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Abstract: The finest topology on R™ (n > 2) which induces the Euclidean
topology on each line is not regular and have big character and extent. The

same holds for the finest topology which induces the Euclidean topology on
each line parallel to a coordinate axis; this latter topology is symmetrizable.

0. Introduction

Investigating Minkowski space M (the “real” 4-dimensional space-
time continuum) Zeeman suggested some alternative topologies for M,
[12, 13]. The fine topology on M induces the 3-dimensional Euclidean
topology on every space-axis and the 1-dimensional Euclidean topology
on every time-axis, and it is the finest topology satisfying this property,
[13]. The reader could consult also [1], [4], [3], [7, 8, 9, 10] for a more
detailed view of this topic. In this paper we investigate some of the
properties of the finest topology on R™ which induces the Euclidean
topology on each line in R™ (resp. each line parallel to a coordinate
axis).

1 This work has been supported by Grant No. MM 28/91 from the Bulgarian Ministry
of Sciences and Education.
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1. Preliminaries

Let A7 = {£: £is a line in R"} and A} = { € A: {is parallel to
a coordinate axis}. Let R} (resp. R%) be the set R™ with the following
topology: a set U C R™ is open in R" (resp. R}) if and only if U N ¢
is ‘open with respect to the standard topology on £, for each line £ €
€ AT (resp. £ € AT). The topology of R? is stronger than the standard
topology of R", and the topology of R is stronger than the topology
of R}. For instance, any circle without a point is closed in R? although
it is not closed in the standard topology of R™; any non-parallel to a
coordinate axis line without a point is closed in R} although it is not
closed in R}. The space R} is symmetrizable by the symmetric s(z,y)
defined as follows: ' -

|z —y| i = and y lie on a line that is

s(z,y) = parallel to a coordinate axis;
1 otherwise
([ || stands for the usual norm in R™). We recall that a symmetric s

on a topological space X is a function from X X X into R such that:
a) s(z,y).= s(y,z) > 0 for each z,y € X; b) s(z,y) =0if z =y; ¢) a
set U C X is. open. iff foreachz € U there éxists r > 0 such that the
“ball”: K (:L' r) = (y: s(z,y) <.r}is contained in U ([2], [3], see also
. T

In Section 2 we prove that, for n > 2, both R} and R} are not
regular. The first, for n = 3, answers a question of Prof. Otto.Laback (of
Technical University Graz, Austria). The second, for n = 2, answers a
question of Prof. Stoyan Nedev (Institute of Mathematics, BAN, Sofia,
Bulgaria). In Section 3 we investigate some cardinal functions of R?
and R} (density, weight, character, extent and spread) and the results
once more show that R} and R7} are not regular. Throughout the paper
(Q denotes the set of all rational numbers. The i-th coordinate of an
z € R™ is denoted by Ziy = (z1,... :cn)

2. Non—regularlty of ]R and ]R

Lemma 2.1. Let n > 2 and U is a subset of R™ whzch i3 open with
respect to the standard topolgy of R™. Then there exist a set ' C U
such that:

(a) cl F' =clU, where “cl” denotes the standard closure in R™.
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{b) Each line in R™ passes through at most two points of F (and
hence, F is closed in both R} and R%).
Proof. The lemma is trivial if U = 0, so let U # 0. Let B(z,r)
denotes the ball {y € R: ||z — y|| < r}. Then the family B(U) =
{B( —): z € QM k €N B( ,lc) - U} is countable and we can
write it as B(U) = {B;: 1 € N}. By induction we will pick points
z* € B; and define sets F, = {z7: j < i} such that:

(¥*)  each line in R™ passes through at most two points of Fj.

Finally we will set F' = U{F;: ¢ € N}.

In order to do this let us pick an z' € B; and let F; = {z'}. Let
us suppose that, for some i € N and for each j < i we have picked
points z/ € B; such that the condition () holds. Let A(F;) be the
family of these lines in R™ that passes through exactly two points of
F;. Since A(F;) is finite, the set Biy1 \ (UA(F})) is not empty. We
can pick a point zit?! from it and define Fj.; = {z/: j < i+ 1}. The
condition (%) holds for Fji;, because z'*! ¢ UA(F;). The induction
step is completed.

Now, let F' = U{F;: ¢ € N}. It is clear that (b) holds. In order
to prove (a) let y € clU. For any standard neighbourhood V of v,
UNV # 0. Because Q" is dense in R™, we can pick an z € Q"NUNV.
There is some k € N such that B(:z:, -i—) CUNYV. There is some ¢ € N
for which B(z,+) = B; and hence 2 € UNV. Hence FNV # § and
y€EcF;clUCclF.

Proposition 2.2. For n > 2, the spaces R} and R7. are not regular.
Proof. Because R? (resp. R2+) is a closed subspace of R} (resp. R%}) it
suffices to show that R? and R2 are not regular.

By Lemma 2.1, there is a set FF C R? \ {O} (where O = (0,0)}
such that c] ' = R? and F is closed in both R} and R?. We will show
that the O and F' have no disjoint neighbourhoods in R (and hence,
also in R2). ‘

Let O € U and FF C V where U and V are open subsets of
R3. We will show that U NV # §. There is an ¢ > 0 such that the
horizontal interval J = {z: |z;| < €, zo = 0} is included in U (z;
denotes the i-th coordinate of a given point z). For each z € J and
n € N let U(z,n) is the vertical interval with base z and highness I,
ie. U(z,n) = {(21,6) : 0 < 6§ < L} Foreachn € Nlet 4, = {z €
€ J:U(z,n) CU}. Since J C U and U is open in Ri we have that
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U{An :n € N} = J. Since J is of second category there are an n € N
and a nonempty open interval J' C J such that the standard closure
of A, contains J'. The'set P = {z:z; € J,,0 < z, < 1} is nonempty
and open (in R?) and hence we can pick a pomt y€PNF. Sincey €
€ V there exists 1 > 0 such that the horizontal interval ¥ = {z € RZ:
23 = Yo, |21 — 11| < pu}is contained in V. Let z be a point from A4, N J’
such that |21 —yi| < p. Then U(z,n)NY # 0§ and hence UNV # §. ¢
Corollary 2.3. The fine topology of Minkowski space M is not regular.
Proof. We have that R2 is a closed subspace of M. In fact, R2 ~
~TxR<— TxR® =M, Where T = R is the time, ~ denotes homeomor-
phism, — denotes homeomorphlc embedding, and X denotes product
of sets (not topologlcal product) o :

3 Some cardinal functions of RR] and ]R"

" Let us recall the definitions of the cardinal functions weight, char-

atter and denszty, denoted (for a given topological space X) by w(X),
X(X) and d(X) respectlvely

W(X) mm{]Bl B is a base for the topology of X}; . -
(X)) = sup{x(:c X):z € X}, where
x(a: X) = Imn{|B |: B, isa base for the topology of X at’ x},
i d(X) min{|A]| : Ais dense in X} '

A space X is called sepamble if d(X) = Ro. For a detailed survey on
cardinal furictions see [6]: " Another approach for showing that R} and
R7} are not regular is to use that for a regular space X, w(X) < 2d(X)
In fact, R? and R? are separable but they have Welght and character
strongly greater than ¢ = 2%, ‘ ' ’
Proposition 3.1. For n > 2, x(R?) > ¢ and X(R”) > ¢ :
Proof. We consider the case n = 2. Suppose that = = = (z1,z2)-€ R?
and Y ={Us:a<c}isa family of neighbourhoods of z (either in R?
orin R?{_), we shall show that ¢/ cannot be a base at z. By induction, for
each a < ¢ we shall pick a pomt €U, \ {z} such that the followmg
condition holds:

(Cq) each line in R? contams at most two pomts of the set C,

= p<a)
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Then the set C = {z® : @ < ¢} will be closed in R and R%. The set
V = R"\ C will be a neighbourhood of z (in R} and R% ) that does not

contain any element of U (because V misses each z%, a < ¢).

Let z° € Up \ {z} and Cp = {z°}. Let 1 < a < ¢ and suppose
that for each v < a the points 2 have already been picked so that the
conditions (C,) hold. There is an € > 0 such that the vertical interval
J ={y:y,=x1, |[yg —x2| < €} is contained in U,. Since a < ¢ there is
an h, xo —€ < h < x9+¢, such that the horizontal line i = {y : y2 = h}
‘misses z7, for each v < a. There is a 6 > 0 such that the horizontal
interval H = {y : |y1 — x1] < §, y2 = h} is included in U, N A. Let
A={:1is a line in R? passing through two points of {z7: v < a}}.
Since |A] < @ < c and fi ¢ A, we have that |[H \ UA| = ¢. We can
- pick an z® € H \ UA, z% # z, and deﬁne Co = {aﬂ v < a}. Because
z* ¢ UA, (Cy) holds. ¢

Corollary 3.2. For n > 2, w(R}) = x(R}) > ¢ and w(R}) = x(R ) >
>, :

The author conjectures that w(R?) = x(R?) = W(R ) = x(R%} ) =
= 2° (the assumption ¢t = 2° implies these equations).

. Proposition 3.3. For n > 2, both R} and R} are separable.

Proof. We shall show that the set Q? is dense in R% (and hence in
R2). The cases n > 3 are similar to this one. Let U be a nonempty
open subset of R%. Let us pick an A € R such that the horizontal line
i = {z : x, = h} intersects U. Since UNH is openin /i thereisa p € Q
for which (p,h) e UNH. Let v = {z : x; = p}. Thereisa g € Q for
which the point (p,¢) € UNv and hence Q2 NU # 0. {

Finally, let us recall that the extent e(X) of a space X is defined
as

e(X) = sup{|C| : C is a closed discrete subspace of X},
and the spread s(X) is defined as
s(X) = sup{|C| : C is a discrete subspace of X}.

In the proof of Prop. 3.1, the set C (looked at as a subspace of either
R} or R%) is closed discrete, and |C| = ¢. So, we have proved:

Proposition 3.4. For n > 2, e(R}?) = e(R}) = s(R}) = s(R}) = <.
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