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Abstract: In previous papers [3, 4] we have studied near-rings with invari-
ant series of ideals. In the present paper we study near-rings with invariant
series whose factors are without proper subnear-rings and we characterize
those whose zero-symmetric part is an ideal. Moreover we continue the study
of near-rings with invariant series whose factors are of prime order and we
provide a complete characterisation for those of length 2.

Introduction

In previous papers we have studied near-rings with invariant se-
ries of ideals. In [3] we observed that numerous results, particularly
concerning closure problems, do not depend on the near-ring structure
and therefore are valid in a more general ambit, that is for universal al-
gebras or, at least, for Q-groups. In [4] we considered several classes of
near-rings: simple (S ), simple and strongly monogenic (S;), No-simple
(S3), without proper subnear-rings (Ss), of prime order (Ss), and we
studied near-rings with an invariant series whose factors belong to Sy,
(w € {0,1,2,3,4}), called w-Jordan near-rings. While in [4] we turned
our attention to the zero-symmetric case, here we present the results
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of the study of finite 3-Jordan near-rings, completely characterizing
those whose zero-symmetric part is an ideal. Moreover, we continue
the study of the 4-Jordan near-rings, begun in [4], and we provide a
complete characterization for those of length 2.

Hereafter N will indicate a left near-ring and we refer to [10] with-
out mentioning this explicitely. In particular, we shall use the term
“mized” to describe a near-ring N, with Ny # {0} and N, # {0}. In
general Ny is a right ideal of N and N, is an invariant subnear-ring.
Furthermore, a zero-symmetric near-ring without proper N-subgroups
H such that HN = {0} is called A-simple. A near-ring is N-simple
if it is without proper N-subgroups, that is if the additive group N +
does not contain proper subgroups which are proper right ideals of the
multiplicative semigroup N'. N is Ny-simple if it is without proper Ny-
subgroups. In [7] a near-ring N is called p-singular if the order of N is
divisible by a prime number p but the order of every proper subnear-ring
of N is not divisible by p. A,(N) = {z € N/zA = {0}}, (Az(NV) =
= {z € N/Az = {0}) denote the left (right) annihilator of N and
A(N) = A,(N)N Ay(N), the annihilator of N; r(n) = {z € N/nz = 0}
denotes the annihilator of n € N; r(n) is always a right ideal. If N =
=N; D N2 D ... D N, = {0} is an invariant series of N, we will indi-
cate N;/Nit1, Ni/Nita,. .., Ni/Niyx respectively with N/, N/',... N}

and with fI, f',... f¥ the corresponding canonical epimorphisms.

1. 3J-near-rings

Definition 1. Let N be a finite near-ring. An a-series is an invariant
series N = Ny D N2 D ... D N, = {0} whose factors belong to S3
and such that, for every zero-symmetric N; and constant N ]' with ¢ <
< J, |N}| does not divide |N{|. The term a-near-ring describes a finite
near-ring with an a-series. ' '

Lemma 1. A mized a-near-ring N with an a-series

(a) N=NyDN;D...D>N, = {0}

such that Ny is zero-symmetric and N] is constant for everyi € {2,...,

n — 1} 18 isomorphic to No @ N.. Moreover there ezists in N another

series N = My D My D ... D M, = {0} such that M,_; ~ Ny, hence

zero-symmetric, and M]_, ~ N/, therefore constant, for every: € {2,3,
.,n—1}
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Proof. Since N] is zero-symmetric, Ny 2 N,.. Hence N, = (N3), + Ne.
Because the following factors are constant, for every : € {3,4,...,n},
N; 2 (Nz),. Because N, = {0}, we even get (N;), = {0}. Thus
N, is an ideal and Ny is without proper subnear-rings, in fact it is
isomorphic to N]. In [7] it was shown that a finite near-ring is without
proper subnear-rings iff it is a simple p-singular near-ring and, in this
case, its order is divisible by at most a prime number. Hence |Ny| = p®
(p prime) and by Def. 1, |N/| # p for every i € {2,... ,n — 1}.

Now we prove that |N * /No+ | is prime with p and consequently
Np is an ideal of N. In fact, if |N+/N;-| = kp, then |Nj| = kp and,
because |N3/N3| # p, we have |[N3| = kip. In this way we get |N,| =
= kp—2 p = 0 and thisis absurd. Thus |NJr /N(;F | is relatively prime to p,
|No| = pb and N:, which is normal, is the unique Sylow p-subgroup of
NY. Since the homomorphic image of a Sylow p-subgroup is contained
in a Sylow p-subgroup, N, ;_ is fully invariant in N . Therefore, since the
left translations are endomorphisms of N +, nlNg C Ny for every n € N
and N is an ideal of N. From this we can conclude that N ~ Ny @ N..

Finally, if we denote M; = N,;y1 + Ny, we have M,_; = Ny and
the series N = My D My D ... D Mp—1 D M, = {0} is the series
required. {

The following theorem gives a complete characterization of all a-
near-rings.
Theorem 1. A finite near-ring with an invariant series whose factors
belong to Ss is an a-near-ring iff its zero-symmetric part is an ideal.
Proof. Suppose N a finite nearring with an invariant series whose
factors belong to S3, and Ny « N. This series is a refinement of N O
D Ny D {0}. Therefore in such a series there are no zero-symmetric
factors that precede the constant ones. Thus this series is an a-series.

Conversely, let

(a) N=N,DN;D...D N, ={0}

be an a-series of a finite near-ring. First we show that in N there is
aseries N = My D M; D ... D M, = {0} such that the constant
factors precede the zero-symmetric ones. Let j be the highest index
of the series (@) such that N is zero-symmetric, Nit1se-w , Niyy are
constant and N J’ +k 18 zero-symmetric for every k& > h. Consider now

the subseries of (a) N; D Nj41 D ... D Njyp and its image




82 A. Benini and S. Pellegrint

(ﬁ) , vG:ijGj_HD...DGj+hDGj+h+1:{0}

under the homomorphism f;“H, where Gy = f;"H(Nt) for t € {j,
j+1,...,5+ H}. Since G} = G;/Gj4: is isomorphic to N}, G} is
zero-symmetric and G} is constant for every t € {j +1,...,j + h}.
Therefore the series (3) is an a-series of G satisfying the hypotheses of
Lemma 1. So applying Lemma 1, there is in G a series '

(v) G=F;DFjy1D...D Fjyn = {0}

such that Fjij is isomorphic to G’ and is the zero-symmetric part
of G, that is Go, whereas F; is isomorphic to G}, for every t € {j,
j4+1,:..,7+h—1} and therefore constant. Using Lemma 1 again, we
are able to say that Fy is fully invariant in G forevery t € {j,j+1,...,
iRy o

Let now Mt ——_(f]h+1)°(F) that is F, = M¢/Njtht1. We prove
that Mt is an ideal of N for every t € {j,5+1,...,i+k+1}. In fact
M:. j+h is a left ideal of N because every endomorphlsm of N; which fixes
Njtht1, fixes also M ;. Let e: Nj — N; be an endomorphlsm such
that e(N ]+h+1) C N;ih41- This endomorphlsm induces an endomor-
phism e in N]‘/Nj_;_h_;_l., put 6'(71]' +Nj+h+1) = E(?’Lj) +Nj+h+1. Let m
now be an element of M;;;. Obviously m + Njypt1 € Fjip, therefore
g'(m + Njtrt1) = e(m) + Njypy1 € Fjyp because, by Lemma 1 Fjyp,
is fully invariant in G. Hence there is an element m' € Mjy;, and an
element n € Njipt1 such that e(m) = m' 4+ n, thus e(m) € Mjis.
Since every left translation 7y, restricted to N; is an endomorphism of
N, which fixes Njtp41, we have nMj 4y C My, for every n € N. Thus
M]+h is a left ideal of N. Now we prove that M; s = NgNN; and, from
this, that M;4 is-a right ideal. If m € No N Nj, then fh+1(m) € Gy =
= Fjy1, therefore m € Mjyy. On the other hand, M;, is obviously
contained in N; and it is zero-symmetric because one of its ideals and
the respective factors are zero-symmetric. Thus we can conclude that
M4 1s an ideal of N.

Flnally we show that M; = M;in + Nt—l—l for every t € {],
j+1,...,7+ h} and thus, My, as a sum of two ideals, is an ideal.

The series () is obtained using Lemma 1, therefore Fy = Fyy +
—|— Gt+1, Where F]+h = Go Hence Mt/NJ+h+1 = ]+h/NJ+h+1 +
+ Nyt /Nj+h‘+1 and thus M; = Mj_+_h 4+ Neg1. Finally we observe that
M; 1, is exactly the zero-symmetric part of V; and consequently (N;),
is an ideal. ¢
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It should be noted that not all the finite 3J-near-rings are a-
near-rings. For example N = Ma(Zp),(l) p prime is a 3J-near-ring
(N 5 N, D {0} is a series whose factors are in S3) but Ny is not an
ideal.

2. 4J-near-rings of length 2

In this paragraph we study near-rings with an invariant series N D
D I D {0} whose factors are near-rings of prime order. Consequently
they are near-rings of the order pg, where p, ¢ are prime numbers. It
is well known that the additive group of such a near-ring is a direct or
semidirect sum of cyclic groups of prime order or is itself cyclic of the
order p?. We can also establish the following:
Proposition 1. 4 4J-near-ring of length 2 has only one proper ideal
or it i3 isomorphic to the direct sum of two of its ideals.
Proof. Let N DI {0} be the invariant series of a 4J-near-ring N with
N/I and I of prime order: that means I is a maximal ideal. If J is
another ideal of N, I+/J is also an ideal, thus I = Jor I® J = N.

From Th. 1 of [4] we know that a near-ring of prime order is
constant or zero-symmetric. In the latter case, it is either an A-simple
and strongly monogenic near-ring or a zero-ring. Thus, we will denote

by

. the class of constant near-rings;

6 the class of zero-symmetric near-rings;

A the class of A-simple and strongly monogenic near-rings;
(@) the class of zero-rings.

Moreover we will denote by [S,7] the class of near-rings with an in-
variant series N O I O {0} such that N/T € § and I € T, where
S, T € {n,n,A,O}. In this way, 4J-near-rings of length 2 are the
union of [n¢, 70} (19, 7e), [6,m0ls [Me,7e], where mp = AU O. More-
over we observe that the structure of the near-rings of [n,,n.] is that of
groups of order pg and therefore well-known.

Let N = A+ ,B be a semidirect sum of additive groups A and B.
By Clay method, every near-ring on N can be constructed but, gener-
ally, from a multiplicative view-point, isomorphic images of semidirect

(1)Ma(Zp) = Hom(Zp, Lp) + M_.(Zp), where M:(Lp) ={f: Ip — Ip/f is

constant}.
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summands are not even substructures. In [1] we study those functions
introduced by Clay that provide the semidirect summands with a well
defined multiplicative structure. We call ®-sum of near-rings A and
B, a near-ring N obtained by semidirect sum of the additive groups
of A and B with a suitable Clay function preserving the multiplicative
structure on semidirect summands.

CLASS [n;., 5]

The following theorem characterizes the near-rings belonging to
[ne, mol-
Theorem 2. A near-ring N belongs to [n,ny] iff N = A + ¢ B with
f({0,0)) = O4 and f(N) =id, where A € 5}, and B € 7.
Proof. If N € [n.,n;], then Ny is an ideal. Thus N is isomorphic to
No+ ¢ Nc, where f((0,0)) = On, and f(N) = id (see [1], Th. 1, Cor. 1).
Moreover, both Ny and N/Ny ~ N, are of prime order. Conversely,
suppose N = A + ¢ B with f({0,0)) = O4 and f(N) = id, where 4 €
€ ny and B € n.. Then A° is an ideal of N; A° = Ny; °B = N, and
N/A® ~ °B (see [1] Prop. 2). Whence N € [n%,n5]- ¢
By construction described in Th. 2 we obtain each element of
[7,mh]. We observe also that, because me,mg) = LAl U [0, O], an
element of [n.,ng] belongs to n., A] or to [n., O] according to the choice
of A in A or in O respectively.

CLASS [ng,n¢]

. The following theorem characterizes the near-rings belonging to

LIAL |
Theorem 3. A near-ring N belongs to [nf,n.] iff either N = A@ B,
where A € ny and B € n), or N i3 an abstract affine near-ring of order
pZ. v
Proof. Now the order of N is pg, where p, ¢ are prime numbers.

(i) Suppose p # g. In this case N D N, D {0} is an a-series, thus
N = Ny & N,, by Lemma 1.

(ii) Let p ='¢. In this case the order of N is p? and Nt = N: &)
&) N:. If Ny is an ideal of N, we still have N = Ny @ N,.. If N, is not
an ideal of N, we have N, Ny, = N,, because the order of N, is a prime
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number. Moreover r(N.) = {0}, due to r(N.) C Ng. Thus N, is a base
of equality and N is an abstract affine near-ring (see [10], 9.85).
Conversely, if N = A @ B, where A € n; and B € 7, it is clear
that the theorem holds. Let N now be an abstract affine near-ring of
order p2. Obviously both Ny and N, are of the order p and, since N,
is an ideal, N € [n},n.]. O
Corollary 1. A near-ring N belongs to [O,n] if N ~ A® B, where
A€ O and Benl.
Proof. Let N € [O,nl]. If Ny is not an ideal of N, then N Ny =
= N,, thus N, = NNy = (N.No)Ny = N.(Np)? = {0}, because Ny
is now a zero-ring. From this it follows that Ny is an ideal of N, thus
N = Ny @& N, where Ny € O and N, € n.. The converse is trivial. {
Corollary 2. A near-ring N belongs to [A,n.] iff either N ~ A® B,

where A € A and B € nl, or N 1s an abstract affine near-ring of order

p2.

In [2] we have shown a method for constructing abstract affine
near-rings with a given zero-symmetric part and a given constant part
(they are suitable A-sums). By using Th. 3 of [2], an abstract affine
near-ring of order p* can be characterized as a A-sum of a field iso-
morphic to Z, and the constant near-ring on Z,. We can also note
that near-rings belonging to [n},n.] N [, ] are direct sums of their
zero-symmetric and constant parts. Those belonging to [ng, 7.\ [7%, 7]
are abstract affine near-rings of order p?. Those belonging to [, 74] \
\ [76, 7] are ®-sums (not direct sums) of two near-rings of prime order
satisfying the conditions of Th. 2.

CLASS [ng, no]

We now study the subclasses of [ng,ny]. Near-rings belonging to
[0, O] are characterized by the following
Theorem 4. A near-ring N belongs to [0, O] iff |N| = pq and there is
an ideal I of N such that N2 C I C A(N).
Proof. If N € [0, 0], obviously |N| = pq and N has a proper ideal I,
where I is a zero-ring of prime order including N2. Moreover, suppose
now that NI # {0}. We have nl = I for some n € N and, because of
N? C I, I =nI =n%I = {0}, a contradiction, due to I being a proper
ideal. Thus NI = {0} and I C A4(NV). Now let N2 # {0}, that means
nN = I for some n € N. Thus N2 = I and IN = N?N = NN? =
= NI = {0}. From this it follows I C A(N).
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Conversely, let N be a near-ring of order pg with a proper ideal
I such that N2 C I C A(N). Obviously the orders of I and N/I are
prime numbers. Moreover, by N2 C I C A(N), both I and N/I are
zero-rings, thus N € [0, 0]. ¢
Corollary 3. A near-ring N belonging to [O, O] is a zero-near-ring iff
I C A(N), where I is as in Th. 4.
Proof. Let N be in [0, O] and, by Th. 4, suppose the ideal I to be
strictly contained in A(N). Then A(N)/I = N/I implies A(N) = N.
The converse is trivial. {

Between near-rings of [0, O] we can characterize the non-zero
near-rings by the following
Theorem 5. A near-ring N with N? # {0}, belongs to [0, O] iff |N| =
=p? and N3 = {0}.
Proof. Let N € [0, 0] and N? # {0}. From Th. 4 and Cor. 3 it turns
out that I = A(N). Thus N® = NN? C NI = {0}. Moreover, due to
an element n € N so that nN = I. we have imvy, = nN = I = ker+,.
Thus |N| = |[I|*> = p?. The converse is trivial. ¢
Corollary 4. A near-ring N, where N2 # {0} and N isa cyclic
group, belongs to [0, O] iff |[N| = p? and A(N) # {0}.
Proof. If N € [0, O], the corollary holds trivially. Conversely, let N
be a near-ring with N2 # {0}, [N| = p?, A(N) # {0} and suppose
that N* is a cyclic group. It should be noted that N has a proper
ideal A(N), which is a zero-ring of order p. Moreover, due to |[N| = p?,
N/A(N) is also of order p. It remains to show that N/A(N) is a zero-
ring. Because of N? # {0}, we get v, # O, for some n € N. Since

¥n(N) is an additive subgroup of N+, if 7, # On then 4,(N) = N or
Yn(N) = A(N). Now, 7,(N) = N implies kervy, = {0} and the last
condition is absurd, because of A(N) C kervy,. Thus nN = A(N) or
nN = {0}. In each case N2 C A(N). ¢

Theorem 6. A near-ring N belongs to [O, O] iff it arises by defining
a Clay function F': N — End(N) on an additive group N of order
pq, where F(N) C Endy(N)® and F(I) = {On}, I being a normal
subgroup of N.

Proof. Let N € [O,O]; obviously |N| = pg. Let I be an ideal of
N. From Th. 3 we have I C A(N), that is IN = {0}. Thus the
Clay function coupled with the product of N, satisfies the required
conditions. '

(2)  End;(N)={f€End(N)/f(N)CICker f}.
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Conversely, let N be a group of order pq, let I be one of its normal
subgroups and F: N — End(N) a Clay function such that F(N) C
€ End;(N) and F(I) = {Oy}. Obviously I C ker f, Vf € F(N), thus
NI = {0}, that means I is a left ideal of N' and a zero-ring. Analogously
f(N)C I,Vf € F(N), thus N? C I, that means I is a right ideal of N
and N/I is a zero-ring. Whence N € [0, 0]. { :

Near-rings belonging to [A4,A] or to [0, A] are characterized by
the following theorems.

Theorem 7. A near-ring N belongs to [A, Al iff N ~ A® B, where
A,Bc A. "
Proof. Let N € [A,A] and let N D I O {0} be the invariant series
such that N/I and I belong to A. From Th. 6 of [4], we know that
the radical J5(IV) is nilpotent and N/J,(N) is a direct sum of A-simple
and strongly monogenic near-rings. So Jo(N) ¢ {N,I}. If it is also
J2(N) # {0}, then Jo(N) + I is an ideal of N and, recalling that I is
a maximal ideal, Jo(N) @ I = N. Thus N/I ~ J,(N) is nilpotent, and
this is absurd. So J3(N) = {0} and the theorem holds. ¢

Theorem 8. A near-ring N belongs to [0, A] if N ~ A@® B, where
A€ O and B e A.

Proof. 1t is trivial, by Th. 4 of [4]. ¢

It should be noted that [0, A] is included in [4, O]. The following
example shows that the inclusion is strict.

Example 1. As additive group we consider the symmetric group of
degree 3 and we define the following product

* |0abcazzuy
01000000
a|l0aaa00
b0 acbdbyz
c|0abdbcazzuy
z |1 000O0O0O
y1000000O

In this way N is a near-ring, I = {0, z,y} is the only ideal of N, I € @
and N/I € A. Thus N € [4,0], but N ¢ [0, A]. We can note that
the near-ring under definition is isomorphic to a ®-sum I + ¢ A, where
A = {0,a}, and this ®-sum is not a direct sum. In general, proper
®-sums (not direct sums) of [A4, O] are characterized by the following
theorems.
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Theorem 9. Let N be a proper ®-sum, then N belongs to [A, O] iff N ~
~ A+ B, where B € A, A € O and it is the only ideal of N, f((0,0)) =
= Oa, ?((070)) = O, ?a,b = ?O,b Va€ A, Vbe B.

Proof. Let N be a proper ®-sum of [A4,O]. Then N has a left invari-
ant subgroup B and only one proper ideal A belonging to . Thus
we can represent N as A + 3B and the theorem holds by Prop. 4 of
[2]. Conversely, let N = A+ ¢B, where A € O and B € A, and let
7((0,0)) = O, F((0,0)) = Op, Fup = T (Va € 4, Vb € B). From
Prop. 4 of [2] we see that N is zero-symmetric, A° is an ideal of N
isomorphic to A, that means A° € O, and also N/A° ~ °B ~ B ¢ A.
Thus N € [4,0]. ¢

Theorem 10. A near-ring N belonging to [A,O] such that Nt =

= A" ®B" and where |A| and |B| are prime numbers p and q, with
p £ q, can be represented as a ®-sum.
Proof. Let N € [4, 0], with N = A" @B" and let |A| = p, |B| =q,
p # q. Because N has a proper ideal, this one must be equal to A° or
°B. Suppose A° be the ideal of N. That means °B € A. If nb = 0,
Vn € N, Vb € B, then n(a+ b) = na € °A, Va € A, whence N? C A°,
This implies °B ~ N/A° € O, which is a contradiction. Thus, there is
an n € N for which n°B # {0}. Because n°B is a proper subgroup of
N of order ¢ we have n°B = °B. Thus °B is a left invariant subgroup
and, by Th. 1 of [2], N=A+B. ¢

Finally, among ®-sums of [4, 0] such that their additive group
is a direct sum of two groups, we can characterize the non-monogenic
case.

Theorem 11. Let N = A+ ¢ B belonging to [A, O] with Nt =4t @
&) BT, Then N s non-monogenic iff N € [0, A].
Proof. If N € [0, A], then N ~ A ® B, by Th. 8, and, obviously, it is

not monogenic.

Conversely, let N be a non-monogenic near-ring with N * :A+63

GBB+, where N = A + B belongs to [0, A]. To show that N = A @
@ B, it is sufficient to prove that °B is a right ideal of N. Firstly, we
prove that f,3 = O4, Va € A, Vb € B. Suppose > = 0. We have
({a,8))*(a,0) = (fa,5(a), b*){a,0) = (0,0), but also {a,b)({a,b){a,0)) =
= (a,b){fap(a),0) = (f2,(a),0). Thus f?,(a) = 0 and f,5 is not an
automorphism. Whence f,, = O4. Suppose now b% # 0. Then b°B =
= °B and f,3 # O4 imply f,3(A) = A°. Thus (a,b)N = N, but
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N is not monogenic, whence f,, = O4. For this reason ({a,b) +
+(0,8)){a’, ') —(a,b)(a’,”) = {a,b+b)(a',b')—(a,b)(a’, ') = (f, ;,5(a"),
(b+B)) — (fas(a'), b8') = (0, (b+ B)Y' — b} € °B. Then °B is a right
ideal. O
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