can easily be verified by direct
computation.

Lemma 1. Let f be a solution of (1) whose support 13 contained in the
interval | — 0o, b] for some b € R. Then the following holds:

(i) If b > @, then supp (f) C] — o0, Q); moreover, if ¢ # 1, then

S(f) €] - o0, QL.

(ii) If b < Q, then f is identically 0.

Proof. Let supp (f) C] — 00,b]. As the case b = @ is evident, we only
have to deal with the other two possibilities:

(1): Suppose that > Q. Then b(1—g¢) > g and therefore b>¢(b+1) >
>q¢@+1)=Q. Nowletz >b+1. Thenz+1>z>z—-1>,
and thus we have f(z + 1) = f(z) = f(z — 1) = 0, which implies
that f(gz) = 0 by equation (1). Thus in this case we have supp (f) C
C] — 00, g(b+ 1)]. Define a sequence (b,) by by := b, bpt1 1= ¢(bn + 1).
As shown above, for by > @ this sequence is strictly decreasing and has
the lower bound (). Furthermore, by induction one can immediately
see that supp (f) C] — o0, b,] for any n € N. Therefore the sequence
(br) is convergent, the limit B fulfills B > @ and B = ¢(B + 1), which
implies that B = @, and we have supp (f) C] — o0, Q].

In the case supp (f) C] — oo, @] we have

£(Q) = F(a(Q +1)) = ;f;(f(@) +FQ+2)+2f(Q+1)) = %f(Q)-

Therefore, if ¢ # 7, we have f(Q) = 0 and S(f) C] — o0, QI.
(ii): Suppose that b < Q. Then b(1—¢q) < ¢, and therefore %—1 <b.
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We first assume b > 0. In this case for z > % > b we have

f(z+1) = f(z) = f(gz) = 0, and therefore by equation (1) we get
supp (f) €] — oo,% — 1]. Define the sequence (b,,) by by := b, bpy1 =
= b,/q — 1. This sequence is decreasing, and by induction we get
supp (f) C] — o0, b,] for each n where b,_; > 0. On the other hand,
this sequence (b, ) cannot have a lower bound, because this bound would
be the limit, fulfilling % — 1= B, ie. B = @, a contradiction. Thus
there is an n such that b, < 0, and supp (f) C] — 00, 0].

Now we assume b < 0: For z > bwehavez +1 >z > b and
gz > b. Therefore f(z) = f(qz) = f(z + 1) = 0, which implies that
f(z —1) = 0. Thus supp(f) C] — 00,b — 1], and by induction we get
supp (f) = 0. 0

A similar lemma can be proved in the same way for supports
bounded from below:

Lemma 2. Let f be a solution of (1) whose support is contained in the
interval [a, 00| for some a € R. Then the following holds:
(i) If a < —Q, then supp (f) C [~Q, oo[; moreover, if ¢ # 1, then
(ii) If a > —Q, then f i3 identically 0.

Combining these two lemmata, we get the following
Theorem 1. Let f be a nonvanishing solution of (1), then S(f) is con-
tained in ezactly one of the following intervals, and it is not contained
n any proper subintervals:

(a’) fOTq # 711_'. ] —'Q)Q[ OT]—OOaQ[ O'I"]—Q,OO[ or R;
(b) fOT q= % ] - QaQ[ OT]_ OO7Q[ OT]_ Q,OO[ or R or [_Q7Q]

or ] - Qa Q] or ['—Qa Q[ or ] — 00, Q] or [—Q7 OO[

Proof. In Lemma 1 it was shown that a nonempty support bounded
from above has @ as its least upper bound, Lemma 2 gave the answer for
bounds from below. The restriction to open intervals for S(f), except
for the case ¢ = %, was also shown in these two lemmata. Later on it
will be shown that all these cases really can occur.

II. Solutions with unbounded support

a) General results

In this chapter we give some general results on the solutions of
equation (1) and also present general solutions with unbounded sup-
ports. First we start with a uniqueness theorem (cf. [2]):
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Theorem 2. Let f,g: R — R be solutions of (1) which coincide on the
half-open interval [—1,1[. Then they are identical.

‘Proof. We give this proof by induction and show that f coincides with
g-on any interval [—n, n[, where n is a positive integer. For n = 1 this is
true by assumption. Now suppose that f and g coincide on the interval
[-n,n[,and let z € [-(n+1),n+1[\[-n,n[. Then eithern <z <n+1
or —n—1 < z < —n. In the first case choose y := z—1 € [—n,n]. Then
¥,y — 1,qy € [-n,n[, and by (1) we have g(z) = g(y + 1) = 4¢g(qy) —

—g(y—1)—29(y) = 44f(qy) — fly— 1) = 2f(y) = fy + 1) = f(z).
Similarly, choose z := z + 1 in the second case. {

Next we give a theorem how to get all the solutions in the case of
unbounded support. By Th. 2 it is sufficient to give the restriction of
the solution to the interval [—1,1].

Theorem 3 (cf. [2]). Let h: [-1,1[—= R be an arbztmry function. Then
there exzists ezactly one solution of (1) such that the resiriction of this
solution to the interval [—1,1] coincides with h. In other words: Any
function h: [=1,1[— R can be uniquely eztended to a solution of (1).
Proof. Let h: [-1,1[— R be given. We first extend h by induction to
the intervals [—1, n[ for each natural number n and then to the intervals
[—n, 00l: |
Let f, := h: [-1,1]— R. Suppose that fn is given on [~1,n[ for
‘some nonnegative integer n. We define f,4; on the interval [—-1,n + 1]

by v '
falz) ” for z € [~1,n]
frt1(z) = {4qfn(q($ 1))—fa(z—2)—-2f,(z—~1) otherwise

(it is easy to see that forn <z < n+1 we have ¢(z — 1),z -2,z —1 ¢
€ [-1,n[). As — by definition — any two functions f,,, f, coincide
“on the intersection of their domains, this family of functions uniquely
defines a function Fy on the interval [—1, co[. We continue like before:
Suppose that F,, is given on the interval [—n,oo[. We define Fy,4; on
the interval [—(n 4 1), 00 b

Fo(z) - for z € [—n, oo
Fopi(z) = )
4qF(q(z+1))—Fn(z+2)—2F,(z+1) otherwise.
Like before, this family of functions uniquely defines a function f on
the whole real line. We only have to show that f is a solution of (1):
Let z € R. (o) If £ < 0, then there is an n € N such that
—(n+1) <z -1 < —n. By definition, f coincides with F,; on
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the interval [—(n 4 1),00[. Thus — by definition of F,1; — we have
£(z ~1) = Fuga(s ~ 1) = 4qFa(gz) ~ Fa(z +1) — 2Fa(e) = 4qf(gz) —
— f(z +1) — 2f(z), which is nothing else but equation (1).

(B) 2z >0, then thereisann € Nsuchthat n <z +1 < n+
+ 1. Like before, we have f(z+41)= fot1(z+1)=4q¢fn(qz)— fn(z—1)-
—2fn(z) = 4qf(gz) — f(z — 1) — 2f(), and (1) is fulfilled, too. ¢

The next two theorems deal with solutions whose support is
bounded from above. First we give a uniqueness theorem.
Theorem 4. Let f,g be solutions of (1) whose supports are contained
in the interval | — 00, Q). Then f = g iff the restrictions of f and g
to the interval |Q — 1,¢Q] coincide and f(Q) = ¢(Q). (The second
condition 1s necessary only in the case g = i)
Proof. We define a sequence (z,) by 2o := Q — 1, 2441 = q(zn + 1).
As 29 < @, we have z, < 2,41 < Q for any n € N, and lim z, = Q.

n—x
Now suppose that f and g coincide on the interval |z, z,41] for some

nonnegative integer n, and let = €]z,41,Zpy2]. By definition of the
sequence (z,) we have z = ¢(y + 1) for some y €|z, £,41], which also
implies that y +2 > y +1 > Q. Using equation (1) for the value y + 1,
we get g(z) = g(q(y +1)) = 5, (9(¥) +9(y +2)+29(y + 1)) = Lg(y) =
= ZlE f(y) = f(z). Thus by induction we get the result that f and ¢
coincide on the interval |Q — 1, Q[ and — by assumption — their values
at the point @) are identical, thus they coincide on the interval |Q —1, Q]
and, therefore, on the interval |Q — 1, co].

Now let yo := @ — 1 and yp41 = %yn — 1. The sequence (y,) is
strictly decreasing and unbounded, thus there is a nonnegative integer
k such that y; < 0, yx—; > 0. We will show that f and g coincide on the
interval |yx, 0o[. Let 0 < m < k, and suppose that f and ¢ coincide on
lym, o[ For z €]ym41,ym] wehave z+2 > z+1 > g(z +1) > y,, and
can derive from equation (1) that f(z) = g(z), i.e., f and ¢ coincide on
]Yym+1,00[. A usual induction argument shows that f and g coincide on
Jyx, oo[ and, therefore, on [0, co].

We finish the proof by one more induction process: Suppose that
f and g coincide on [—n, co[ for some nonnegative integer n. Then for
cz€[—(n+1),-n[wehavez +2 >z +1 > —n, g(z +1) > —n, thus
equation (1) gives f(z) = g(z), and f and g coincide on [~(n + 1), oo].
Thus f =g. ¢ :

We can use the same ideas to give all the solutions of equation (1)
under the assumption that the support is bounded from above:
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Theorem 5. Let h: ]Q — 1,¢Q] — R be an arbitrary function, and
a real number which is arbitrary in the case ¢ = % and 0 otherwise.
Then there exists a unique solution f of (1) such that the restriction of
f to the‘interval |Q —1,¢Q)] 13 zdcntzcal to h, f(Q) = a and supp (f) C
C] = o0, Q).
Proof. The uniqueness has’ been shown in the preceding theorem. For
the existence, we will make an extension of h: As in Th. 4, let (z,) be
the sequence given by zo := Q@ — 1, Zp41 := q(zn + 1). Let ho = h, and
h, defined on the 1nterva1 Jzo, $n+1] by induction:
hn(z) for « €]zo, Tnt1]

(o) = { Lhaly) for z=a(y+1) Eltnts, nse)

As any two of the functions hp,h., coincide on the intersection of their
domains, they uniquely define a function heo: |Zo, @[— R. Next we
extend to the interval ]z, 0o[ by the formula

hoo(z) for z E]:eo,Q[ '

go(z):={ a forz =@
0 - forz > Q. ’
Now we use the sequence (y,) defined as in Th. 4 by y, := @ — 1,
Ynt1 = —yn 1, which is strictly decreasing and unbounded, thus

there is a nonnegatlve integer k such that yx <0, yxk—1 > 0. Let m be
an integer, 0 < m < k, and suppose that g, is defined on |y, co[. For
T €lYm+t1,Ym] We have z+2>z+1>q¢(z+1)> ym, thus we may
define gm+1 on JYym+1, 00| by , .
Gmr1(z)i= {gm(i'?) : for z €lym, oo]
+1(z)= ; .

" 499m(9(z+1)) ~gm(2+2)=2m(z+1) for & €lYm+1, yml-
By this process we get an extensmn of h to the interval |y, oo, which
we call fo: Jyi, o[ R.

Now suppose that f,: Jyx —n,co[— R is defined for a nonnegative
ipteger n. Then we define fri1: ]y;c —n—1,00[— R by

_{fn(ﬂf) , for z €]y —n, oo]
fn+1( ) 4qfn(g(z+1))— fa(z+2)—2fa(z+1) otherwise.
(As yx < 0, it is easy to check that the numbers z + 2, z + 1, ¢(z + 1)
are greater than y; — n for z €lyx —n — 1,yx —n).)

By the same arguments as before the family of functions (f»)
uniquely defines a function f: R — R. We only have to check that this
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function f fulfills equation (1). From the construction it is evident that
f(Q) = a, supp (f) C] — 00, Q] and f coincides with h on ]@Q ~ 1,¢Q)].
Let z € R: v

(o) z < yx + 1: There is a nonnegative integer n such that yx —
—n—1<z—1<y;—n. As f coincides with f,4; on Jyr —n — 1, 00|,
and from the definition of f,4+1 (the formula given above defines the
value at z — 1) we immediately get that (1) is fulfilled.

(B) ye +1 <z < yo+1 = Q: Once more the definition of the
functions g,,, shows that (1) is fulfilled.

(7) Q@ < z < @+1: Here we can use the definition of the functions
h, to show that equation (1) is fulfilled.

(8) = > Q + 1: As supp(f) C] — o0, @], equation (1) is trivially
fulfilled. ¢

From equation (1) it is evident that in any case when f is a solution
of (1), then also the function z — f(—z) is a solution of (1). Therefore,
without giving any new proofs we can reformulate Ths. 4 and 5 for the
case that supp (f) C [-@, oo[:
.~ Theorem 6. Let f,g be solutions of (1) whose supports are contained
in the interval [~-Q,o00[. Then f = g iff the restrictions of f and g to
the interval [—qQ,1 — Q] coincide and f(—Q) = g(—Q). (The second
condition 13 only necessary in the case ¢ = i)
Theorem 7. Let h: [—¢Q,1 — Q[— R be an arbitrary function, and «
a real number which 1s arbitrary in the case ¢ = i— and 0 otherwise.
Then there erists a unique solution f of (1) such that the restriction
of f to the interval [—qQ,1 — Q| 13 identical to h, f(—Q) = a and
supp (f) € [-Q, oo
Remark 2. Ths. 5 and 7 show that in the case ¢ = i really both cases
S(f) g] - OO,Q[ and Q € S(f) C_:] - OO)Q] (TCSp. S(f) g] - Q)OO[ and

—Q € S(f) C [~Q,00[) can occur.

: Next we conduct investigations on the solutions of (1) under spe-
cial conditions like continuity, differentiability, measurability, integra-
bility. With respect to the remark before Th. 6, we may restrict our-
selves to the cases S(f) C R and S(f) €] — o0, Q]. The main question
will be: Which conditions have to be imposed on the defining function h
(cf. Th. 3 resp. 5) in order that the solution f has the desired property?

b) Continuous solutions

It is evident that in this case h has to be continuous. The answer
concerning the necessity of further properties on h is given below:
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Theorem 8 (The case S(f) C R). Let h: [-1,1]— R be continuous.
Then the unique solution f of (1) defined by h (unique extension by
Th. 3) is continuous iff llm h(z) = (49 — 2)R(0) — h(-1).
Proof. We use the notatlons fn and F,, of Th. 3.

. “only if”: hm1 h(z)= f(1) =(4¢—2)h(0)—h(—1) by equation (1).

“if”: The construction of f given in Th. 3 is very useful: f; :=
=h: [-1,1[— R. If f, is given on [—1,n[ for some nonnegative integer
n, then f,1; is defined on [—1,n + 1] by
falz) for z€[—1,n|
fry1(z) = {4 ‘ .
qfn(@(z—1))— fal(z—2)—2f,(z~1) otherwise.

As f, is supposed to be continuous (induction hypothesis), we only have
to show that f,41 is continuous at the point n (in the neighbourhoods of
any other point f,4; is given as a composition of continuous functions).
To be more prec1se We only have to show that hm fn+1(:v) Fat1(n),

(‘*‘) - Jim fa(@) = 4gfa(g(n = 1)) = fa(n = 2) = 2fa(n - 1).

n= 1 (*) is fulfilled because of our assumptlon on h.
n > 1: By definition of fn we have '

lim fale) = lim (40fas(g(e = 1)) = fas(s = 2) ~ 2faa(z — 1)) =
= lim(dafalele — 1)~ fale —2) ~ 2fu(e ~ 1)) =
" (because f, coincides with f,_; on [~1,n — 1[)
= lm (44fu(e(®)) = fule = 1) = 2fa(=)) =
 tafu(aln 1) = faln = 2) = 2fa(n — 1) = faa(n)

(because n — 1 is an interior point of [~1,n[, and

fn is continuous on [—1, n).

Thus the functlon F of Th. 3 is continuous on [~1, oo[. .We proceed
once more by induction, showing that each F, is continuous. These
functions are inductively defined by

Fo(z) » for z € [~n, oo]
Fn+1 (.’E) = .
4¢F,(q(z+1))—Fo(z+2)—2F,(z+1) otherwise.
Here we have to show that the function F w-b1 is continuous at the point
~n, to be more precise, we have to show:
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l/i‘m Frt1(z) = Fo(—n).
But

m Foia(e) = lim (49Fn(e(e +1) = Fa(e +2) = 2Fa(z +1)) =
49Fu(q(z)) = Fu(z + 1) — 2Fu(z)) =
= (4gFu(g(-n+1)) = Fa(-n +2) = 2F(-n+ 1)) =
=4¢F,_1(¢(—n+1))—~Fp—1(—n+2)—2F,_1(—n+1)=F,(—n) for n>2.
For n = 1 we compute like before

Jim Faia(s) = 4gFu(g(—n +1)) = Fa(=n+2) = 2Fn(-n+1) =

= lim (
z,/—n+1

= 4¢F(0) — F1(1) — 2F1(0) = Fi(—1) by the condition on A.

Thus each Fj, is continuous, and therefore the solution f is continuous. {
Before we deal with the case S(f) C] — o0, @], we introduce some

notation. This will be useful to make the theorems on this case S(f) C

C] ~ o0, Q] more easily readable — and the same notation is also useful

to treat the question of differentiable solutions.

Definition 1. Let ¢ €]0,1][.

B(g):= { Q—ap—a1gt—...—amq™
qm
(ezceptional points). For real z and integers m > 1 we define the set
M(g,z,m) by

lm,aiel, m >0, aizl} uU{Q}

M(q,z,m):= {(ll,... ylm) l q"z +lpg™ + ...+ lhg=Q,
Lel l,...,ln, >0}
(m-tuples). Furthermore, let S(g,z,m) denote the sum
S(q,z,m) := Z (=D)bttm .
(U1, Im)EM(q,z,m)

(As usual S(q,z,m) = 0 whenever M(g,z,m) = {.) Finally, let C(q)
denote the set

Clg):={z eR| n}grlw S(g,z,m) =0}

(points of continuity, as we will see later on).
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Proposition 1.
(a) For z € R the following rela,tzon holds: z € E(q) iff M(q,z,m) #
# 0 for some m € N.
(b) {1} x M(q,z,m) C M(q,z,m+ 1) for any m and for any z.
(c) For any = € R there ezists a natural number g such that for
any m 2 mq the relations M(q,z,m + 1) = {1} x M(q,z,m)
~and S(q,z,m + 1) = —S(q,z,m) hold. Furthermore, the sets
M(q,z,m) are finite. .
(d) The set E(q) only contains zsolated poznts “and for any compact
“interval J the set J N E(q) is finite.
(e) R\E(q) € C(q). |
(f), Recursion formula for S(g,z,m):

- Sleemml) = i(—l)'l -$(g,z+ l——'mlm)

whére u denotes the greatest integer with u < Q +1- q z.
Proof. (a) First suppose that z € F(q).

- Case 1: z = Q. Then gz +q= q(Q + 1)= Q, Which"implie‘s that
M(g;z,1) £0. S

gl L T ‘
Case 2: ¢ = 9=% aqum = fmg ,Wherem,aiEZ,mZO, a; > 1.

Then
Tz + (ag +.1)¢" + d1¢? +. -I-amq

—q(Q+1 1-ap—a1¢" —...~amg™) +(a0+1)g" +ar¢*+. . .Aamg™ ! =

=¢(Q+1)=

Thus M(q,z,m +1) # §. Now suppose that M(g,z,m) # § for some
m 2> 1: Then there are integers l4,. .. ,l, > 1 such that ¢z + Img™ +
+ ...+ 1l1¢ = Q, which implies that :

_Q—hq' — .. —lng™ q(Q+1)—hq — o= lpg™

h qm - g™
Cancellation of the factor ¢ gives . o
| Q1) = ... —Ipgm?
- qm— -1 '

If I; > 1, this expression shows that z € E(q), otherw1se we proceed
cancelhng like before until we get the desired expression.
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- (b) Let (l,... ,lm) € M(q,z, m) Then q »’C-qu _|_ ot lhg=
= Q , which 1mphes that .

_ Tl 4 lng™ ..+ e +1q—qQ+q——q(Q+1)—Q,

in other words, (1,13,...,ln) € M(g,z,m +1). S 5

(c) Case 1: z > Q. In this case M(¢g,z,m) = (Ofor any m, because

the relation ¢(@ + 1) = Q immediately implies that ¢™Q + ¢™ + ...+

! = Q. Therefore, as z > Q and Iy,... [, > 1 we immediatély

get "z + g™+ ...+ lig > ¢"Q +q¢™ +. = Q. Thus1tls
impossible to find elements belonging to M (q, z m) _

Case 2: z = ). From the computation of Case 1 it follows imme-
diately that M(q, Q,m)={(1,..., 1)}

Case 3: z < Q, z ¢ E(q). Then M(q,z,m) = (?) for any m.

Case 4: z<Q, t€ E(q). Then 0<¢(Q—z)= ((Q+1) (z:+1))=
=Q—q(z+1)and @ —g¢(z+1) = ¢(Q — z) < @ — z, which implies
that z < ¢z + 1) < _Q, and a usual induction argument shows that
r<qgr+q<gz+¢@d+qg<...<qmz+q¢"+...4+¢<...< @, and
this strictly increasing sequence tends to Q Now choose an integer n
such that

Q~q<q"m+q"+...+Q<Q.

Let m > n be an arbitrary integer and (l1,... ,lmn) G'M(q,x,m). Sup-
pose that [; > 2, then

Q=q"z+Ilng"+...+hg2q™ w+q + +q+q>Q q+q—Q,

a contradiction. Thus the only posmbhty is that [; = 1. From this fact
we deduce that Q@ = ¢(Q +1) = ¢™z + g™ + ...+ 1g. Cancellation
of the factor ¢ gives QQ = ¢™~ Iz + lmq"‘ 1. + laq, which 1mphes
that (Iz,... ,Im) €.M(g,z,m—1), in other Words We have shown that
M(q,z, m) C {1} x M(q,:c m —1).

A Thus in any case M(q,:v m—l—l)—{l}xM(q,:c m) form>m0
holds. Furthermore, for any fixed natural number m the set M(g,z,m)
is finite, because all the numbers ¢,q?%,... ,q™ are positive. The for-
mula for the sum S(g,z,m).is a trivial consequence of the. equation for
M(q,z,m) given above.

(d) From the proof of (¢) we see that E(q) is a subset of the 1nterval
[—00,@]. Thus we only have to show that the intersection of E(g) with
any interval [a, Q[ (for a < Q) is finite. Let a <@, and as in the proof
of (c) choose an n such that @ —g¢ < ¢"a+¢™+...+¢ < ¢q. Now suppose
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that z € [¢,Q[. Then Q@ —¢ < ¢"z+¢"+ ...+ ¢ < @, and combining
(a) and the computation in the proof of (¢) we immediately see that
z € E(q) iff M(q,z,n) # 0. A simple computation also immediately
gives that the intersection of M(q, z,n) and M(q,y,n) is empty, if z #
# y. If M(q,z,n) is nonempty, then there is an n-tuple (l,...,1,)
such that Q@ = ¢"z + [,¢" + ...+ l;q. Thus

Q—qg<qtatq™+...+q<q"a+1,q"+.. . +1h1¢<qg"z+1q¢"+.. . +l¢=0Q.

As the numbers ¢, ¢%,... ,q" are positive, there are only finitely many
n-tuples (I1,...,l;) which fulfill the inequality ¢"a+l,¢" +...+ ;¢ <
< Q. Thus there are only finitely many points z € [a, Q[ such that
M(g,z,n) # 0.

(e) By (a), for any z € R\E(q) we have M(g,z,m) = 0 for any
m. Thus for any m and any such z we get S(g,z,m) =0.

() M(g,z,m+1):=

qm+1x+1m+1qm+1+lmq’"+...+11q=Q,
= {(ll>"' ylmy lmt1) | LELIy,... lmy1>0 }

Fixing [;, the condition can be written as

"t hg g™+ b =Q=q¢(Q+1) or
"+ (- 1)+ lnpag™ T+ + e =qQ or
i -1
qm

From the last condition we immediately get

M(g,z,m+1)= J{l} XM(q,:c—l—lq——,ni,m).
=1

qm<$+ )+lm+1qm—|—...+lquzQ-

The formula for S(g,z,m + 1) is a trivial consequence, because the
union above is disjoint and M(q,y,m) is empty for y > Q. {

We will need the set C(g) in order to describe continuity resp.
differentiability properties. As the description of the set E(q) is much
easier to handle than the definition of C(g), we try to find a relation
“easy to handle” between the sets R\E(q) and C(g). In Prop. 1(c) it
has been shown that R\ E(¢) C C(g). Thus the question arises whether
this inclusion is proper or not. At the moment only a partial answer
can be given:

Proposition 2.
(a) If g €]0,1] is transcendental over the field Q, then C(g) = R\ E(q).
(b) If q €]0,1[ is algebraic over the field Q, it has a minimal polyno-
mial in the algebra Q[Z]. We normalize this polynomial not as
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usual (leading coefficient = 1), but with integer coefficients-whose
g-c.d. is equal to 1 (this polynomial is unique up to the factor :f:l)
Let this polynomial be denoted by p(z).
(bl) If p(1) is even (i.e., the sum of the coefficients is even), then
Cla) = R\B(g). | : o
(b2) If ¢ < % and p(2) = a— bz*, where a, b, k are positive integers and
a+b zs odd, then R\E(q) is a proper subset of C(q). ‘
Proof. Let T € E(q) Suppose that (ll,lz, <y 1lm) € M(g,z,m) and
(5, 0,...,I,) € M(q,z,m). Then

0=Q~Q=(qmz+lmqm+ A hg)— (" g ..+ 1g) =
=(lm ~U)g™ + ...+ (L — g

(a) Let ¢ be transcendental over the field Q. Then no nonzero
polynomial with integer coefficients can have ¢ as a zero. Therefore,
M(q,z,m) contains exactly one element, and S(q,z,m) #0.

(bl) For 2 elements ({1,1,, .. m) € M(q,z, m) and ({1,1,...
II,) € M(q,z,m) the mlmmal polynomlal p(z) of ¢ is a divisor of the
polynomial (I, — I,,)z™ + (i = )z (by Gauss lemma, from . el-

ementary algebra). Thus the even number p(1) is a divisor of (I,
—U)+...+(ly = 1)), in other words: I; + ...+ {,, and h+...+ l'
are either both even or both odd. Therefore, all the terms in the sum
S(g, x,m) have the same sign, which implies that S(q, z,m)#0.

(b2) In order to show that in this case R\E(q) is a proper subset
of C(q), we give an element z € E(q) Wlth S C’(q) Let r be the
smallest positive integer such that

q— q
l—q
and let m := k + r. (Such an integer r exists, because Q T < 1)
Now define (14,...,1,) by : :

,+(3a—1)qr <1,

2a, ifz=7r
l;:=<b ifi=

1 otherw1se

and let z := Qfllqlgr',;'ﬁlmqm. We determine the set M(q,z,m). Of
course, (I1,...,ln) € M(q,z,m). Now let (I},...,1,) € M(q,z,m).
Then [} > 0, and the polynomial (I}, — lm)z™ + ... + (I} — 1)z is a
multiple of a — bz* in the ring Z[Z], i.e., there is a polynomial s(z) with
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integer coeficients such that (I, —I)z" + ...+ (I} = l1)z = (a — bzF)-
-8(z). This fact implies that the first nonvanishing difference I —I; is an
integer multiple of a. Now suppose that j <rand l; =1,... ;1 =
=13, #1;. Thenl; > l;+a=1+a. As the sums l.g™+...+1lq
are equal for all (14,...,1,) in M(q,z,m), we have

1>0.¢™+...+1lig>q™ +. ot qgtad =

—q" m—j
g +¢'(a+q™).

As g < %, we have ¢(3a — 1)< ¢g-3a<a + q¢™ 7, and therefore,
9—q9
1-—
According to the minimality of r we must have j > r—1. On the other
hand, deg((a — bz*) - s(z)) = k + r, which implies that deg(s) < r.
Thus the only possibilities are that s(z) = z™! - (a + f2) with integer
coeflicients «, 3.

Case 1: k> 1, Thenll, ;=1—ab>0andl,_, =l,_1+aa >0,
which implies that o = 0.

Case 2: k = 1. If r = 1, then clearly oo = 0 (the left-hand-side

polynomial has no constant term). If r > 1, then
Il =b—pb>0, which implies that § < 0;
Il_,=1+aa>0, which implies that a > 0;
Il =2a—ab+ Ba>0, ie (24 B)a> ab.

1> l;nq 4+ +l'1q > —|—q1+1(3a—1)

we immediately get a = 0.
any case we have a = 0 and, therefore,

(24 fla, fi=r
I;=24 (1-p)b, ifi=m for some integer f

Asg=% <
Thus 1

1
33
n

1 otherwise.

The condition I} > 0 implies that the only possible values for # are 0 and
—1. Thus the set M(q,z,m) contains exactly two elements, namely,

M={Q1,...,1,2a,1,...,1,b),(1,...,1,a,1,... ,1,2b)}.

As1.....12al.....10=1.... .1al.... 1.2band (14+...+ 1+ 2a +
+1+. +1+b)—(1+ +1l+a+14+...4+14+20) =a—0bis
odd, the sum S(g,z,m) is equal to 0. As (3a ~ 1)¢" < 1, we have
(3a — 1)g"! < 1+ ¢™*!, which implies that

Ql—¢)—g=0<1+(1—2a)¢"™ + (1 —b)¢™"" resp.
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Q—-qg<q™Mz4qg+...+¢q™

As we had seen in the proof of Prop. 1(c), this condition guarantees
that for any n > (m+1)—1 we have S(¢,z,n+1) = —S(g,z,n). Thus
S(q,z,n) = 0 for any n > m, which implies z € C(q). ¢
Theorem 9 (The case S(f) C] — 00,Q]). Let h: ]Q —1,¢Q] — R be
a function, and o a real number which fulfills a = 0 in the case g # i.
Then the unigque solution f of (1) which coincides with h on Q@ —1, ¢Q)
and fulfills f(Q) = a and S(f) C] — 00, Q)] 3 continuous iff a =0 and
b fulfills the following condition:

(i) case ¢ < 3: h =0 (in other words: in this case the zero function

i8 the only continuous solution);

(i) case ¢ > %: h is continuous and I\lfén . h(z) = 4qh(qQ).

Proof. We use the notatios =, An, Yn, gn, fn of Th. 5.
First suppose that f is continuous. As f(Q) = lim f(z) =

= h\% 0 = 0, we must have a = 0, furthermore, h must be contlnuous

Ao lim h(z) = lim f(z) = f(Q - 1) = 4af(sQ) - F(@+1) -

—2f(Q) = 49f(qQ) = 4¢h(¢Q). Now let z €]Q—1, ¢Q] be arbitrary, and
define a sequence (zy,) by 2o := 2, zp41 := ¢(2n,+1). Then lim z, = Q,

(zn) is strictly increasing, and because z, +2 > z, +1 > @, we have
F(zas1)=Fla(za+ V=1 (f(zn) +f(zn+2)+2f(2a +1)) = —qf(zn)-
Thus, f(z,) = (E) (z) and therefore

0= £(Q) = lim f(z,) = lim (%)nf(zj-

The right-hand-side limit exists and is equal to 0 iff ¢ > I or f(2) =0.
For the reverse direction we may suppose that ¢ > 1, a =0,
hm h(w) = 4qh(qQ) and h continuous. We use the construction of
the solutlon f of Th. 5. Let (z,) be the : sequence given by z¢ :=Q —1,
Tnyr = ¢(zn + 1). Let hg := h, and h, be deﬁned on the 1nterva1

o, Zpt1] by induction:

hn(z) for z €]zo, Tn1]

hnia(z) == { 1

1,0 (y) for z=q(y +1) €lznt1, Tnsal-

If h, is continuous on |zg,Z,+1], then by definition it is e€vident that
hpy1 is continuous in ]zg, Znt2] \ {Znt1}. To prove continuity at the
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point z,4; it is only necessary to compute lim hp4;(z):

AN
li hn Ii ——h - —1
I\lgxlﬂ +i(e) = I\lgalﬂ 4q (q )
1
= ki h —"_ n\Tn :hn n .
Am n(z) " (zn) +1(Znt1)

Thus the function hs
nuity of the function

: 1@ — 1,Q[— R is continuous, and for the conti-

hoo(z) for z €]Q —1,Q]

0 forz > Q

we only have to show that zl% heo(z) = 0. By assumption k is bounded
n |Q — 1,¢Q], let us say, by a constant M. But then we have ho

bounded on [Zn, Tnt1] by (& ) M, which immediately implies that g
is continuous at (). The next extension is done via the sequence (y,,)

go :]@ — 1, 00[— R: :1:—+{

of Th. 5, defined by yp := Q —
integer k such that y; < 0,

1, and the nonnegative

oo,

L Yn41 = 'léyn -
Yx—1 = 0. For g,, defined on |y,

0 <m <k, we define g1 on Jymt1,00[ by
7m+1($) =
_ { gm () for z €lym,o0[
4qgm(q(z + 1)) — gm (5 + 2) — 2gm(z + 1) for T €lym+1,Ym)-

Once more using an induction
continuous under the assumpt
the definition, the only critical

m=0: lim z) = lim T
z\yogl() z\yogO(

= 4490(q(y0 + 1)) — go(

m > 0: We use the fact that g
its domain:

lim gmi1(z)= 11m(
T\ Ym
= dggm(a(ym + 1)) -

Thus the function fo: ]y,

fa: lyr —n,00[— R is continug

the formula

argument, we have to show that g, is
ion that g, is continuous. According to
| point is the point y,:

= xli\ﬁ,lo h(z) = 4qh(qQ) =
Yo +2) — 2g90(yo + 1) = g1(yo)-

m 15 continuous at the interior points of

499m(q(z+1)) = gm(z+2) ~2gm(z+1)) =
7m(ym + 2) — zgm(ym + 1) = gm+1(ym)-

oo[— R is continuous. Now, if
ous, fni1 is defined on Jyr —n — 1, oo by
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s (z)-:{fﬂ(w) | for z €]yx—n; oo
AR 4qfn(q(z+1))— fa(z+2)—2fn(z+1) otherwise.

Thus it is continuous at any point except pos51bly the point y; — n:
n=20,k=0: :

Jim fi(e) = Jim fo(z) = Jim go(z) = lim h(z) = 4¢h(qQ) =

=4qfo(q(yo + 1)) — fo(vo +2) — 2fo(yo + 1) = fi(yo)-
n=0,k>0: v

li lir =1 =
Jm fie) = lim fo(z) z_l\I?ggk(,x)

= A (4ggk-1(g( +1)) — gr1(z +2) — 211 (z + 1)) =
= lim (4ggx(a(z + 1)) — gi(z +2) — 2gx(z + 1)) =

=4qgr(q(yr + 1)) — gx(yr +2) — 205 (yx + 1) =
= 4q¢fo(q(yx + 1)) = folyr +2) — 2fo(ys +1) = f1(yx).
n>0:

z\lllm fnt1(z) + hm n(4qfn(q(m + 1)) falz +2)—2fn(z + 1)) =

= 4¢fn(g(ye—n+1)) = falyr—n+2)=2fn(ye—n + 1) = fat1(yx—n).
This fact proves that the resulting solution f of (1) is continuous
everywhere. {
Of course, it was necessary to have h continuous in the preceding
theorem in order to get a continuous solution. And — together with the
boundary condition hgl ) h(z) = 4¢gh(gQ) — this is also sufficient in

the case g > Z' The question arises: What can be said about solutions

f in the case ¢ < i, if the defining function A is continuous and fulfills
this boundary condition?

Theorem 10 (the case S(f) C] — 00,Q]). Let ¢ < I, a € R, a =
=01qg< i, h:]Q—1,¢Q] — R be continuous and nonvanishing,

{Tgl 1h(:r:) = 4qh(qQ), and let f be the unique solution of (1) which

extends h and fulfills S(f) C] — 00, Q] and f(Q) = a. Then the set of
points where f is continuous coincides with C(q).

Proof. We use the notations of Ths. 5 and 9. The proof in Th. 9 shows
that f is continuous on the set |Q — 1, @[. Furthermore, if one chooses a
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point z €]Q —1,¢Q] such that h(z) # 0, then the sequence (z,,) defined
by zo := 2z, Za41 1= ¢(2n + 1) tends to @, and the values are given by
flzn) = (;—q)nf(z). This sequence tends to infinity in the case ¢ < 1,
and it has a constant value, different from 0, in the case ¢ = i. Thus
the function go: ]@ — 1, 0o[— R has exactly one point of discontinuity,
namely the point z = Q.

Now for the solution f the equation

f(z) =4¢f(q(z +1)) - f(e +2) - 2f(z +1)

holds. By usual induction argument from this equation we can derive
the formula

k
(=) = 4¢ Y (=D)L F(g(e+1)+(=1)* ((k+1)f (e +k)+kf(w+k+1))
1=1
for any natural number k: In the case & = 1 this formula is nothing else
but equation (1), and using equation (1) for the expression f(z + k) we
get

f(z) =

k
=4g ) (-D"'Lf(g(a+1))+(-1)F (k+1) f(z+k) +kf(z+k+1)) =

=1

k
=4g Y (-1 1f(q(a+1)+(-1)*kf(a+k+11

=1
H-1)*(k+1)(4q.f(g(z+k+1)) — f(z+k+2) — 2f(z+k+1)) =
k41

=4q Y (1)L f(g(z + 1))+

=1
=Dk +2)f(z+k+ 1)+ (k+ 1D f(z + k+2)).

Now suppose that £ < @), and let k¥ be an integer such that z + &k > Q.
As S(f) €] — o0, @], we immediately get

k
f(z) =4¢) (-1 f(g(z +1)).
=1

Repeating this formula for the arguments ¢(z + [) we immediately get
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k k
flz) =4g Y (-1 hdg Y (1) . f(d*2 + hie® + L),

=1 =1
and by a usual induction argument, for any natural number m we get
k
f(CE) = (—4q)m Z (_1)11+...+1m_ll . lm.f(qu_*_lmqm_*_' ) +llq)

11, Im=1

Now we may choose m large enough such that ¢™z +¢™ +...+ ¢ >
> @ — 1. As f is continuous in the interval |@ — 1, 0o[, except at the
point @, f can be discontinuous at z only, if at least one of the values
q"z + lng™ + ...+ l1q is equal to @), because otherwise we can find a
whole neighbourhood U of z such that ¢"y + l,,¢™ +... +1l1¢ # @, for
any y € U. Thus f is continuous on the set R\ E(q).

For a detailed description of the points of continuity of f now let
z € E(q), and let m be chosen large enough such that ¢™y 4+¢™ +...+
+4¢ > @ —11in a neighbourhood U of z. Furthermore, we choose k large
enough such that y + &k > Q fory € U and M(q,z,m) C {1,2,... ,k}™
(the last condition makes sense because M(q,z,m) is a finite set). As
m, k are fixed, let us abbreviate M (g, z,m) by M and use the notation
P for the set P := {1,2,... ,k}™ \ M. Then {1,2,...,k}™ is the
disjoint union of M and P. Thus fory € U

iy ,
fly) = (—49)™- Z (—1)ll+"'+l’"-ll ol F(@" Y+ g™+ .+ lg) =

I, Im=1

=(—4)™ D (D f(@™ Y g™+ L)+
(L, dm)EM

+H—4)™ Y (D) f(q™y A+ g™ + -+ Lig).
(I1y-..,lm)EP

As P is a finite set, we can choose a neighbourhood V of z such that
teVCU and ¢"y+lng™+...4+hq#Q for any (ly,....,ln)EP, y € V.
Then the sum oo (=1)htetm gy coidm f(q"y+H g™+ . .+ l1q)
I, ln)EP

describes a corgtlinuou;efunction on V, because f is a continuous on the
set |@ — 1,00[\{@}. On the other hand, for (I1,... ,lm) € M we have
@™y +lmg™ +.. .+ he) = f(¢"y— "z + ¢z +Inq™ + ...+ lhg) =
= f(¢™(y — z) + Q) by the definition of M(g,z,m). Thus we have
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Yoo (YL f(gY F g™ o+ g) =

(11, lm)EM
= Y (el f(g(y - 2) + Q) =
1y lm)EM
=flq"(y-2)+Q)- > (DTt =

(11,... ,Im)EM
= f(qm(y - (l:) + Q)S(qa T, m)
As f is discontinuous at the point @), f is continuous at z (in the
neighbourhood V'), if and only if S(g,z,m) = 0. These arguments hold
for any m large enough, therefore, we may conclude that f is continuous

at z iff z € C(q). ¢
In general, it is not easy to decide for a point z € E(q) whether it

belongs to the set C(g) or not. A special case is the case ¢ = 1. In this
case a complete description of the set C(g¢) can be given. As a conse-
quence, in this case the points of (dis-)continuity of the solution f can
be given explicitely. The following theorem will give this description,

and an example will illustrate this fact.

Theorem 11. Let ¢ = i. For any integer p > 0 let the sequences
a(p) = (ag,a1,09,...) and B(p) = (Bo,P1,...) be defined as follows:
@ := p(mod 8) (the remainder term of the division by 8), By = B2,
and the next terms are defined by induction a;4y = f;(mod4), Biy1:=

= L:'"l'—l for i 2.0. (The sequence a(p) is constructed like the 4-adic
expansion of p, except the first element ag.) Now let L denote the set

L:= { cz|? > 0, and the sequence o(p) fulfills the conditz'on:}

P ag =7, or there 13 an ¢ > 1 such that a; = 3 ’
Then B(}) = {Q-plp € Z,p > 0} and B(})NC(3) = {Q—plp € L},
Proof. :

_ . 1__ — m
E(q):{Q ag a’lq .. amq ‘m,a,EZ,mZO,azzl}U{Q}:
qm
={Qq¢ ™™ —ayg ™ —...—am | m,a; € Z,m > 0,a; > 1} U{Q}.

Now g = % and Q = %—, thus ¢~ = 4 and, therefore,

E(i){Q ~plp€Z,p >0}

In order to find C’(i) we compute the values S(i, z,m) for z € E(i)

For the sake of simplicity let us denote S(p,m) := 5(%,Q — p,m)
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for integers m,p > 1. (From the proof of Prop. 1(c) we know that

S(g,Q,m) = (—1)™ for any m, any q.) Of course, we use the recursion
formula from Prop. 1(f):

S(aem+1) = S (-1 (3.2 + ),
=1

where u denotes the largest integer with u < Q@+1—¢™z. In the special
case ¢ = i and z = @ — p this formula reads as

S(p, mu):Z(—U’z.s( Q—Jp{-—— m) =y (~1)'1.S(p4™(1-1), m).
=1 =1
What is the upper bound u? By definition, we have to look for all [
such that there is an m-tuple (I2,... ,ln+1) with the property
"Nt g1 g™+ b+ =Q
resp.
Qe ™ =z tlpp+... +hd ™™ +lg™ =

=Q—-pt+lmy1+...+Lgd " +1g7™.
Thus the equation

1
3—(4’"+1 — D4 p=lapr1+... 4+ L4a™ 4 14™
should have a solution, which is possible if |
4m+l 4m —1
l-4mS—“-3_+P‘ 3 =p+4".

Therefore, ;5 + 1 is an upper bound for ! — let us denote by u(p,m)
the greatest integer less or equal to ;2 + 1.

Now we start computing the values S(p, m):

m = 1: We have to find all the solutions for the equation gz +
+lhig=Q = q(Q + 1), which is equivalent to @ —p+1; = Q + 1. The
only possible choice is I; = p + 1, therefore

S(p,1) = (-1 (p+1).
m = 2: Suppose that p = 8 + a, where r € Z, r > 0, and

a € {0,1,2,...,7}. Then the upper bound u(p,1) is 2r +1 for a €
€ {0,1,2, )and 2r + 2 for a € (4,5,6,7).
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a € {0,1,2,3}:
2r+1
S(p,2) =Y (-1)l(8r+a—4(l-1)+1) = (~a—1)(r+1).
a € {4,5,6, 7}:—1
2r+2
S(,2) =Y (-D'L(r+a-4(1-1)+1)=(a—T)(r +1).
=1
Thus
5(p,2) = (r + 1)p(a),
where

—a—1 fora€{0,1,2,3}
o(a) =
a—T for o€ {4,56,7}.

m = 3: As p = 8r + a, we now suppose that r = 4s 4+ § (s €
€Z,s>0,6€{0,1,2,3}). Then u(p,2) =2s+1 for § € {0,1}, and
u(p,2) =2s + 2 for é§ € {2,3}.

§e{0,1}:

2341

S(p,3)= ) (-1)".1.S(p—16(1—1),2) =
=1
2841

=) (-1)\.LS(8r+a—82(1-1),2) =
=1

2s5+1

=Y (-DLL(r—2(1—1) + D)p(a) =

23841
=Y (-1)"L(4s+ 6+ 3 —20)p(a) = —(6 + 1)(s + 1)p(a).
=1

§e€{2,3}:

2842

S(p,3)=> (-1'.LS(p—16(1—1),2) =
=1

23+2
= D (=D)LL (45 4+ 6 +3 = 2p(a) = (6= (s + ().

Thus
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5(m,3) = (s + )p(a)(é),
where 1 is given by
—6—1 foré € {0,1}

¢(6):{5—3 for 6 € {2,3}

Using the sequences a(p) and fB(p) defined in the statement of this
theorem, we have

S(p,1) = (-1)™*(m+1), S5(p,2) = (Bo + 1)p(cn)
S(p,3) = (b1 + 1)v(a1)p(a).

Now we may proceed by induction:

S(pyk+2) = (B + 1ib(an) .. b(an)b(en )plao) for k> 1.
This formula is true for £k = 1, and £k — &k + 1: By definition of the
sequences a(p) and B(p) the bound u = u(p, k+2) is given by 2841 +1

in the case ag41 € {0,1} and by 28x41 + 2 in the case a4y € {2,3}.
Thus we have

S(p,k+3) = i(—l)l.l.S(p — 41— 1),k +2) =

= Z( 1)V1(48k41 + 3 + argr — 20)¢(ax) .- ¢(az)¢(al)¢(ao) =

(by the same computation as before)

= (Brps + (e (k) - (a2) (e )p( o).

From the last formula it follows that S(p,m) = 0, if and only if ¢(ay) =
= 0 or ¢¥(a;) = 0 for some ¢ > 1. The first is fulfilled iff oy = 7, the
latter is fulfilled iff @; = 3 for some ¢ > 1, which proves the theorem. ¢
Remark 3. The first elements of the set L in the preceding theo-
rem are given by L = {7,15,23,24,25,26,27,28, 29, 30, 31, 39,47, 55,
56, 57, 58,59,60,61,62,63,71,79,87,88, 89,90, 91, 92, 93, 94, 95, 96, 97
98,99,. }

The following example is very easy to construct and shows in the
case ¢ = ;}; that the point @) — 7 really is a point of continuity, though
the defining function h (and the value a) at the beginning do not look
as if this were true. o
Example Let ¢ = 3, then Q = 3, and let h be defined on |Q—1,¢Q] =
=] 3 12] to be constant equal to 1, and let a € R be arbitrary. It is
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evident that A fulfills the conditions of Th. 11. By the construction of
Th. 5 f is given by

0 for = €]Q, oo]

a forz =@

1 for z €]Q — 1,Q]
1-2a forz=0Q-1

-1 forz €]Q —2,Q — 1]
—143a forz=0Q -2

2 for z €]Q — 3,Q — 2]
2—4a forz=@Q -3

-2 forz €)Q —4,Q — 3|
—243a forz=0Q—4

flz)=¢1 for z €]Q — 5,Q — 4]

1-2a0 forz=0Q-5

-1 for z €]Q — 6,Q — 5]
—1l+a forz=Q—6

0 forz €]Q —7,Q — 6]
0 forz=Q -7

0 forz €]Q — 8,Q — 7|
2 forz=0Q —8

2 forz €]Q —9,Q — §]

It is clear that f is continuous at the point @ — 7, but not continuous
at thepoints @, @ -1, Q0 —-2,Q-3,Q—-4,Q -5 Q—6,Q —8.

After this example we close this section on continuous solutions
and turn over to

c) Differentiable solutions

Like in the continuous case, the solutions without any boundary
conditions are much easier to handle, and for the proofs we again use

the constructions of the solutions given in Ths. 3 and 5.
Theorem 12 (The case S(f) C R). Let p be a positive integer,
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h: [-1,1[— R an arbitrary function, and let f be the unique solution of
(1) which coincides with h on [—1,1[. Then f is p-times differentiable
(resp. p-times continuously differentiable) iff h is continuous, continu-
ously exztendable to H: [-1,1] — R and H is p-times differentiable
(resp. p-times continuously differentiable) and fulfills the following sys-
tem of equations:

( 4¢.H(0) =H(-1)+ H(1) + 2H(0)

4q.q.H'(0) =H'(-1) + H'(1) + 2H'(0)

{ 4¢.¢>.H"(0)=H"(-1)+ H"(1) +2H"(0)

( 4¢.¢7. HP(0) =HP (1) + HP (1) + 2HP(0).

Remark: As H is defined on the closed interval [—1, 1], differentiability
is to be understood in the following sense: At any point in the open
interval | — 1,1[ the derivative H'(z) exists, at the point 1 the left
derivative of H exists, and at the point —1 the right derivative of H
exists. In the case of continuous differentiability this function H' has to
be continuous on the whole interval [—1, 1] and similarly for derivatives -

of higher order.
Proof. We use the notations f,, and F;, of Th. 3.

“only if”: f is a continuous solution, which coincides with A on
[—1,1[. Therefore h has to be continuously extendable to the function
H:[-1,1] — R. Furthermore, f is p-times differentiable (resp. p-times
continuously differentiable) and fulfills the equation

4q.f(gz) = f(z = 1)+ f(ze + 1)+ 2f(z) forall zeR.

Differentiating this equation with respect to z up to p times and putting
z = 0 gives the system of equations for h. As H is the restriction of f
to the interval [—1, 1] it is clear that H has to be p-times differentiable
(resp. p-times continuously differentiable).

“if”: Suppose that h fulfills the conditions of the theorem. Th. 8
guarantees that the unique solution f is continuous (from the first equa-
tion of the system for H). Thus we only have to show that this solution
is p-times differentiable (resp. p-times continuously differentiable). Now
let f1 := h:[-1,1]— R. If f, is given on [—1,n[ for some nonnegative

integer n, then f,1; is defined on [-1,n + 1] by
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fa(2) for z € [-1,n]
fry1(z):= { 4 -
gfn(g(z—1))— fa(z—2)—2f,(z—1) otherwise.

As f, is supposed to be p-times differentiable (resp. p-times continu-
ously differentiable) by induction hypothesis, we only have to show that
frn+1 is p-times differentiable (resp. p-times continuously differentiable)
at the point n (in the neighbourhood of any other point f,41 is given
as a composition of p-times differentiable (resp. p-times continuously
differentiable) functions):

Case n = 1. Left side: Here we have f3(1) = H'(1),... ,fék)(l) =
= H®)(1), because f, is continuous and coincides with k on [—1,1]
and therefore with H on [—1,1]. Right side: We have to take the right
derivatives of the defining expression:

£P01) = 49.¢5 £7(0) = £P(=1) - 2, (0) =
= 4¢.¢F. H®(0) — H®(~1) — 2HP(0) = HP(1).
Thus in this case the right and left derivatives are identical. In the
case of p-times continuous differentiability we have to show that f, (p)

is continuous at the point 1. From the left: H(?) is continuous on the
left at 1, and therefore also f2(p ). From the right: As H(?) is continuous

on the right at 0 and —1, the definition of f; shows that f(p ) is also
continuous on the right at 1.

Case n > 2. The crucial point is that for z < n and z > n we
have two different expressions defining the value of f,41(z), but we can
very well use the fact that any two of the functions (f,) coincide on the
intersection of their domains:
n<z<n+l fn-l-l('r) = 4q_fn(Q(z - 1)) - fn(z' - 2) - 2fn(w - 1);
n—1l<z<n: fn+1($) = fn(il?) = 4qfn_ I(Q(m - )) - J[n—1(5C - 2)_

_2fn 1(1:—1) - 4q‘fn(Q(z"‘1)) fn(x_ ) 2fn(x"'1)
As these two expressions are identical and f, is p-times differentiable
(resp. p-times continuously differentiable) on its domain, we immedi-
ately get that f,4; is also p-times differentiable (resp. p-times continu-
ously differentiable) at the point n.

Thus each of the functions f, is p-times differentiable (resp. p-
times continuously differentiable) and, therefore, the resulting function

Fi:[-1,00[— R is p-times differentiable (resp. p-times continuously
dJﬁ'erentlabIe)

The next step is dealing with the functions F, defined on [~n, oo
which are given by
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F.(z) for z.€ [—n, 00|
Fn+1($) = .
4qF,(¢(z+1))—Fo(z+2)—2F,(z+1) otherwise.
Like in the case of the functions f,, here we have to verify that F,,; is
p-times differentiable (resp. p-times continuously differentiable) at the
point —n.
Case n = 1. Right side: F(k)( -1)= F(k)( —1) = HF)(-1). Left
side: Fi(—1) = H(-1) = 4¢H(0) — H(1) —2H(0). For -2 < z < -1

we have

Fy(z) = 4qFi(g(z + 1)) — Fi(z +2) - 2F1(z +1) =
=4qH(¢g(z +1))— H(z +2) —2H(z + 1).
Thus it is possible to compute the left derivatives
F® (1) = 4q.¢*. H®(0) — H®(1) = 2H® (0) = H®(-1).

As in the case of f; the continuity of F2(p ) at the point —1 in the case
of p-times continuous differentiability immediately follows by the same

arguments,
Case n > 2.
—n—1<z<-n: Fpyi(z) =49F(q(z +1)) — Fp(z +2) — 2F,(z +1).
—n <z < -—n+l: Fopi(z) = Fp(z) = 4¢Fn—1(¢(z+1))— Fpa1(z+2)—
—2Fn1(z+1) = 4qFn(q(z+1))—Fp(z+2)—2F,(z+1).
Thus we have one expression for all arguments z such that —n — 1 <
< z < —n+1, which is p-times differentiable (resp. p-times continuously
differentiable) because F,, is supposed to be p—tlmes differentiable (resp
p-times continuously differentiable).
Thus the solution defined by h is p-times differentiable (resp. p-
times continuously differentiable).
The question of differentiable solutions in the case that S(f) C
C] — o0, @] is similar to handle. An answer in this case can be given,
the proofs are very similar to the case of continuous solutions.
Theorem 13. Let h: |Q — 1,¢Q] — R be an arbitrary function, and
a a real number which 1s arbitrary. in the case ¢ = % and 0 otherwise,
and let f be the unique solution which eztends h and fulfills f(Q) = a,
S(f) €] — 00, Q). Furthermore, let r be a natural number. Then f s
r-times differentiable (resp. r-times continuously differentiable) on the
set R\ E(q) if and only if the function h fulfills the following conditions:
(a) h:]Q —1,9Q] — R is continuous;
(b) h is continuously eztendable to a function H: [Q — 1,9Q] — R,
where
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(bl) H is r-times differentiable (resp. r-times continuously differen-
tiable),

(b2) H fulfills the following conditions:
H(Q —1) =4¢.H(¢Q)
H'(Q-1) =4¢".H'(4Q)

......

HONQ — 1) =4¢" 1. HM(4Q).

Remark. As H is defined on the closed interval [@ — 1,¢Q)}, differen-
tiability is to be understood in the following way: At any point in the
open interval |Q) —1, ¢Q[ the derivative H'(z) exists, at the point ¢Q the
left derivative of H exists, and at the point @ — 1 the right derivative
of H exists. In the case of continuous differentiability this function H'
has to be continuous on the whole interval [Q — 1, ¢Q] — and similarly
for derivatives of higher order.

Proof. “only if”: Suppose that f is r-times differentiable (resp. r-times
continuously differentiable) on the set R \ E(g). As this set contains
the interval |@Q — 1, @[, we immediately get:

(a) h = f|]Q — 1, ¢Q] is continuous.

©) Jp he) = B f0) = lm saflle+ 1) =
= I{mQ4q.f(:z) = 4¢.f(¢Q) = 4q.h(¢Q). Thus h can be extended
o\

continuously to a function A on [@ — 1, ¢@Q] which fulfills H(Q — 1) =
= 4¢H(qQ).

(b1) We have H(z) = 4¢.f(q(z + 1)) and ¢(z + 1) € [¢Q, ¢(¢Q +
+1)] €]JQ —1,Q[ for each z € [Q — 1,¢Q]. As f is r-times differentiable
(resp. r-times continuously differentiable) on the interval |Q — 1, @], it
is evident that the same holds for H. '

(b2) From the formula H(z) = 4q.f(g(z + 1)) we immediately get
H'(Q—-1) = 4¢%. f'(¢Q) = 4¢%.H'(¢Q), and by induction for any integer
k1< k<r HO(Q —1) = 4¢51. ) (¢Q) = 4¢*1 H® (4Q).

“if”: Suppose that h fulfills conditions (a) and (b). Like in Th. 9
first we show that the solution f is r-times differentiable (resp. r-times
continuously differentiable) on the interval |Q — 1, Q[. Let (as in Th. 5
resp. Th. 9) 2o := Q@ — 1, znt1 := ¢(z + 1). From Th. 9 it follows that
f is continuous on the interval |@Q — 1,QJ, and from the construction
it is evident that f is r-times differentiable (resp. r-times continuously
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differentiable) on each of the open intervals |z,,zn41[ for n > 0. Fur-
thermore, the conditions (b2) immediately show that the left deriva-
tives (of order k, 1 < k < r) at the point ¢@Q coincide with the right
derivatives at this point. If H is r-times continuously differentiable, the
left and the right limits of f(")(z) coincide with H("(¢Q) = f((¢Q)
when z tends to ¢@). Thus f has the desired properties on the interval
|zo, z2[. Now we may proceed by induction: Suppose that f is r-times
differentiable (resp. r-times continuously differentiable) on the interval
]zo,zn[ (n > 2). Then f is given on the interval |z1, zn41[ by the for-
mula f(z) = ;—q.f(—;’- — 1), where the right hand side uses arguments
of the interval ]zg,z,[. Thus f is r-times differentiable (resp. r-times
continuously differentiable) on the interval |z1,zn+1[, and as the in-
tersection of |zg,z,[ and ]z1,zn41] is nonvoid, f has this property on
the interval |zg, z,+1[. We may conclude that f is r-times differentiable
(resp. r-times continuously differentiable) on the interval |Q —1, Q[ and,
therefore, on the set |@Q — 1,00[\{Q}. For further investigations on f
we use the formula derived in Th. 10: Let be z < 0, let ¥ € N be such
that z +k > @, and let m € N be such that ¢z +q¢™+...4+¢> Q1.
Then
k
fl@)y= (4™ > (1)t f(g e g™+ A lg).

l1,...,lm=1

The right-hand-side expression is a finite sum of terms, where each
argument depends continuously on z and is contained in the interval
1@ —1, 0o[. Thus if none of these arguments is equal to @, this property
holds in a whole neighbourhood of z, and f is given in this neighbour-
hood as a finite sum of r-times differentiable (resp. r-times continuously
differentiable) expressions. Therefore, f is r-times differentiable (resp.
r-times continuously differentiable) in this neighborhood. On the other
hand, from Prop. (1) we know that the set where at least one of these ar-
guments in the right-hand-side éxpression is equal to @ is the set E(q),
which proves the statement that the solution f is r-times differentiable
(resp. r-times continuously differentiable) on the set R\ E(q). ¢
The preceding theorem gives two possibilities to make the set of
points where f is not r-times differentiable “small”:
— f is r-times differentiable at () or
— the sum of coefficients at f(Q) (used in the proof of Th. 13 in the
sum expression for f(z)) is equal to 0.
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A precise answer will be given in the following two theorems.
Theorem 14. Let h and a be as in Th. 13 and suppose that h fulfills
conditions (a) and (b). Then the solution f is r-times differentiable
(resp. r-times continuously differentiable) at the point Q, if and only if
h is identically 0 and o = 0, or q fulfills the condition 4"+ > 1.
Proof. We may assume that h is nonvanishing, and we give the proof
by induction. .

r = 1: First suppose that f is differentiable at Q. Then f is
continuous at (), and we have o = 0 and 4¢ > 1 by Th. 9. Let z €
€]Q — 1, ¢Q] be arbitrary such that h(z) # 0. Then the sequence z :=
= 2, Zpt1 := ¢(2n + 1) tends to @, and from the right derivative at Q
we have f'(Q) = 0. Thus

' . f(zn) = (@)
P=SQ) = Jim T

Now
F(zn41)—f(Q) = f(zn41) = fg(zn+1)) = %f(zn) = ;ll—q(f(zn)—f(Q))

and

Znt1 — Q@ =q(zn +1) — ¢(Q + 1) = ¢(2n — Q),
which implies

f(zn) = £(Q) _ (L)" (=) - £(Q)
Zn — Q B 4‘]2 zZ—= Q .
This sequence tends to 0 iff 4¢2 > 1.
Now suppose that 4¢> > 1. Then 4¢ > 1, which implies that fis
continuous at (). We have to show that the left derivative of f at Q
is equal to 0 and — in the case of continuous differentiability — that

li/r‘qQ fi(z) =0. Asin Th. 5,let 2o = Q@—1, zp41 = g(zn+1), and let M

be a bound for the function A on |Q — 1,¢Q] =]zo, ;). (Such a bound
exists because h is continuously extendable to the compact interval
[£o,21].) Then f is bounded by (%q)n.M on the interval |z,,Z,y1].
Now suppose that (z,)nen is an arbitrary, strictly increasing sequence
tending to Q. Without loss of generality we may assume that z, >
> @ — 1. Then for each n € N there is a unique m € N such that
Zn €]Tm, Tm+1]. Let us denote this m by m(n). Then nlgréo m(n) = co.

Furthermore,
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Izn - QI 2 lxm(n)+1 - Q] = qm(")|$1 - Q',
and

|F(zn) — Q)] = |f(2a)] < (%)WM
Thus

zm—Q 17 ¢z — Q|  \4¢® Q—z1’
which goes to 0 when n tends to infinity. Further, if H is continuously
differentiable then H' is bounded by some constant N on the interval
[zo,z1]. As f fulfills the equation f(z) = 4¢f(¢(z + 1)) in the interval
120, Q[ we immediately get f'(z) = 4¢*f'(¢(z + 1)) in this interval.
Thus f' is bounded by (ﬁ;)nN on the interval [z,,z,4+1]. By the
same arguments as before we can conclude that li/m fl(z)=0.

Now the step r — r+1: Suppose that f is (r+1)-times differen-
tiable in |Q—1, c0[. Then f is r-times differentiable at @, which implies
4q > 4¢% > ... > 4¢™! > 1. As the function H fulfills H®(Q-1)=
= 4¢*H®) (¢Q) for any k, 0 < k < r, each of these functions H¥)
is either identically 0 or nonconstant. Nonconstant differentiable func-
tions have a nonvanishing derivative, and, therefore, if A is nonvan-
ishing, the only possibility is that H{") is nonconstant. Thus there is
a point z €]zg, 1] such that f(M(z) = H((2) # 0. Once more we
use the sequence 2y 1= 2, zpy1 = ¢(zn + 1). From f(z) = 4qf(q(z +
+ 1)) we derive f(0(z) = 4¢g™t1 (I (g(z + 1)), especially FN(z,) =
= 4¢™ () (2,41), which implies

f(r)(zn) - (4qi+1 ) n‘f(r)(z)-

Comparing the right and left derivative of f(") at the point Q, we get
(r) — f(n 1 \n f(0
_ )0y — fin d0(2) = F(Q) ()
0 f (Q) nli—»rréo Zp — Q nll—?go(élq"‘l‘z) z — Q )
As f(")(2) # 0, this limit is equal to 0 iff 4¢"*2 > 1. On the other hand,
suppose that 4¢""2 > 1. Then 4¢™! > 1, and as H is (r + 1)-times

differentiable in [@Q — 1,¢Q)], the r-th derivative H(") is continuous on
[@ — 1,¢Q)] and therefore bounded by a constant M. With the same

arguments as before we can conclude that f(") is bounded by (Z#)nM

on the interval |z,,2,41]. Now suppose that (z,).en is an arbitrary
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strictly increasing sequence tending to Q. Like before, we may assume
that zo > @ — 1, and denote by m(n) the unique m € N such that
Zn €|Tm,Tm+1]. Then

f(’”)(zn)_f(r)(Q)’ . (F=)" "M ~( ] )m(n>_ M
SCTE O P vy e

As 49"t2 > 1 we immediately get that f (r+1)(Q) exists and is equal to
0.

Zn

Further, if H is (r + 1)-times continuously differentiable then
H(+1 is bounded by some constant N on the interval [zg,z1]. Like
before we get the equation f(r+1(z) = 4¢™2f(+)(g(z + 1)) in the
interval |zg, Q[. Thus f("+1) is bounded by (;i—q%—ﬁ)nN on the interval

[Zn, Znt1]. From this we can conclude that li/:r‘xz2 frt(z) =0. ¢

Corollary 1. The only solution f of equation (1) which fulfills S(f) C
Cl] — 00, Q] and which is C*® on R is the zero function.

Proof. The preceding theorem shows that for a nonvanishing C°°-
solution the inequality 4¢"t! > 1 has to be fulfilled for any natural
number r. But this is impossible because 0 < ¢ < 1. ¢

Corollary 2. Let h and o be as in Th. 13 and suppose that h fulfills
conditions (a) and (b). Then the solution f is r-times differentiable
(resp. r-times continuously differentiable) on the whole real line, if and
only if h is identically 0 and o = 0, or q fulfills the condition 471 >
> 1. '
Proof. First suppose that f is r-times differentiable on R. Then fis
r-times differentiable at @, which implies (by Th. 14) that 4¢"+! > 1.
On the other hand, suppose that 4¢"t! > 1. By Th. 14, f is r-times
differentiable (resp. r-times continuously differentiable) in the interval
]Q — 1, 00[. Thus from the formula

k
f(z) = (—4¢9)™. Z (—1)attlm s Im f(@™z + g™ + ... +119)
Iy Im=1
of Th. 13, where z < Q, z + k > Q, and m is chosen large enough such
that the arguments on the right side are greater than @ — 1, we imme-
diately get that f is r-times differentiable (resp. r-times continuously
differentiable) on the whole real line. ¢ -
Theorem 15. Let h and o be as in Th. 13, and suppose that h fulfills
conditions (a) and (b) and 4¢™! < 1. Then the solution f is r-times
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differentiable (resp. r-times continuously differentiable) on the set C(q),
and not r-times differentiable at the points of the set E(q) \ C(q).

Proof. In Th. 13 it was proved that f is r-times differentiable (resp.
r-times continuously differentiable) in the set R\ E(g). Now let =z < Q,
z € E(q), and choose m large enough such that ¢™z + ¢™ + ... +
+ g > @Q — 1. Furthermore, choose an integer k such that z + &k > @
and M(g,z,m) C {1,...,k}™ asin Th. 10. As in the stated theorem,
let M := M(q,z,m), P := {1,2,... ,k}™ \ M. Asin Th. 10, in a

neighbourhood of z the formula

k
f) = (4™ > (Dt f(g Y+ g™ ) =
11,... ,lm=1

= (—4q)™. Z (=)t 1 (™Y g™ 4 lg)+
(1,0l )EM

H—4g)™ D (DTt (g Y+ g™ -+ i) =
(I1,-.-,lm)EP

= (—4q)™. Z () Hm 1l f(@™ Y+ g™ A+ )+
(I1,-..,lm)EP

+(—4q)™.f(¢"(y — z) + Q)-S(¢,z,m)
holds. The first sum gives f in this neighbourhood of z as a finite
sum of r-times differentiable (resp. r-times continuously differentiable)
terms, thus the second summand makes the decision whether f is r-

times differentiable (resp. r-times continuously differentiable) at the
point z.

Case 1: z € C(g). In this case S(q,z,m) = 0, thus f is r-times
differentiable (resp. r-times continuously differentiable) at. z.

Case 2: = ¢ C(q). In this case S(g,z,m) # 0. As f is not r-times
differentiable at @, it cannot be r-times differentiable at z. ¢

After these investigations on differentiable solutions we turn over
to measurable and integrable solutions. However, one question has
not been discussed because it is still unsolved: Do there exist analytic
solutions (of course, only in the case S(f) C R)?
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d) Measurable solutions

In this section we deal with measurability in the sense of Borel
or Lebesgue (i.e., the term “measurable” is to be understood in this
sense). The results are very simple:

Theorem 16 (the case S(f) C R). Let h: [~1,1[— R be an arbiirary
function, and let f be the unique solution of equation (1) which coincides
with h on [—1,1]. Then f is measurable if and only if h is measurable.
Proof. “only if” is obvious. “if”: Suppose that % is measurable.Then
from the construction given in Th. 3 and from the o-additivity of the
measure it follows immediately that f is measurable. {

A similar result holds for the case S(f) C] — o0, Q]:

Theorem 17 (the case S(f) C]—o00,Q]). Let h: |Q@ —1,¢Q] — R be an
arbztmry function and o a real number which is arbitrary in the case
qg= 5 and 0 otherwise, and let f be the unique solution of equation (1)
whzch coincides with h on |Q — 1,qQ] and fulfills f(Q) =a, S(f) C
C] — 00,Q]. Then f is measurable if and only if B is measumble
Proof. Like that of Th. 16; the construction of f from h has been given
in Th. 5. ¢

More interesting than these “trivial results” on measurable solu-
tions are the following about

e) Integrable solutions

It will be shown that the vector space of integrable solutions for
a given number ¢ is at most of dimension 1 over the field of reals.
Furthermore, the very interesting result is that any integrable solution
has bounded support, in other words, for any integrable solution § (f) C
C [-Q,Q] holds. Thus the result on the dimension of this space of
solutions follows immediately from the theorem of Baron and Volkmann
[1]. We prepare the results by a lemma:
Lemma 3. (a) Let f be a Lebesgue (resp. Borel)-integrable solution

of equation (1). Then the function F(z) := f] fd)\ (A represents

the usual Borel resp. Lebesgue measure) is well deﬁned and has the
properties:
(i) F' is continuous,
(ii) lim F(z) =0,
(ii) im F(z)= [; fdX €R,
—+00
(iv) F(qe) = Y(F(z + 1) + F(z — 1) 4+ 2F(z)) for any z € R.
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(B) Let f be a solution of equation (1) whose improper Riemann
integral over R ezists. Then the function F(z) :== f f(t)dt 13 well

defined and has the properties:
(1) F' 1is continuous,

(ii) lim F(z) :0,

(i) im F(z)= [2_f(t)dt € R,

(iv) F(qz) = 4(F(ac + 1)+ F(z — 1) 4+ 2F(z)) for any z € R.
Proof. (a): (i), (ii), (iii) are well-known from elementary integration
theory (e.g., cf. Hewitt—Stromberg [3]). (iv) can be derived as follows:

i(F(z +1) + F(z — 1) + 2F(z)) =

1
:Z(/ fdA+/ fdA+2/ fdA):
J—o0,z41] ]~o0,z—~1] ]—o0,z]

-3([_ remao+]

—00,1]

f(E—l)dA(£)+2/ f(&) d,\(g))i

—00,I]

= i/ (FIE+1)+ F(E=1)+27(€))dN(¢) =
J—00,2]

1
7 L GLGEY B CEICES )

(8): (i) is well-known from elementary analysis, (ii) and (iii) are
immediate consequences of the definition of the Riemann integral from
—00 to 0o. (iv) can be computed similarly to the case (a):

Floo)= [ f0de= [ flar)edt =

=o [ UG+ + 1)+ A0 =

— 00

_ i(/zﬂf(t)dtqt/x—lf(t)d“rz/_;f(t)dt) -

—o0 —00

_ %w(m +1) + F(z — 1)+ 2F(z)). ¢

Theorem 18. Let f be a solution of equation (1) which s Riemann
(resp. Borel- resp. Lebesgue-) integrable and let the value of this integral
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be 0. Then f vanishes almost everywhere (in the Borel resp. Lebesgue
case) resp. f is equal to O except on a zero set (in the Riemann case).
Proof. We use the function F' defined in Lemma 3. Then it follows
that F' fulfills the following conditions:

(a) F is continuous,

(b) lim F(z)=0= lim F(z),

(¢) F(qz) = 3(F(z + 1)+ F(z — 1) 4+ 2F(z)) for any z € R.
As F is continuous and tends to 0 when z tends to +oo, it has a
maximum value M at some point 5. Now let 2o = qyg. Then

1
M = F(zo) = Flqyo) = 7(F(yo +1) + Fyo — 1) + 2F(y0))-
As M is maximal, this equality can only hold if
F(yo+1) = F(yo — 1) = F(yo) = F(ayo) = F(z0) = M.

Case 1: x 76 0. Define a sequence (z,) by =, =: ¢n4+1. Then
Yo = z1, and repeating the above argument by induction, we get that
the sequence (F(z,)) is constant with value M. As lim z, = oo we

immediately get that M = 0. T

Case 2: o = 0. The computation given above shows that F(1) =
= M, and we may proceed with the value z¢o = 1 like in Case 1.

Thus in any case we get M = 0. The same arguments show
that also the minimum of F' must be equal to 0, and therefore F' van-
ishes identically. As a trivial consequence the assertion of the theorem
holds. ¢
Corollary 3. The set of Riemann integrable solutions of equation (1)
as well as the set of Lebesgue (resp. Borel) integrable solutions is at
most of dimension 1.

Proof. Integration is a linear mapping from the set of all integrable
solutions into the one-dimensional space R. By the preceding theorem,
the kernel of this mapping contains only the zero function. Thus the
dimension of the space of integrable solutions cannot exceed 1. ¢
Theorem 19. Let f be an integrable solution of equation (1) (in the
Riemann or Borel resp. Lebesgue sense). Then f wvanishes almost
everywhere outside the interval [—Q, Q).

Proof. We use the function F' of Lemma 3: Let G be the value of the
integral of f, i.e., zli_'rro1o F(z) = G € R. Now let € > 0 be arbitrarily

chosen. There exists a number z such that |F(z) — G| < ¢ for any
z > z. Without loss of generality we may assume that z > @. Thus
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for any z > z + 1 we have that F(z — 1), F(z), F(z + 1) < G + ¢ and,
similarly, F(z — 1), F(z), F(z + 1) > G — ¢, which implies that G —
—¢& < F(gz) < G +¢. In other words, the inequality |f(z) — G| < ¢
holds for any z > ¢(z + 1). Repeating this argument, we immediately
get |[F(z) — G| < ¢ for any = > Q, because the sequence z, ¢(z + 1),
q(g(z +1) + 1), ... tends to Q. As e was chosen arbitrarily, we may
conclude that F(z) = G for any 2 > Q. Similarly, using the same
arguments in the other direction, we conclude that F(z) = 0 for any
z < —@Q). As a trivial consequence, f must be 0 a.e. (resp. except on a
zero set outside the interval [—-Q, Q]. ¢

After these results on solutions with unbounded support we make
a short break. A paper on solutions with bounded support will follow.
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