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Abstract: For any integer n > 2 a set D of vertices of a graph G of order
p is defined to be a P<,-dominating set (total P<n—dom1natmg set) of G if
every vertex in V(G) — D (respectively V(G)) is at distance at most n — 1
from some vertex in D other than itself. The P<p-domination number, 'yn(G)
(total P<y-domination number +}, (G)) is the minimum cardinality among all
P<p-dominating sets (total P<,-dominating sets) of G. It is shown that if @
is a connected graph on p > 2n vertices, then T (G)+vi(G) < 2p/n. Aset T
of vertices in a graph G is P<,-independent if the distance between every two
vertices of I is at least n. A f’<n—dominating set that is also P<,-independent
is called a P<,-independent dominating set. The minimum cardinality among
all P<,-independent dominating sets in a graph @G is the P -independent
domination number of G and is denoted by iy (G). It is shown that if G is a
connected graph of order p > n, then i, (G) + (n — 1)y (G) < p.
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The terminology and notation of [2] will be used throughout. Re-
call that a dominating set (total dominating set) D of a graph G is a set
of vertices of G such that every vertex of V(G)— D (respectively, V(G))
is adjacent to some vertex of D. The domination number (total dom-
ination number) of G is the minimum cardinality of a dominating set
(total dominating set) of G. Further, the distance d(u,v) between two
vertices u and v of G is the length of a shortest u — v path if one exists,
otherwise d(u,v) = oo. In [5] generalizations of the above-mentioned
domination parameters are defined and studied. For an integer n > 2, a
set D of vertices of a graph G is defined to be a P<,-dominating set (to-
tal P<n-dominating set) of G if every vertex in V(G) D (respectively
V(G)) is at distance at most n — 1 from some vertex in D other than
itself. The P<,-domination number v,(G) (total P, -domination num-
ber 14(G)) is the minimum cardinality of a P<,-dominating set (total
P<,-dominating set) of G. Hence v2(G) = 7(G) and (@) = %(G).

In [5] sharp bounds for the P<,-domination number and total
P<p-domination number of a graph are established. In particular the
following two results were obtained.

Theorem A. If G is a connected graph of order p > n, then v,(G) <
< p/n.
Theorem B. If G s a connected graph of order p > 2, then

t —
T(G) =2 for 2<p<on—1
and 2p
(@) < P for p>2n—1.

We now investigate relationships between these two generalized
domination parameters. Observe that if G is a connected graph on p
vertices with 2 < p < 2n — 1, then rad(@) < n — 1 and so 7,(G) +
+vE(G) = 3. We thus con51der graphs of order p > 2n. Allan, Laskar
and Hedetniemi [1] showed that, if G is a connected graph of order
p > 3, then y(G) + 1(G) < p. The following theorem generalizes this
result.

Theorem 1. For an integer n > 2, if G 1s a connected graph of order
p > 2n, then

1e(G) + 71n(G) < 2p/n.

Proof. Let n > 2 be an integer. If T is a spanning tree of a connected
graph G of order at least 2n and v,(T) + v5(T) < 2p(G)/n, then
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Yo (G) + YL (@) < 7a(T) + 7L(T) < 2p(G)/n. Hence we shall prove
the theorem by establishing its validity for a tree G. We proceed by
induction on the order of a tree of order at least 2n.

Let T be a tree of order 2n. Then diamT < 2n — 1, and so
radT < n —1 or T is bicentral with radT < n. If radT < n — 1,
then a central vertex of T is within distance n — 1 from every vertex.of
T, while a central vertex, together with any other vertex of T, forms a
total P<;,-dominating set of T'. Hence in this case, 7n(T)+7n(T) =3<
" < 2p(T)/n. If, however, rad T = n, then the central vertices of T form
a total P<,-dominating set (and hence certainly a P<,-dominating set)
of T and so v, (T) + v4(T) = 4 = 2p(T)/n. Hence the theorem is true
for a tree of order 2n. ' ’

Assume that y,(T') + v5(T') < 2p(T")/n for all trees T' with
2n < p(T') < k, and let T be a tree of order k. If diam T' < 2n—1, then
Yo(T) +~vE(T) <4 < 2p(T)/n. So we may assume that diam T > 2n.

Suppose that there exists an edge e of T such that both compo-
nents of T — e are of order at least 2n. Let Ty and T, be the components
of T —e. Then 2n < p(T;) < k and so, by the induction hypothesis, for
i € {1,2}, T} has a P<,-dominating set D; and a total PSn—‘dominating
set D} with |D;| + |D}| = v(Ti) + vL(T:) < 2p(T;)/n. Then Dy U Dy is
a P<n-dom1natmg set of T and D} U D), is a total P<,-dominating set
of T with v,(T) +~+:(T) < |D, U D2| +|D} U Dy| < 2p(T)/n. For the’
remainder of the proof we shall therefore assume that, for each edge e
of T', at least one of the (two) components of T — e is of order less than
2n. In particular, we note that 2n < diam T < 4n — 2. Let diam T = d
and let u,v be two vertices of T' such that d(u,v) = d > 2n. Let the
u —v path in T be denoted by P : u = ug, uy,... ,ug = v. To complete
the proof we consider four lemmas. .

Lemma 1. If 2n < p(T) < 3n — 2, then vo(T) + v5(T) < 2p(T) /n.
Proof. Let T;,T; and T3 denote the components of T — u,_quy,, T —
—Ug—nUd—n+1 80d T —{tn_1Un, Ud—nUd—nt1}, respectively, containing:
u,v and u, respectively. Since p(T) < 3n — 2, it follows that d < 3n —
—3; 50 d(Un—1,Ug—nt1) = d+ 2 —2n < n — 1. Moreover, since P is
a longest path in T, the vertex u,_; (ug—n41) is at distance at most
n — 1 from every vertex in Ty (T3, respectively). As p(T3) = p(T') —
—(p(T1) + p(T2)) < 3n — 2 — 2n = n — 2, every vertex of T3 is within
distance n—2 from both un_; and ug_p41 in T It follows that y,(T) =
= 72(T) = {un—1,ud-nt1}| = 2; s0 1a(T) + ’Yn(T) =4 < 2P(T)/”
This completes the proof of Lemma 1. ¢
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Lemma 2. If p(T) > 3n—1 and 2n < d < 3n—3, then v,(T)++5(T) <
< 2p(T)/n.

Proof. Let T, T, and T3 be defined as in the proof of Lemma 1. Since
d<3n-—3,d(up_1,Ug—nt+1) < n—1. Moreover, as P is a longest path
in T, up—1(ud—n+1) is at distance at most n — 1 from every vertex in
Ty (T3, respectively).

If p(T3) < n — 1, then every vertex of T3 is within distance
n—1 from both u,_; and ug_ny1; consequently, v,(T)+~L(T) =4 <
< 2p(T)/n.

Suppose that n < p(T3) < 2n—1. Then p(T) > 3n and diam T3 <
<2n—2;sorad T3 < n—1. We show that there exists a central vertex
of T3 that is distance at most n —1 from u,_y or ug_p4q. If this is not
the case, then, for w a central vertex of T3, w is at distance n — 1 from
both up, and ug—n. Since d(un, ud—n) = d—2n < n—3, w is not a vertex
of the u, —ug4_, path. Let Q : v = wg,wy,... ,w, be the shortest path
from w to a vertex of the u, — uq_, path. Then, necessarily, w, = u;
for some j € {n+1,...,d—n—1} and V(Q) N V(P) = {u;}. Let
T' and T" denote the components of T3 — ww; containing w; and w
respectively. Since the wy —uy, path (of order n—1) does not contain the
vertex ug_,, we observe that p(7") > n. Further, if p(T")<n-—1, then
it follows that w; is a central vertex of Ty at distance n — 1 from both
Un—1 and ug_nt1, which contradicts our assumption. Hence p(T"') >
> n, and so p(T3) > 2n, which again produces a contradiction. Hence
there exists a central vertex w (say) of T3 that is at distance at most
n — 1 from 4,1 or ug_py1, and from each vertex of T3. Thus D =
= {Un—1,Ud—nt1,w} is a total P<,-dominating set (and so certainly a
P p-dominating set) of T'; so yn(T) +v5(T) < 6 < 2p(T)/n.

If p(T3) > 2n, then it follows from the induction hypothesis
that T3 has a P«,-dominating set D' and a total P<,-dominating
set D" with |D'| + |D"| = vn(Ts) + v4(Ts) < 2p(Ts)/n. So Dy =
= D'"U{un—1,U4—nt1} is a P<p-dominating set of T' and Dy = D" U
U {tn—1,%4—nt1} is a total P<p-dominating set of T with v,(T) +
1+ 74(T) < 1Dy |+ Dol +4 < 25(T3)/n+ 2(p(Ty) + P(T5))/n = 25(T)/n.
This completes the proof of Lemma 2. {

Lemma 3. If 3n — 2 < d < 4n — 3, then v,(T) + vL(T) < 2p(T)/n.

Proof. Necessarily there exists an integer z, 1 <: < d—1, such that the
components of T'—u;_ju; and T —u;u;41 containing u are, respectively,
of order less than 2n and of order at least 2n. From the assumption
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that, for every edge e of T', T — e contains a component of order at most
2n — 1, it follows that d —2n+1<: < 2n — 1.

Let T and T3 be the components of T — u; containing u and v,
respectively. We note that T and T; are both of order less than 2n.
Further, let degu; = r and denote by 77,73, ... ,T, the components of
T —u; and by w; the vertex in T} adjacent tou; in T'(: = 1,2... ,r). We
note that wy = u;—1 and wy = u;yy. If r > 3, then for j € {3,...,r}
we observe that, since one component of T' — u;w; contains P and is
therefore of order at least 2n, the component T]’- is of order at most
2n — 1.

We consider two possibilities.

Case 1: Suppose that 1 = 2n — 1 or 2 = d — 2n + 1. With-
out loss of generality, we may assume (relabelling the path P by v =
= Ug,U1,... ,uqg = U if necessary) that ¢+ = 2n—1. Since p(T}) < 2n-1,
T] = Py,—y and {un_1} is a P<,-dominating set of T]. We consider
two possibilities. -

Case 1.1: Suppose that d = 3n — 2. Then ug,; = ug_py1 and
every vertex of Ty is within distance n — 1 from uy,_;. Consequently, if
r =2, then v (T)+v5(T) < {tn-1,U2n—1}+{tn-1, U2n—2,U2n-1}| =
=5<2(3n—1)/n <2p(T)/n. We now consider the case where r > 3.
Let {3,...,r} =I=1; U I, UI; where

Li={jel|p(Tj)<n-1},
L ={jel|n<p(T})<2n-2},
L= {j e I|pT)=2m 1),
If y € I, then ug,—1 is within distance n — 1 from every vertex of T]{. If
j € I,, then since p((V(T;)U{ugn_l})) <2n-1, T]{ contains a vertex z;
such that {z;} is a P<,-dominating set of T]’- and d(ugn—_1,2;) <n—1. If
j € I3, then rad T} < n—1. Let z; be a central vertex of Tj. It follows,
therefore, that vn(T) < {un—1,u2n-1} + [ U {2} +| U {z;}| =
JEI: JEI3
= 2+ || + |I5] and 5(T) < [{un—1,u2n—2,%2n-1}] +| e {z} +
. 2
+ ljéJI {zj,w;} = 3+ L] +2|L]; s0 ¥a(T) +75(T) < 5+ 2|1+ 3| L]
3
However, p(T) > d+1+n|L|+(2n—1)|I3| = 3n—14n|lz|+(2n—1)| L]
Hence 2p(T)/n > 6 — 2/n + 2|L| + (4 — 2/n)|I5]| > 5 + 2|L| + 3|13| >

2 (T + 7 (T)-
Case 1.2: Suppose that 3n—1 < d < 4n—3. Then d—n+1 >
> 2n — 1 and 50 ug—py1 € V(T3). Further, since p(T;) < 2n — 1,
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{tg—n41} is a P<,-dominating set of Tj. Since d < 4n — 3, we observe
that d(ud__n+1,u2n_1) =d - 3n + 2 _<_ n—1.
If r =2, then

'Yn(T) + 71:(T) < |{un—13 ud-—n+l}| + |{un—1a U2 -2, u2n—17ud~n+1}i =
=6 <2(3n)/n < 2p(T)/n.

If r>3,thenlet I={3,...,r} =L UL UI3UI; where
Li={jel|p(T})<in—d—3),
L={jelldn-d-2<p(Tj)<n-1},
Li={jel|n<p(T)<m—2},

L ={j € T|p(T)=2n—1}.
If j € I, then, since d(ug—nt1,u2n-1) = d — 3n + 2, it follows
that ug—n41 is within distance n — 1 from every vertex of T' If y € I,
then ug,_1 is within distance n — 1 from every vertex of T’ If y € I,
then 77 contains a vertex z; such that {z;} is a Pcp- dommatmg set of
T’ and d(uzn—1,2;) <n—1. If j € Iy, then radT’ <n—1. Let z; be
a central vertex of 7. We now consider two possibilities.

Case 1.2.1: Suppose that |I3| > 1. Then it follows that v,(T) <
< Huntotan1,ua-nis} | 4] U {53141 U, o)) = 3+ 15|+ 4] and
3 4

To(T) £ Hun-1,u2n-2,%2n—1,va—ni1}+| U {z;}+] U {z;,w;}| =
JEIs JEI,

= 4+ |} + 2|L]; so ¥ (T) + vL(T) < 7+ 2|I3| + 3|I;|. However,
+ (2n — 1)|14]. Hence 2p(T)/n > 8 —2/n + 2|I3] + (4 — 2/n)|I4| > 7 +
+2/I5] + 3| L] = ya(T) + 7, (T).

Case 1.2.2: Suppose that |I;| = 0. Then it follows that v,(7T) <
< Htn-1,Ua—nt1 Y+ I+ L] = 24| |+ L] and 5(T) < 44+|I3|+2|L);
80 Yn(T) + 75 (T) < 6 + 2|I3| + 3|L4]. However, p(T) > d + 1 + n|Is| +
+(2n — 1)|I4] > 3n +n|l3] + (2n — 1)|L4]. Hence 2p(T)/n > 6 +2|I3| +
+3|L] > 7 (T) + 94(T).

Case 2: Suppose that d —2n + 2 <4 < 2n — 2. Then, since d >
23n—-2,n<d-2n+2<1<2n—-2<d—n. Hence up—3(ug—ny1)
is a vertex of T (13, respectively). In fact, as P is a longest path
in T and as p(T}) < 2n—1 (1 < i < 2), {un-1} {ud-n+1}) is a
P<p-dominating set of T (T}, respectively). Furthermore, since ¢ <
<2n—2, dlup—1,u;) =1—n+1<n-—1 and since i1 > d — 2n +
+ 2, d(ud_n+1,u )=d—-n+1—17 < n-—1. Consequently, if r = 2,
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then ¥n(T) + 74(T) < {un-1, %a—nt1}| + {tn-1,%i, 4g—nt1}| = 5 <
< 2(3n — 1)/n < 2p(T)/n.
Ifr>3,thenlet I={3,...,r} =L UL UI;UI, where
Li={j EI[P(TJ{) <max(2n—i1—1,2n+1—d—1)},
L=1{j EI]max(Zn—i—1,2n+i_d_1)SP(TJ{)Sn_l},
L={jel|n<p(T]) <2n-2},
Ii={j €I|p(T})=2n-1}.

If j € I, then p(T}) < 2n—i—~2or p(T;) < 2n+i—d—2. If
p(T;) < 2n — 1 — 2, then since d(up—1,u;) =1 —n + 1, it follows that
Up—1 is within distance n — 1 from every vertex of T}. If p(T}) < 2n +
+ ¢ — d — 2, then, since d(ug—n4+1,u;) = d—n+1—1, it follows that
Ud—n+1 18 within distance n — 1 from every vertex of T]{. If j € I, then
u; is within distance n — 1 from every vertex of T}. If j € I3, then T
contains a vertex z; such that {z;} is a P<,-dominating set of T} and
d(ui,z;) <n—1. If j € I, then radTJ'- < n—1. Let z; be a central
vertex of T J' We now consider two possibilities.

Case 2.1: Suppose that |I| > 1. Then it follows that v,(T) <
< Hun—1,ui, gmnta }| + | ;& Lzt A ;& 1@t =3+ |Is| + 1| and

To(T) £ Hn—1,uisuaenii -+ U {z}+| U {zj,w;}| =3+ ||+
j€ls JEI

+2|1af; 50 yn(T) + 7 (T) < 6 + 2| 5| + 3| La].

I max(2n —i—1,2n+:¢—d — 1) = 2n — ¢ — 1, then p(T) >
> (d+1)+(2n—:=1)|L|+n||+ (2n — V)| L] 2 2n+d — i + n|l] +
+ (2n — 1)|I4] > 3n + n|L| + (2n — 1)|L4], since d — i > n. Hence
2p(T)/n 2 6+ 2|Is| + (4 — 2/n)|Ls| 2 6+ 2|T3] + 3|14] 2 Ya(T) + 1n(T).

Kmax(2n—¢t—-1,2n+t—d—1)=2n+1i—d— 1, then p(T) >
> d+1)+@n+i—d=-D|L|+n|L]+@n -1 > 2n+1+
+ n|l3| 4+ (2n — 1)|I4| > 3n + n|Is| + (2n — 1)|L4], since 1 > n. Hence
2p(T)/n 2 6 + 2| Is| + 3[1a| > yn(T) + 7 (T).

Case 2.2: Suppose that [I;| = 0. Then it follows that v,(T") <
< Hun-1,va—nt1}+ 1] + | La] = 2+ |I3| + | 1a] and 7 (T) < 3+ || +
+ 2|14]; s0 Yu(T) + vL(T) < 5+ 2|I3| + 3]1,|. However, p(T) > d+1+
+n|lz|+ (2n — 1)|I4] > 3n — 1 +n|l3| + (2n — 1)|14]. Hence 2p(T)/n>
>6—2/n+2|I3| + (4 — 2/n) L] 2 54 2|I5| + 3|1a| = 1 (T) + 77 (T).

This completes the proof of Lemma 3. { '
Lemma 4. If d = 4n — 2, then v,(T) + v5(T) < 2p(T)/n.
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Proof. Suppose that d = 4n — 2. Then, using the notation introduced
in the first two paragraphs of the proof of Lemma 3, it follows that
¢ = 2n — 1. Furthermore, since p(T}) < 2n — 1, we therefore have
T/ = Pypy (1<i<2)and so {up—1} ({tan_1})is a P ,-dominating
set of T (T, respectively). We observe, however, that us,_; is at
distance n from both u,—1 and uz,_;. Consequently, if r = 2, then
’)’n(T)“Fﬁ’f,(T) = '{un—I)UZn—l’USn—l}I+|{un—17u2n—27u2n7u3n—1}| =
=7<2(4n —1)/n = 2p(T)/n.
If r>3,thenlet I ={3,...,r} = L UL UI3U I, where

I ={j eI|p(Tj) <n-2},

I ={j €I|p(Tj) =n—1},

L={jeln<pTh<2n-2),

Iy ={j € I| p(T}) = 2n — 1},

If j € Iy, then every vertex of TJf is within distance n — 1 from the
vertices Ugn_g, Usn—1 and ug,. If j € I, then ug,_; is within distance
n — 1 from every vertex of T]. If j € I3, then T} contains a vertex z;
such that {2;} is a P<,-dominating set of T} and d(zj,ugn—1) <n—1.
If j € I, then rad T; <n—1. Let z; be a central vertex of T}. We now
consider two possibilities.
Case 1: Suppose that |I] > 1. Then it follows that v,(T) <
< {un-1,u2n-1,u3n-1} + | U {z;}| +| U {z,}| = 3+ || + | L] and
J€EI3 JEL,
Yr(T) < {tn—1,u2n—2, usn—1,%2m, usn-1}|+| U {z;}|+| U {w;,2;}];
J€EIs JEIs
50 Tn(T) + v4(T) < 8 + 2|I3| + 3|I4|. However, p(T)>4n -1+ (n—
— D] + n|I3| + (2n — 1)|L4] > 5n — 2 + n|I3]| + (2n — 1)|L;]. Hence
2p(T)/n 2 10-2/n+2|I3|+(4—2/n) > 8+2|I3]+3|1s| > vo(T)+~4(T).
Case 2: Suppose that I] = 0. Then, if |I3| > 1, it follows that
Yn(T) < [{tin-1,usn—1}| + Ings{Zj}l + ]J.éJI4{93j}| = 2+ |I3] + |L4| and

7, (T) < '{un—lau2n—-27u2n—17u2n7u3n—1}|+lI3l+2|I4| < 54|13 |+2] Iyf;
50 Yn(T) + 72 (T) < 7+ 2|I3| + 3|14|. However, p(T) > 4n — 1+ n|I3] +
+ (2n — 1)|14]. Hence 2p(T)/n > 8 — 2/n + 2|L| + (4 — 2/n)|L] > 7 +
+2[I3] + 3[Ls] = ya(T) + 7,(T).

If [I3] = 0, then it follows that v,(T) < |{un_1,u2n_1,u3n_1}l +
+|jg1_4{1'j}| = 3+|I4| and v5(T) < |{un—1au2n—2,u2n7u3n~1}|+2lI4| =

=4+ 2|Ly; 50 Yo (T) + 4 (T) < 7 + 3|I4|. However, p(T) > 4n —1 +
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+(2n — 1)|I4|. Hence 2p(T)/n > 8 —2/n+ (4 — 2/n)|I4| > T+ 3|14 >
2 1n(T) + 7a(T).

This completes the proof of Lemma 4 and thus of Th. 1. ¢

That the bound in Th. 1 is best possible may be seen as follows:
Let G be obtained from a connected graph H by attaching a path of
length n — 1 to each vertex of H. (The graph G is shown in Flg 1.)
Then 7n(G) + 71(G) = 2p(H) = 2p(G)/n.

Fig. 1.

The fact that every maximal independent set of vertices in a graph
is also a dominating set motivated Cockayne and Hedetmiemi [3] in
1974 to initiate the study of another domination parameter. A domi-
nating set of vertices in a graph that is also an independent set is called
an independent dominating set. The minimum cardinality among all
independent dominating sets of a graph G is called the independent
domination number of G and is denoted by i(G).

The independent domination number of a graph and the dis-
tance domination parameters introduced earlier suggest yet another
distance domination parameter. A set I of vertices in a graph G is
Pcy-independent in G if every two vertices of I are at distance at least

'n apart in G. A Pcp-independent set of vertices in a graph that is also
a P<n-dominating set is called a P<y-independent dominating set. The
minimum cardinality among all P<,-independent dominating sets of a
graph G is called the P<,-independent domination number of G and is
denoted by i,(G). Hence i3(G) = i(G).

Before investigating relationships between the distance domina-
tion parameter i, and the distance domination parameters v, and v}
we need some additional concepts. A set of vertices X C V(G) has
property m,(n > 2) if and only if every nontrivial path of length £ <
< n-—11n G contains at least £ vertices of X. A set of vertices with
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property m, is called a P<y-cover of G. So a P<j-cover of G is sim-
ply a cover of G. The minimum cardinality among all P<,-covers of
G is called the P<,-covering number of G and is denoted by a,(G).
The maximum cardinality among all P, -independent sets is called the
Pgp-independence number of G and is denoted by f8,(G). Hence as(G)
is simply the covering number a(G) and f2(G) is the independence
number §(G). The next Gallai-type result generalizes a well-known re-
lationship between the covering number and independence number of a
graph [4].

Theorem 2. If G is a connected graph of order p > n, then

| an(G) + BalG) = p
Proof. We note that X is a P<,-cover if and only if V(G) — X is a

P<y-independent set of vertices. So if X is a P<p-cover of cardinality
an(G), then an(G) = |X| and [V(G) — X| = p — an(G) < Bu(G).
Similarly if Y is a P<p-independent set of vertices of cardinality B,(G),
P = Ba(G) = [V(G) = Y| 2 an(G). Thus an(G) + Ba(G) = p. 0

Allan, Laskar and Hedetniemi [1] showed that if G is a graph of
order p that has no isolated vertices, then v(G) + i(G) < p. We now
present a generalization of this result.
Theorem 3. If G s a connected graph of order p > n > 2, then

in(G) + (n — )1a(G) < p.

Proof. Let X be a P<,-cover such that (X) contains as few compo-
nents as possible of order less than n — 1. We show that (X) has no
components of order less than n — 1. Suppose (X) has a component
G, of order p; < n— 2. Since G is connected, and p > n, there is a
vertex s € S = V(@) — X that is adjacent with a vertex y in Gy and a
vertex z in V(G) — V(Gy). Since S is P<,-independent, z must belong
to some component Gy # G; of (X). Note that s is the only vertex of
S which is adjacent to a vertex (or vertices) in Gy, for if ¢ is any other
vertex of S that is adjacent to a vertex of G 4(¢,s) < n — 1, which is
not possible since S is P<,-independent.

Now if p(G1) = 1, let §' = (S — {s}) U {y}. Otherwise if p(G;) >
> 2, let z % y be a vertex of G; which is not a cut-vertex of G; and set
S§'=(8—{s})U{z}. Then S’ is a P<,-independent set of cardinality
|[V(G) — X|. Since X is a P<p-cover of cardinality a,(G), it follows
from Th. 2, that [V(G) — X| = p — an(G) = B,(G), i.e., |S'| = Bn(G).
However, then X' = V(G)— 5" is a P<,-cover of G of cardinality an(G)
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such that (X') contains fewer components of order less than n — 1 than
(X). This contradicts our choice of X. Hence (X) has no components
of order less than n — 1.

Since G is connected, every vertex in V(G) — X is adjacent with
a vertex in X and, consequently

Yn(G) £ Y1 ((X)).

Since (X) has no component of order smaller than n—1, it follows from

Th. A that
< p({X)) _ X[ _ aa(G)

() n—1 n—1 n-1"
The fact that 8,(G) = |V(G) — X| 2 1,(G) and Th. 2 now imply that
in(G) +(n = 1)1n(G) < an(G) + Bn(G) = p. O

The bound given in Th. 3 is best possible as we now see. Let
G be the graph shown in Fig. 1. Then i,(G) = v (G) = p(H) and
in(G) + (n — 1)7.(G) = np(H) = p(G). It is shown in [6] that if T is a
tree of order p > 2n — 1, then i,(T) + (n — 1)v5(T) < p.
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