RELATIONSHIPS BETWEEN DISTANCE DOMINATION PARA-METERS

Michael A. Henning

Department of Mathematics, University of Natal, P.O.Box 375 Pietermaritzburg 3200, South Africa

Ortrud R. Oellermann

Department of Mathematics and Computer Science, Brandon University, Brandon, Manitoba, Canada

Henda C. Swart

Department of Mathematics, University of Natal, Durban 4001, South Africa

Received October 1992

AMS Subject Classification: 05 C 99

Keywords: Distance domination, distance independent domination, total distance domination.

Abstract: For any integer $n \geq 2$ a set D of vertices of a graph G of order p is defined to be a $P_{\leq n}$ -dominating set (total $P_{\leq n}$ -dominating set) of G if every vertex in V(G)-D (respectively V(G)) is at distance at most n-1 from some vertex in D other than itself. The $P_{\leq n}$ -domination number, $\gamma_n(G)$ (total $P_{\leq n}$ -domination number $\gamma_n^t(G)$) is the minimum cardinality among all $P_{\leq n}$ -dominating sets (total $P_{\leq n}$ -dominating sets) of G. It is shown that if G is a connected graph on $p \geq 2n$ vertices, then $\gamma_n(G) + \gamma_n^t(G) \leq 2p/n$. A set I of vertices in a graph G is $P_{\leq n}$ -independent if the distance between every two vertices of I is at least n. A $P_{\leq n}$ -dominating set that is also $P_{\leq n}$ -independent is called a $P_{\leq n}$ -independent dominating set. The minimum cardinality among all $P_{\leq n}$ -independent dominating sets in a graph G is the $P_{\leq n}$ -independent domination number of G and is denoted by $I_n(G)$. It is shown that if G is a connected graph of order $P \geq n$, then $I_n(G) + (n-1)\gamma_n(G) \leq p$.

The terminology and notation of [2] will be used throughout. Recall that a dominating set (total dominating set) D of a graph G is a set of vertices of G such that every vertex of V(G)-D (respectively, V(G)) is adjacent to some vertex of D. The domination number (total domination number) of G is the minimum cardinality of a dominating set (total dominating set) of G. Further, the distance d(u,v) between two vertices u and v of G is the length of a shortest u-v path if one exists, otherwise $d(u,v)=\infty$. In [5] generalizations of the above-mentioned domination parameters are defined and studied. For an integer $n\geq 2$, a set D of vertices of a graph G is defined to be a $P_{\leq n}$ -dominating set (total $P_{\leq n}$ -dominating set) of G if every vertex in V(G)-D (respectively V(G)) is at distance at most n-1 from some vertex in G other than itself. The G-domination number G-domination number G-domination number G-domination number G-domination set (total G-domination set) of G. Hence G-domination of G-domination set (total G-domination set) of G. Hence G-domination G-domination set (total G-domination set) of G. Hence G-domination G-domination set (total G-domination set) of G.

In [5] sharp bounds for the $P_{\leq n}$ -domination number and total $P_{\leq n}$ -domination number of a graph are established. In particular the following two results were obtained.

Theorem A. If G is a connected graph of order $p \geq n$, then $\gamma_n(G) \leq \leq p/n$.

Theorem B. If G is a connected graph of order $p \geq 2$, then

$$\begin{array}{ll} \gamma_n^t(G)=2 & \quad \mbox{for } 2 \leq p \leq 2n-1 \\ \gamma_n^t(G) \leq \frac{2p}{2n-1} & \mbox{for } p \geq 2n-1. \end{array}$$

We now investigate relationships between these two generalized domination parameters. Observe that if G is a connected graph on p vertices with $2 \leq p \leq 2n-1$, then $rad(G) \leq n-1$ and so $\gamma_n(G) + \gamma_n^t(G) = 3$. We thus consider graphs of order $p \geq 2n$. Allan, Laskar and Hedetniemi [1] showed that, if G is a connected graph of order $p \geq 3$, then $\gamma(G) + \gamma_t(G) \leq p$. The following theorem generalizes this result.

Theorem 1. For an integer $n \geq 2$, if G is a connected graph of order $p \geq 2n$, then

$$\gamma_n(G) + \gamma_n^t(G) \le 2p/n.$$

Proof. Let $n \geq 2$ be an integer. If T is a spanning tree of a connected graph G of order at least 2n and $\gamma_n(T) + \gamma_n^t(T) \leq 2p(G)/n$, then

 $\gamma_n(G) + \gamma_n^t(G) \leq \gamma_n(T) + \gamma_n^t(T) \leq 2p(G)/n$. Hence we shall prove the theorem by establishing its validity for a tree G. We proceed by induction on the order of a tree of order at least 2n.

Let T be a tree of order 2n. Then $\dim T \leq 2n-1$, and so rad $T \leq n-1$ or T is bicentral with rad $T \leq n$. If rad $T \leq n-1$, then a central vertex of T is within distance n-1 from every vertex of T, while a central vertex, together with any other vertex of T, forms a total $P_{\leq n}$ -dominating set of T. Hence in this case, $\gamma_n(T) + \gamma_n^t(T) = 3 < 2p(T)/n$. If, however, rad T = n, then the central vertices of T form a total $P_{\leq n}$ -dominating set (and hence certainly a $P_{\leq n}$ -dominating set) of T and so $\gamma_n(T) + \gamma_n^t(T) = 4 = 2p(T)/n$. Hence the theorem is true for a tree of order 2n.

Assume that $\gamma_n(T') + \gamma_n^t(T') \leq 2p(T')/n$ for all trees T' with $2n \leq p(T') < k$, and let T be a tree of order k. If diam $T \leq 2n-1$, then $\gamma_n(T) + \gamma_n^t(T) \leq 4 < 2p(T)/n$. So we may assume that diam $T \geq 2n$.

Suppose that there exists an edge e of T such that both components of T-e are of order at least 2n. Let T_1 and T_2 be the components of T-e. Then $2n \leq p(T_i) < k$ and so, by the induction hypothesis, for $i \in \{1,2\}$, T_i has a $P_{\leq n}$ -dominating set D_i and a total $P_{\leq n}$ -dominating set D_i' with $|D_i| + |D_i'| = \gamma_n(T_i) + \gamma_n^t(T_i) \leq 2p(T_i)/n$. Then $D_1 \cup D_2$ is a $P_{\leq n}$ -dominating set of T and $D_1' \cup D_2'$ is a total $P_{\leq n}$ -dominating set of T with $\gamma_n(T) + \gamma_n^t(T) \leq |D_1 \cup D_2| + |D_1' \cup D_2'| \leq 2p(T)/n$. For the remainder of the proof we shall therefore assume that, for each edge e of T, at least one of the (two) components of T-e is of order less than 2n. In particular, we note that $2n \leq \dim T \leq 4n-2$. Let diam T=d and let u, v be two vertices of T such that $d(u, v) = d \geq 2n$. Let the u-v path in T be denoted by $P: u=u_0, u_1, \ldots, u_d=v$. To complete the proof we consider four lemmas.

Lemma 1. If $2n < p(T) \le 3n - 2$, then $\gamma_n(T) + \gamma_n^t(T) < 2p(T)/n$. Proof. Let T_1, T_2 and T_3 denote the components of $T - u_{n-1}u_n$, $T - u_{d-n}u_{d-n+1}$ and $T - \{u_{n-1}u_n, u_{d-n}u_{d-n+1}\}$, respectively, containing u, v and u_n respectively. Since $p(T) \le 3n - 2$, it follows that $d \le 3n - 3$; so $d(u_{n-1}, u_{d-n+1}) = d + 2 - 2n \le n - 1$. Moreover, since P is a longest path in T, the vertex u_{n-1} (u_{d-n+1}) is at distance at most n-1 from every vertex in T_1 $(T_2$, respectively). As $p(T_3) = p(T) - (p(T_1) + p(T_2)) \le 3n - 2 - 2n = n - 2$, every vertex of T_3 is within distance n-2 from both u_{n-1} and u_{d-n+1} in T. It follows that $\gamma_n(T) = \frac{1}{2} \gamma_n^t(T) = \frac{1}{2} \{u_{n-1}, u_{d-n+1}\} = 2$; so $\gamma_n(T) + \gamma_n^t(T) = 4 < 2p(T)/n$. This completes the proof of Lemma 1. \Diamond

Lemma 2. If $p(T) \geq 3n-1$ and $2n \leq d \leq 3n-3$, then $\gamma_n(T) + \gamma_n^t(T) \leq 2p(T)/n$.

Proof. Let T_1 , T_2 and T_3 be defined as in the proof of Lemma 1. Since $d \leq 3n-3$, $d(u_{n-1}, u_{d-n+1}) \leq n-1$. Moreover, as P is a longest path in T, $u_{n-1}(u_{d-n+1})$ is at distance at most n-1 from every vertex in T_1 (T_2 , respectively).

If $p(T_3) \leq n-1$, then every vertex of T_3 is within distance n-1 from both u_{n-1} and u_{d-n+1} ; consequently, $\gamma_n(T) + \gamma_n^t(T) = 4 < 2p(T)/n$.

Suppose that $n \leq p(T_3) \leq 2n-1$. Then $p(T) \geq 3n$ and diam $T_3 \leq n$ $\leq 2n-2$; so rad $T_3 \leq n-1$. We show that there exists a central vertex of T_3 that is distance at most n-1 from u_{n-1} or u_{d-n+1} . If this is not the case, then, for w a central vertex of T_3 , w is at distance n-1 from both u_n and u_{d-n} . Since $d(u_n, u_{d-n}) = d-2n \le n-3$, w is not a vertex of the $u_n - u_{d-n}$ path. Let $Q: v = w_0, w_1, \ldots, w_s$ be the shortest path from w to a vertex of the $u_n - u_{d-n}$ path. Then, necessarily, $w_s = u_i$ for some $j \in \{n+1, ..., d-n-1\}$ and $V(Q) \cap V(P) = \{u_i\}$. Let T' and T'' denote the components of $T_3 - ww_1$ containing w_1 and w respectively. Since the w_1-u_n path (of order n-1) does not contain the vertex u_{d-n} , we observe that $p(T') \ge n$. Further, if $p(T'') \le n-1$, then it follows that w_1 is a central vertex of T_3 at distance n-1 from both u_{n-1} and u_{d-n+1} , which contradicts our assumption. Hence $p(T'') \geq$ $\geq n$, and so $p(T_3) \geq 2n$, which again produces a contradiction. Hence there exists a central vertex w (say) of T_3 that is at distance at most n-1 from u_{n-1} or u_{d-n+1} , and from each vertex of T_3 . Thus D= $= \{u_{n-1}, u_{d-n+1}, w\}$ is a total $P_{\leq n}$ -dominating set (and so certainly a $P_{\leq n}$ -dominating set) of T; so $\gamma_n(T) + \gamma_n^t(T) \leq 6 \leq 2p(T)/n$.

If $p(T_3) \geq 2n$, then it follows from the induction hypothesis that T_3 has a $P_{\leq n}$ -dominating set D' and a total $P_{\leq n}$ -dominating set D'' with $|D'| + |D''| = \gamma_n(T_3) + \gamma_n^t(T_3) \leq 2p(T_3)/n$. So $D_1 = D' \cup \{u_{n-1}, u_{d-n+1}\}$ is a $P_{\leq n}$ -dominating set of T and $D_2 = D'' \cup \{u_{n-1}, u_{d-n+1}\}$ is a total $P_{\leq n}$ -dominating set of T with $\gamma_n(T) + \gamma_n^t(T) \leq |D_1| + |D_2| + 4 \leq 2p(T_3)/n + 2(p(T_1) + p(T_2))/n = 2p(T)/n$. This completes the proof of Lemma 2. \Diamond

Lemma 3. If $3n-2 \le d \le 4n-3$, then $\gamma_n(T) + \gamma_n^t(T) \le 2p(T)/n$. **Proof.** Necessarily there exists an integer $i, 1 \le i \le d-1$, such that the components of $T-u_{i-1}u_i$ and $T-u_iu_{i+1}$ containing u are, respectively, of order less than 2n and of order at least 2n. From the assumption

that, for every edge e of T, T-e contains a component of order at most 2n-1, it follows that $d-2n+1 \le i \le 2n-1$.

Let T_1' and T_2' be the components of $T-u_i$ containing u and v, respectively. We note that T_1' and T_2' are both of order less than 2n. Further, let $\deg u_i = r$ and denote by T_1', T_2', \ldots, T_r' the components of $T-u_i$ and by w_i the vertex in T_i' adjacent to u_i in $T(i=1,2\ldots,r)$. We note that $w_1=u_{i-1}$ and $w_2=u_{i+1}$. If $r\geq 3$, then for $j\in\{3,\ldots,r\}$ we observe that, since one component of $T-u_iw_j$ contains P and is therefore of order at least 2n, the component T_j' is of order at most 2n-1.

We consider two possibilities.

Case 1: Suppose that i=2n-1 or i=d-2n+1. Without loss of generality, we may assume (relabelling the path P by $v=u_0,u_1,\ldots,u_d=u$ if necessary) that i=2n-1. Since $p(T_1') \leq 2n-1$, $T_1' \cong P_{2n-1}$ and $\{u_{n-1}\}$ is a $P_{\leq n}$ -dominating set of T_1' . We consider two possibilities.

Case 1.1: Suppose that d = 3n - 2. Then $u_{2n-1} = u_{d-n+1}$ and every vertex of T'_2 is within distance n-1 from u_{2n-1} . Consequently, if r = 2, then $\gamma_n(T) + \gamma_n^t(T) \leq |\{u_{n-1}, u_{2n-1}\}| + |\{u_{n-1}, u_{2n-2}, u_{2n-1}\}| = 5 \leq 2(3n-1)/n \leq 2p(T)/n$. We now consider the case where $r \geq 3$. Let $\{3, \ldots, r\} = I = I_1 \cup I_2 \cup I_3$ where

$$I_1 = \{ j \in I \mid p(T'_j) \le n - 1 \},$$

$$I_2 = \{ j \in I \mid n \le p(T'_j) \le 2n - 2 \},$$

$$I_3 = \{ j \in I \mid p(T'_j) = 2n - 1 \}.$$

If $j \in I_1$, then u_{2n-1} is within distance n-1 from every vertex of T'_j . If $j \in I_2$, then since $p(\langle V(T'_j) \cup \{u_{2n-1}\} \rangle) \leq 2n-1$, T'_j contains a vertex z_j such that $\{z_j\}$ is a $P_{\leq n}$ -dominating set of T'_j and $d(u_{2n-1},z_j) \leq n-1$. If $j \in I_3$, then rad $T'_j \leq n-1$. Let x_j be a central vertex of T'_j . It follows, therefore, that $\gamma_n(T) \leq |\{u_{n-1},u_{2n-1}\}| + |\bigcup_{j \in I_2} \{z_j\}| + |\bigcup_{j \in I_3} \{x_j\}| = 2 + |I_2| + |I_3|$ and $\gamma_n^t(T) \leq |\{u_{n-1},u_{2n-2},u_{2n-1}\}| + |\bigcup_{j \in I_2} \{z_j\}| + |\bigcup_{j \in I_3} \{x_j,w_j\}| = 3 + |I_2| + 2|I_3|$; so $\gamma_n(T) + \gamma_n^t(T) \leq 5 + 2|I_2| + 3|I_3|$. However, $p(T) \geq d+1+n|I_2|+(2n-1)|I_3| = 3n-1+n|I_2|+(2n-1)|I_3|$. Hence $2p(T)/n \geq 6 - 2/n + 2|I_2| + (4-2/n)|I_3| \geq 5 + 2|I_2| + 3|I_3| \geq 2 \gamma_n(T) + \gamma_n^t(T)$.

Case 1.2: Suppose that $3n-1 \le d \le 4n-3$. Then d-n+1 > 2n-1 and so $u_{d-n+1} \in V(T_2')$. Further, since $p(T_2') \le 2n-1$,

 $\{u_{d-n+1}\}$ is a $P_{\leq n}$ -dominating set of T'_2 . Since $d \leq 4n-3$, we observe that $d(u_{d-n+1}, u_{2n-1}) = d-3n+2 \leq n-1$. If r=2, then

 $\gamma_n(T) + \gamma_n^t(T) \le |\{u_{n-1}, u_{d-n+1}\}| + |\{u_{n-1}, u_{2n-2}, u_{2n-1}, u_{d-n+1}\}| = 6 \le 2(3n)/n \le 2p(T)/n.$

If $r \geq 3$, then let $I = \{3, \ldots, r\} = I_1 \cup I_2 \cup I_3 \cup I_4$ where $I_1 = \{j \in I \mid p(T'_j) \leq 4n - d - 3\},$ $I_2 = \{j \in I \mid 4n - d - 2 \leq p(T'_j) \leq n - 1\},$ $I_3 = \{j \in I \mid n \leq p(T'_j) \leq 2n - 2\},$ $I_4 = \{j \in I \mid p(T'_j) = 2n - 1\}.$

If $j \in I_1$, then, since $d(u_{d-n+1}, u_{2n-1}) = d - 3n + 2$, it follows that u_{d-n+1} is within distance n-1 from every vertex of T'_j . If $j \in I_2$, then u_{2n-1} is within distance n-1 from every vertex of T'_j . If $j \in I_3$, then T'_j contains a vertex z_j such that $\{z_j\}$ is a $P_{\leq n}$ -dominating set of T'_j and $d(u_{2n-1}, z_j) \leq n-1$. If $j \in I_4$, then rad $T'_j \leq n-1$. Let x_j be a central vertex of T'_j . We now consider two possibilities.

Case 1.2.1: Suppose that $|I_2| \geq 1$. Then it follows that $\gamma_n(T) \leq |\{u_{n-1}, u_{2n-1}, u_{d-n+1}\}| + |\bigcup_{j \in I_3} \{z_j\}| + |\bigcup_{j \in I_4} \{x_j\}| = 3 + |I_3| + |I_4| \text{ and } \gamma_n^t(T) \leq |\{u_{n-1}, u_{2n-2}, u_{2n-1}, u_{d-n+1}\}| + |\bigcup_{j \in I_3} \{z_j\}| + |\bigcup_{j \in I_4} \{x_j, w_j\}| = 4 + |I_3| + 2|I_4|; \text{ so } \gamma_n(T) + \gamma_n^t(T) \leq 7 + 2|I_3| + 3|I_4|. \text{ However, } p(T) \geq (d+1) + (4n-d-2)|I_2| + n|I_3| + (2n-1)|I_4| \geq 4n-1+n|I_3| + (2n-1)|I_4|. \text{ Hence } 2p(T)/n \geq 8 - 2/n + 2|I_3| + (4-2/n)|I_4| \geq 7 + 2|I_3| + 3|I_4| \geq \gamma_n(T) + \gamma_n^t(T).$

Case 1.2.2: Suppose that $|I_2| = 0$. Then it follows that $\gamma_n(T) \le \le |\{u_{n-1}, u_{d-n+1}\}| + |I_3| + |I_4| = 2 + |I_3| + |I_4| \text{ and } \gamma_n^t(T) \le 4 + |I_3| + 2|I_4|;$ so $\gamma_n(T) + \gamma_n^t(T) \le 6 + 2|I_3| + 3|I_4|$. However, $p(T) \ge d + 1 + n|I_3| + (2n-1)|I_4| \ge 3n + n|I_3| + (2n-1)|I_4|$. Hence $2p(T)/n \ge 6 + 2|I_3| + 3|I_4| \ge \gamma_n(T) + \gamma_n^t(T)$.

Case 2: Suppose that $d-2n+2 \le i \le 2n-2$. Then, since $d \ge 3n-2$, $n \le d-2n+2 \le i \le 2n-2 \le d-n$. Hence $u_{n-1}(u_{d-n+1})$ is a vertex of T'_1 (T'_2 , respectively). In fact, as P is a longest path in T and as $p(T'_i) \le 2n-1$ ($1 \le i \le 2$), $\{u_{n-1}\}$ ($\{u_{d-n+1}\}$) is a $P_{\le n}$ -dominating set of T'_1 (T'_2 , respectively). Furthermore, since $i \le 2n-2$, $d(u_{n-1},u_i)=i-n+1 \le n-1$ and since $i \ge d-2n+2$, $d(u_{d-n+1},u_i)=d-n+1-i \le n-1$. Consequently, if r=2,

then $\gamma_n(T) + \gamma_n^t(T) \le |\{u_{n-1}, u_{d-n+1}\}| + |\{u_{n-1}, u_i, u_{d-n+1}\}| = 5 \le \le 2(3n-1)/n \le 2p(T)/n.$

If $r \geq 3$, then let $I = \{3, \ldots, r\} = I_1 \cup I_2 \cup I_3 \cup I_4$, where

$$I_1 = \{ j \in I \mid p(T_i') < \max(2n - i - 1, 2n + i - d - 1) \},$$

$$I_2 = \{ j \in I \mid \max(2n - i - 1, 2n + i - d - 1) \le p(T_i) \le n - 1 \},$$

$$I_3 = \{ j \in I \mid n \le p(T_i') \le 2n - 2 \},$$

$$I_4 = \{ j \in I \mid p(T_i') = 2n - 1 \}.$$

If $j \in I_1$, then $p(T'_j) \leq 2n - i - 2$ or $p(T'_j) \leq 2n + i - d - 2$. If $p(T'_j) \leq 2n - i - 2$, then since $d(u_{n-1}, u_i) = i - n + 1$, it follows that u_{n-1} is within distance n-1 from every vertex of T'_j . If $p(T'_j) \leq 2n + i - d - 2$, then, since $d(u_{d-n+1}, u_i) = d - n + 1 - i$, it follows that u_{d-n+1} is within distance n-1 from every vertex of T'_j . If $j \in I_2$, then u_i is within distance n-1 from every vertex of T'_j . If $j \in I_3$, then T'_j contains a vertex z_j such that $\{z_j\}$ is a $P_{\leq n}$ -dominating set of T'_j and $d(u_i, z_j) \leq n - 1$. If $j \in I_4$, then rad $T'_j \leq n - 1$. Let x_j be a central vertex of T'_j . We now consider two possibilities.

Case 2.1: Suppose that $|I_2| \geq 1$. Then it follows that $\gamma_n(T) \leq |\{u_{n-1}, u_i, u_{d-n+1}\}| + |\bigcup_{j \in I_3} \{z_j\}| + |\bigcup_{j \in I_4} \{x_j\}| = 3 + |I_3| + |I_4|$ and $\gamma_n^t(T) \leq |\{u_{n-1}, u_i, u_{d-n+1}\}| + |\bigcup_{j \in I_3} \{z_j\}| + |\bigcup_{j \in I_4} \{x_j, w_j\}| = 3 + |I_3| + 2|I_4|$; so $\gamma_n(T) + \gamma_n^t(T) \leq 6 + 2|I_3| + 3|I_4|$.

If $\max(2n-i-1,2n+i-d-1)=2n-i-1$, then $p(T) \geq (d+1)+(2n-i-1)|I_2|+n|I_3|+(2n-1)|I_4| \geq 2n+d-i+n|I_3|+(2n-1)|I_4| \geq 3n+n|I_3|+(2n-1)|I_4|$, since $d-i \geq n$. Hence $2p(T)/n \geq 6+2|I_3|+(4-2/n)|I_4| \geq 6+2|I_3|+3|I_4| \geq \gamma_n(T)+\gamma_n^t(T)$.

If $\max(2n-i-1,2n+i-d-1)=2n+i-d-1$, then $p(T)\geq 2n+1+(2n+i-d-1)|I_2|+n|I_3|+(2n-1)|I_4|\geq 2n+i+n|I_3|+(2n-1)|I_4|\geq 3n+n|I_3|+(2n-1)|I_4|$, since $i\geq n$. Hence $2p(T)/n\geq 6+2|I_3|+3|I_4|\geq \gamma_n(T)+\gamma_n^t(T)$.

Case 2.2: Suppose that $|I_2| = 0$. Then it follows that $\gamma_n(T) \le |\{u_{n-1}, u_{d-n+1}\}| + |I_3| + |I_4| = 2 + |I_3| + |I_4| \text{ and } \gamma_n^t(T) \le 3 + |I_3| + 2|I_4|; \text{ so } \gamma_n(T) + \gamma_n^t(T) \le 5 + 2|I_3| + 3|I_4|. \text{ However, } p(T) \ge d+1 + n|I_3| + (2n-1)|I_4| \ge 3n-1+n|I_3| + (2n-1)|I_4|. \text{ Hence } 2p(T)/n \ge 26-2/n+2|I_3| + (4-2/n)|I_4| \ge 5 + 2|I_3| + 3|I_4| \ge \gamma_n(T) + \gamma_n^t(T).$

This completes the proof of Lemma 3. \Diamond

Lemma 4. If d = 4n - 2, then $\gamma_n(T) + \gamma_n^t(T) \leq 2p(T)/n$.

Proof. Suppose that d=4n-2. Then, using the notation introduced in the first two paragraphs of the proof of Lemma 3, it follows that i=2n-1. Furthermore, since $p(T_i') \leq 2n-1$, we therefore have $T_i' \cong P_{2n-1}$ $(1 \leq i \leq 2)$ and so $\{u_{n-1}\}$ $(\{u_{3n-1}\})$ is a $P_{\leq n}$ -dominating set of T_1' $(T_2'$, respectively). We observe, however, that u_{2n-1} is at distance n from both u_{n-1} and u_{3n-1} . Consequently, if r=2, then $\gamma_n(T)+\gamma_n^t(T)=\left|\{u_{n-1},u_{2n-1},u_{3n-1}\}\right|+\left|\{u_{n-1},u_{2n-2},u_{2n},u_{3n-1}\}\right|=7\leq 2(4n-1)/n=2p(T)/n$.

If $r \geq 3$, then let $I = \{3, \ldots, r\} = I_1 \cup I_2 \cup I_3 \cup I_4$, where $I_1 = \{j \in I \mid p(T'_j) \leq n - 2\}$, $I_2 = \{j \in I \mid p(T'_j) = n - 1\}$, $I_3 = \{j \in I \mid n \leq p(T'_j) \leq 2n - 2\}$, $I_4 = \{j \in I \mid p(T'_i) = 2n - 1\}$.

If $j \in I_1$, then every vertex of T'_j is within distance n-1 from the vertices u_{2n-2}, u_{2n-1} and u_{2n} . If $j \in I_2$, then u_{2n-1} is within distance n-1 from every vertex of T'_j . If $j \in I_3$, then T'_j contains a vertex z_j such that $\{z_j\}$ is a $P_{\leq n}$ -dominating set of T'_j and $d(z_j, u_{2n-1}) \leq n-1$. If $j \in I_4$, then rad $T'_j \leq n-1$. Let x_j be a central vertex of T'_j . We now consider two possibilities.

 $Case \ 1: \ \text{Suppose that} \ |I_2| \geq 1. \ \text{Then it follows that} \ \gamma_n(T) \leq \\ \leq \left| \left\{ u_{n-1}, u_{2n-1}, u_{3n-1} \right\} \right| + \left| \bigcup_{j \in I_3} \left\{ z_j \right\} \right| + \left| \bigcup_{j \in I_4} \left\{ x_j \right\} \right| = 3 + |I_3| + |I_4| \ \text{and} \ \gamma_n^t(T) \leq \left| \left\{ u_{n-1}, u_{2n-2}, u_{2n-1}, u_{2n}, u_{3n-1} \right\} \right| + \left| \bigcup_{j \in I_4} \left\{ z_j \right\} \right| + \left| \bigcup_{j \in I_4} \left\{ w_j, x_j \right\} \right|; \\ \text{so} \ \gamma_n(T) + \gamma_n^t(T) \leq 8 + 2|I_3| + 3|I_4|. \ \text{However}, \ p(T) \geq 4n - 1 + (n - 1)|I_2| + n|I_3| + (2n - 1)|I_4| \geq 5n - 2 + n|I_3| + (2n - 1)|I_4|. \ \text{Hence} \ 2p(T)/n \geq 10 - 2/n + 2|I_3| + (4 - 2/n) > 8 + 2|I_3| + 3|I_4| \geq \gamma_n(T) + \gamma_n^t(T). \\ Case \ 2: \ \text{Suppose that} \ I_2| = 0. \ \text{Then, if} \ |I_3| \geq 1, \ \text{it follows that} \ \gamma_n(T) \leq \left| \left\{ u_{n-1}, u_{3n-1} \right\} \right| + \left| \bigcup_{j \in I_3} \left\{ z_j \right\} \right| + \left| \bigcup_{j \in I_4} \left\{ x_j \right\} \right| = 2 + |I_3| + |I_4| \ \text{and} \ \gamma_n^t(T) \leq \left| \left\{ u_{n-1}, u_{2n-2}, u_{2n-1}, u_{2n}, u_{3n-1} \right\} \right| + |I_3| + 2|I_4| \leq 5 + |I_3| + 2|I_4|; \\ \text{so} \ \gamma_n(T) + \gamma_n^t(T) \leq 7 + 2|I_3| + 3|I_4|. \ \text{However}, \ p(T) \geq 4n - 1 + n|I_3| + (2n - 1)|I_4|. \ \text{Hence} \ 2p(T)/n \geq 8 - 2/n + 2|I_3| + (4 - 2/n)|I_4| \geq 7 + 2|I_3| + 3|I_4| \geq \gamma_n(T) + \gamma_n^t(T). \\ \end{cases}$

If $|I_3| = 0$, then it follows that $\gamma_n(T) \le |\{u_{n-1}, u_{2n-1}, u_{3n-1}\}| + |\bigcup_{j \in I_4} \{x_j\}| = 3 + |I_4| \text{ and } \gamma_n^t(T) \le |\{u_{n-1}, u_{2n-2}, u_{2n}, u_{3n-1}\}| + 2|I_4| = 4 + 2|I_4|$; so $\gamma_n(T) + \gamma_n^t(T) \le 7 + 3|I_4|$. However, $p(T) \ge 4n - 1 + 2|I_4|$

 $+(2n-1)|I_4|$. Hence $2p(T)/n \ge 8-2/n+(4-2/n)|I_4| \ge 7+3|I_4| \ge 2\gamma_n(T)+\gamma_n^t(T)$.

This completes the proof of Lemma 4 and thus of Th. 1. \Diamond

That the bound in Th. 1 is best possible may be seen as follows: Let G be obtained from a connected graph H by attaching a path of length n-1 to each vertex of H. (The graph G is shown in Fig. 1.) Then $\gamma_n(G) + \gamma_n^t(G) = 2p(H) = 2p(G)/n$.

Fig. 1.

The fact that every maximal independent set of vertices in a graph is also a dominating set motivated Cockayne and Hedetmiemi [3] in 1974 to initiate the study of another domination parameter. A dominating set of vertices in a graph that is also an independent set is called an independent dominating set. The minimum cardinality among all independent dominating sets of a graph G is called the independent domination number of G and is denoted by i(G).

The independent domination number of a graph and the distance domination parameters introduced earlier suggest yet another distance domination parameter. A set I of vertices in a graph G is $P_{\leq n}$ -independent in G if every two vertices of I are at distance at least n apart in G. A $P_{\leq n}$ -independent set of vertices in a graph that is also a $P_{\leq n}$ -dominating set is called a $P_{\leq n}$ -independent dominating set. The minimum cardinality among all $P_{\leq n}$ -independent dominating sets of a graph G is called the $P_{\leq n}$ -independent domination number of G and is denoted by $i_n(G)$. Hence $i_2(G) = i(G)$.

Before investigating relationships between the distance domination parameter i_n and the distance domination parameters γ_n and γ_n^t we need some additional concepts. A set of vertices $X \subset V(G)$ has property $\pi_n (n \geq 2)$ if and only if every nontrivial path of length $\ell \leq n-1$ in G contains at least ℓ vertices of X. A set of vertices with

property π_n is called a $P_{\leq n}$ -cover of G. So a $P_{\leq 2}$ -cover of G is simply a cover of G. The minimum cardinality among all $P_{\leq n}$ -covers of G is called the $P_{\leq n}$ -covering number of G and is denoted by $\alpha_n(G)$. The maximum cardinality among all $P_{\leq n}$ -independent sets is called the $P_{\leq n}$ -independence number of G and is denoted by $\beta_n(G)$. Hence $\alpha_2(G)$ is simply the covering number $\alpha(G)$ and $\beta_2(G)$ is the independence number $\beta(G)$. The next Gallai-type result generalizes a well-known relationship between the covering number and independence number of a graph [4].

Theorem 2. If G is a connected graph of order $p \geq n$, then

$$\alpha_n(G) + \beta_n(G) = p.$$

Proof. We note that X is a $P_{\leq n}$ -cover if and only if V(G) - X is a $P_{\leq n}$ -independent set of vertices. So if X is a $P_{\leq n}$ -cover of cardinality $\alpha_n(G)$, then $\alpha_n(G) = |X|$ and $|V(G) - X| = p - \alpha_n(G) \leq \beta_n(G)$. Similarly if Y is a $P_{\leq n}$ -independent set of vertices of cardinality $\beta_n(G)$, $p - \beta_n(G) = |V(G) - Y| \geq \alpha_n(G)$. Thus $\alpha_n(G) + \beta_n(G) = p$. \Diamond

Allan, Laskar and Hedetniemi [1] showed that if G is a graph of order p that has no isolated vertices, then $\gamma(G) + i(G) \leq p$. We now present a generalization of this result.

Theorem 3. If G is a connected graph of order $p \geq n \geq 2$, then

$$i_n(G) + (n-1)\gamma_n(G) \le p$$
.

Proof. Let X be a $P_{\leq n}$ -cover such that $\langle X \rangle$ contains as few components as possible of order less than n-1. We show that $\langle X \rangle$ has no components of order less than n-1. Suppose $\langle X \rangle$ has a component G_1 of order $p_1 \leq n-2$. Since G is connected, and $p \geq n$, there is a vertex $s \in S = V(G) - X$ that is adjacent with a vertex y in G_1 and a vertex z in $V(G) - V(G_1)$. Since S is $P_{\leq n}$ -independent, z must belong to some component $G_2 \neq G_1$ of $\langle X \rangle$. Note that s is the only vertex of S which is adjacent to a vertex (or vertices) in G_1 , for if t is any other vertex of S that is adjacent to a vertex of G $d(t,s) \leq n-1$, which is not possible since S is $P_{\leq n}$ -independent.

Now if $p(G_1) = 1$, let $S' = (S - \{s\}) \cup \{y\}$. Otherwise if $p(G_1) \ge 2$, let $x \ne y$ be a vertex of G_1 which is not a cut-vertex of G_1 and set $S' = (S - \{s\}) \cup \{x\}$. Then S' is a $P_{\le n}$ -independent set of cardinality |V(G) - X|. Since X is a $P_{\le n}$ -cover of cardinality $\alpha_n(G)$, it follows from Th. 2, that $|V(G) - X| = p - \alpha_n(G) = \beta_n(G)$, i.e., $|S'| = \beta_n(G)$. However, then X' = V(G) - S' is a $P_{\le n}$ -cover of G of cardinality $\alpha_n(G)$

such that $\langle X' \rangle$ contains fewer components of order less than n-1 than $\langle X \rangle$. This contradicts our choice of X. Hence $\langle X \rangle$ has no components of order less than n-1.

Since G is connected, every vertex in V(G) - X is adjacent with a vertex in X and, consequently

$$\gamma_n(G) \le \gamma_{n-1}(\langle X \rangle).$$

Since $\langle X \rangle$ has no component of order smaller than n-1, it follows from Th. A that

$$\gamma_n(G) \le \frac{p(\langle X \rangle)}{n-1} = \frac{|X|}{n-1} = \frac{\alpha_n(G)}{n-1}.$$

The fact that $\beta_n(G) = |V(G) - X| \ge i_n(G)$ and Th. 2 now imply that

$$i_n(G) + (n-1)\gamma_n(G) \le \alpha_n(G) + \beta_n(G) = p. \ \Diamond$$

The bound given in Th. 3 is best possible as we now see. Let G be the graph shown in Fig. 1. Then $i_n(G) = \gamma_n(G) = p(H)$ and $i_n(G) + (n-1)\gamma_n(G) = np(H) = p(G)$. It is shown in [6] that if T is a tree of order $p \geq 2n-1$, then $i_n(T) + (n-1)\gamma_n^t(T) \leq p$.

References

- [1] ALLAN, R. B., LASKAR, R. and HEDETNIEMI, S. T.: A note on total domination, Discrete Math. 49 (1984), 7-13.
- [2] CHARTRAND, G. and LESNIAK, L.: *Graphs and Diagraphs*, Wadsworth and Brooks/Cole, Monterey CA, 1986.
- [3] COCKAYNE, E. J. and HEDETNIEMI, S. T.: Indpendence graphs, in: Proceedings of 5th Southeastern Conference on Combinatorics, Graph Theory and Computing. Utilitas Mathematicae, Winnipeg (1974), 471-491.
- [4] GALLAI, T.: Über extreme Punkt- und Kantenmengen, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 2 (1959), 133-138.
- [5] HENNING, M. A., OELLERMANN, O. R. and SWART, H. C.: Bounds on distance domination parameters, J. Combin. Inf. Syst. Sci. 16 (1991), 11-18.
- [6] HENNING, M. A., OELLERMANN, O. R. and SWART, H. C.: Relating pairs of distance domination parameters, J. Comb. Math. Comb. Comp. (to appear).