ON TOTALLY UMBILICAL SUB-MANIFOLDS OF MANIFOLDS WITH CERTAIN RECURRENT CONDI-TION IMPOSED ON THE CURVA-TURE TENSOR

Stanisław Ewert-Krzemieniewski

Instytut Matematyki, Politechnika Szczecińska, Al. Piastów 17, 70-310 Szczecin, Poland

Received September 1991

AMS Subject Classification: 53 B 25, 53 B 30

Keywords: Pseudo-Riemannian geometry, recurrent manifolds, totaily umbilical submanifolds.

Abstract: Totally umbilical submanifolds in manifolds which are generalisation of recurrent manifolds are investigated. At the end of the paper two examples are given.

1. Introduction

Investigating conformally flat Riemannian manifolds of class one, i.e. manifolds characterized by the property that at least n-1 principal normal curvatures are equal to one another, R. N. Sen and M. C. Chaki ([10]) found that if the remaining one is zero, then the curvature tensor satisfies

(1) $R_{hijk+l} = 2a_l R_{hijk} + a_h R_{lijk} + a_i R_{hljk} + a_j R_{hilk} + a_k R_{hijl}$, where the "comma" denotes covariant derivative with respect to the metric. Hereafter, Riemannian manifolds with condition (1) imposed on the curvature tensor were examined ([1], [2], [3]). Some further generalisations of the condition (1) for various tensor fields were considered by L. Tamássy and T. Q. Binh ([11]). In [3] the present author proved

Proposition ([3]). If the curvature tensor satisfies

$$R_{hijkll} = \sum_{p} \overset{p}{v}_{i_{1}} R_{i_{2}i_{3}i_{4}i_{5}} ,$$

where the sum includes all permutation p of the indices (h, i, j, k, l) and $\begin{cases} p = \begin{pmatrix} p \\ v_1, \dots, v_n \end{pmatrix} \end{cases}$ is a set of some vectors, then there exists a vector a_l such that relation (1) holds.

Hence it follows that on a recurrent manifold, i.e. on a manifold satisfying the condition

$$R_{hijk,l}R_{pqrs} - R_{hijk}R_{pqrs,l} = 0,$$

at each point where R_{hijk} does not vanish relation (1) is satisfied. Moreover, it was proved that on a neighbourhood of a generic point the vector a_l is a gradient ([3]).

In the paper we begin investigation of totally umbilical submanifolds of manifold satisfying the condition (1) for some vector field a_l . Throughout the paper all manifolds under consideration are assumed to be smooth connected Hausdorff manifolds and their metrics need not be definite.

2. Preliminaries

Let N be an n-dimensional Riemannian manifold with not necessarily definite metric g_{rs} , covered by a system of coordinate neighbourhoods $\{U; x^r\}$. We denote by Γ_{ij}^k , R_{hijk} , R_{hk} , R the Christoffel symbols, the curvature tensor, the Ricci tensor and the scalar curvature of N respectively. Here and in the sequel the indices h, i, j, k, l, r, s, t, u run over the range $1, 2, \ldots, n$. Let M be an m-dimensional manifold covered by a system of coordinate neighbourhoods $\{V; y^a\}$ immersed in manifold N and let $x^r = x^r(y^a)$ be its local expression in N. Then the local components g_{ab} of the induced metric tensor of M are related to g_{rs} by $g_{ab} = g_{rs}B_a^rB_b^s$, where $B_a^r = \frac{\partial x^r}{\partial y^a}$. In what follows we shall adopt the convention

$$B_{ab}^{rs} = B_a^r B_b^s$$
, $B_{abc}^{rst} = B_a^r B_b^s B_c^t$, $B_{abcd}^{rstu} = B_a^r B_b^s B_c^t B_d^u$.

We denote by Γ_{ab}^{c} , K_{abcd} , K_{ad} , K the Christoffel symbols, the curvature tensor, the Ricci tensor and the scalar curvature of M with respect to g_{ab} respectively. Here and in the sequel the indices a, b, c, d, e, f run over the range $1, 2, \ldots, m$ (m < n). The van der Waerden-Bertolotti covariant derivative ([12], [13]) of B_a^r is given by

(2)
$$B_{a \, b}^{r} = B_{a \, b}^{r} + \Gamma_{st}^{r} B_{ab}^{st} - B_{c}^{r} \Gamma_{ab}^{c},$$

where the "comma" and the dot denote covariant derivative with respect to g_{ab} and partial derivative.

The vector field H^r defined by $H^r = \frac{1}{m} g^{ab} B^r_{a,b}$ is called the mean curvature vector of M. Using (2) and the equation

$$\Gamma_{bc}^{a} = \left(B_{b\cdot c}^{r} + \Gamma_{st}^{r} B_{bc}^{st}\right) B_{d}^{u} g^{da} g_{ru}$$

we obtain on M

$$g_{rs}H^rB_a^s=0.$$

The Schouten curvature tensor H_{ab}^r of M is defined by

$$H_{ab}^r = B_{a \prime b}^r$$
.

If the tensor H_{ab}^r satisfies the condition

$$H_{ab}^r = g_{ab}H^r \,,$$

then M is said to be a totally umbilical submanifold of N.

Let $N_x^r(x, y, z = m+1, ..., n)$ be pairwise orthogonal unit vectors normal to M. Then

(3)
$$g_{rs}N_x^rN_x^s = e_x$$
, $g_{rs}N_x^rN_y^s = 0$ $(x \neq y)$, $g_{rs}N_x^rB_a^s = 0$ and

(4)
$$g^{rs} = B^{rs}_{ab}g^{ab} + \sum_{x} e_{x}N^{r}_{x}N^{s}_{x},$$

where e_x is the indicator of the vector N_x^r . On a totally umbilical submanifold M of a manifold N the Gauss and Codazzi equations take the form ([7])

(5)
$$K_{abcd} = R_{rstu} B_{abcd}^{rstu} + H(g_{bc}g_{ad} - g_{bd}g_{ac})$$

and

$$R_{rstu}B_{abc}^{rst}N_x^u = A_{ax}g_{ac} - A_{bx}g_{ac}$$

respectively, where

$$H = g_{rs} H^r H^s \,, \quad A_{ax} = H_{x \cdot a} + \sum_y e_y L_{ayx} H_y \,, \quad H_y = H^r N_y^s g_{rs}$$

and

$$L_{azy} = g_{rs} N_u^r N_{z l a}^s.$$

Moreover, we have ([6], [7])

(7)
$$R_{rstu}H^{r}B_{bcd}^{stu} = \frac{1}{2}(g_{bc}H_{d} - g_{bd}H_{c}), \quad H_{c} = H_{lc},$$

$$\begin{split} (\beta) \qquad K_{abcdlc} &= R_{hijk;l} B_{abcde}^{hijkl} + H_e \left(g_{bc} g_{ad} - g_{bd} g_{ac} \right) + \\ &+ \frac{1}{2} \left[H_a \left(g_{bc} g_{ed} - g_{bd} g_{ec} \right) + H_b \left(g_{ec} g_{ad} - g_{ed} g_{ac} \right) + \\ &+ H_c \left(g_{be} g_{ad} - g_{bd} g_{ae} \right) + H_d \left(g_{bc} g_{ae} - g_{be} g_{ac} \right) \right], \end{split}$$

where the semicolon denotes covariant derivative with respect to the metric of the ambient space,

(9)
$$H_{ia}^{r} = -HB_{a}^{r} + \sum_{z} e_{z} A_{az} N_{z}^{r}.$$

We shall also use

Lemma 1 ([8]). (I) Let (A_i) , (B_i) be two sequences of numbers which are linearly independent as elements of the space \mathbb{R}^n . If T_{ij} , S_{ij} are numbers satisfying conditions

$$T_{ij}A_k + T_{jk}A_i + T_{ki}A_j + S_{ij}B_k + S_{jk}B_i + S_{ki}B_j = 0,$$

$$T_{ij} = T_{ji}$$
, $S_{ij} = S_{ji}$

then there exist numbers D_i such that

$$T_{ij} = -B_i D_j - B_j D_i \,, \quad S_{ij} = A_i D_j + A_j D_i \,.$$

(II) Let T_{ij} , A_k be numbers satisfying conditions

$$T_{ij}A_k + T_{jk}A_i + T_{ki}A_j = 0, \quad T_{ij} = T_{ii}.$$

Then either each T_{ij} is zero or each A_i is zero.

Lemma 2 ([4], Lemma 1). Let M be a Riemannian manifold of dimension $n \geq 3$. If B_{hijk} is a tensor field on M such that

(10)
$$B_{hijk} = -B_{ihjk} = B_{jkhi}, \quad B_{hijk} + B_{hjki} + B_{hkij} = 0,$$

$$B_{hijk \, \prime \, [lm]} = 0$$

and a_l, A_l are vectors fields on M satisfying

$$a_r R^r_{ijk} = g_{ij} A_k - g_{ik} A_i,$$

then

$$A_l \left[B_{hijk} - \frac{S}{n(n-1)} (g_{ij}g_{hk} - g_{ik}g_{hj}) \right] = 0,$$

where $S = B_{pqrs}g^{ps}g^{qr}$.

Lemma 3 ([9], Lemma 3). If c_j , p_j , B_{hijk} are numbers satisfying (10) and

 $c_l B_{hijk} + p_h B_{lijk} + p_i B_{hljk} + p_j B_{hilk} + p_k B_{hijl} = 0$, then either each $b_j = c_j + 2p_j$ is zero or each B_{hijk} is zero.

3. Main results

Theorem 1. Let M (dim M > 2) be a totally umbilical submanifold of the manifold N satisfying the condition (1) for some vector field a_i . Then the relation

$$(11) (g_{rs}H^rH^s - a_rH^r)C_{abcd} = 0$$

holds on M, where C_{abcd} are components of the Weyl conformal curvature tensor of the submanifold M.

Proof. Transvecting (1) with $H^h B^{ijkl}_{bcde}$ and applying (5) and (7) we obtain

$$R_{hijkll}H^hB_{bcde}^{ijkl} =$$

$$= a_e(g_{bc}H_d - g_{bd}H_c) + VK_{ebcd} - VH(g_{bc}g_{ed} - g_{bd}g_{ec}) +$$

$$+\frac{1}{2}a_{b}(g_{ec}H_{d}-g_{ed}H_{c})+\frac{1}{2}a_{c}(g_{be}H_{d}-g_{bd}H_{e})+\frac{1}{2}a_{d}(g_{bc}H_{e}-g_{be}H_{c}),$$

where $a_e = a_r B_e^r$, $V = a_r H^r$. On the other hand, differentiating covariantly the left hand side of (7), in virtue of (9), (5) and (6), we get

(13)
$$\left[R_{hijk} H^h B_{bcd}^{ijk} \right]_{le} = R_{hijk \, l} H^h B_{bcde}^{ijkl} - H K_{ebcd} +$$

$$+H^2(g_{bc}g_{ed}-g_{bd}g_{ec})+g_{bc}E_{de}-g_{bd}E_{ce}-g_{ce}S_{bd}+g_{de}S_{bc}$$

where $E_{de} = \sum_{x} e_{x} A_{dx} A_{ex} = E_{ed}$ and $S_{bc} = R_{hijk} H^{h} B_{bc}^{ij} H^{k} = S_{cb}$. Then, substituting (12) into (13) and taking into account relation (7), we find

$$(14) (H-V)K_{ebcd} =$$

$$= H(H-V)(g_{bc}g_{ed} - g_{bd}g_{ec}) + g_{bc}E_{de} - g_{bd}E_{ce} - g_{ce}S_{bd} + g_{de}S_{bc} +$$

$$+ a_e(g_{bc}H_d - g_{bd}H_c) - \frac{1}{2}(g_{bc}H_{de} - g_{bd}H_{ce}) +$$

$$+\frac{1}{2}(g_{ec}a_bH_d-g_{ed}a_bH_c+g_{be}a_cH_d-g_{bd}a_cH_e+g_{bc}a_dH_e-g_{be}a_dH_c).$$

Hereafter, contracting (14) with g^{ed} and alternating the resulting equation in (b, c), we obtain

$$a_b H_c = a_c H_b .$$

Therefore, alternating (14) in (e, b) and using (15), we get

(16)
$$2(H-V)K_{ebcd} =$$

$$= 2H(H-V)(g_{bc}g_{ed} - g_{bd}g_{ec}) +$$

$$+ g_{bc}(E_{de} + S_{de}) - g_{bd}(E_{ce} + S_{ce}) + g_{de}(E_{bc} + S_{bc}) - g_{ce}(E_{bd} + S_{bd}) +$$

$$+ g_{bc}a_{e}H_{d} - g_{bd}a_{c}H_{e} + g_{ed}a_{b}H_{c} - g_{ec}a_{b}H_{d} -$$

$$- \frac{1}{2}(g_{bc}H_{led} - g_{bd}H_{lce} + g_{ed}H_{lbc} - g_{ce}H_{lbd}),$$

whence we obtain

(17)
$$2(H-V)K_{bc} = 2(m-1)H(H-V)g_{bc} + (m-2)(E_{bc} + S_{bc}) + g_{bc}(E+S+P-\frac{1}{2}Q) + (m-2)a_bH_c - \frac{m-2}{2}H_{bc}$$

and

(18) 2(H-V)K = (m-1)[2mH(H-V) + 2(E+S) + 2P - Q], where

 $E=E_{bc}g^{bc}$, $S=S_{bc}g^{bc}$, $P=a_bH_cg^{bc}$, $Q=H_{lbc}g^{bc}$. Finally, using equations (16)–(18), by an immediate calculations, we check that (11) holds good. \Diamond

Transvecting (1) with B_{abcde}^{hijkl} and making use of (5) and (8) we find

(19)
$$K_{abcdle} = 2a_e K_{abcd} + a_a K_{ebcd} + a_b K_{aecd} + a_c K_{abed} + a_d K_{abce} + 2Z_e (g_{bc} g_{ad} - g_{bd} g_{ac}) + Z_a (g_{bc} g_{ed} - g_{bd} g_{ec}) +$$

 $+Z_b(g_{ec}g_{ad}-g_{ed}g_{ac})+Z_c(g_{be}g_{ad}-g_{bd}g_{ae})+Z_d(g_{bc}g_{ae}-g_{be}g_{ac}),$ where $Z_e=\frac{1}{2}H_{Ie}-a_eH$, whence we obtain

(20)
$$K_{bc,e} = 2a_e K_{bc} + a_b K_{ec} + a_c K_{be} + a_f K^f{}_{bce} + a_f K^f{}_{cbe} + +2mg_{bc} Z_e + (m-2)(g_{ec} Z_b + g_{be} Z_c),$$

(21)
$$K_{Ie} = 2a_eK + 4a_fK^f_e + 2(m-1)(m+2)Z_e.$$

Suppose, that at a point $x \in M$ the relation

(22) $K_{abcdle} = 2b_e K_{abcd} + b_a K_{ebcd} + b_b K_{aecd} + b_c K_{abed} + b_d K_{abce}$ is satisfied for a certain vector b_e . Then we have

(23)
$$K_{bc'e} = 2b_e K_{bc} + b_b K_{ec} + b_c K_{be} + b_f K^f_{bce} + b_f K^f_{cbe}$$
. Subtracting (23) from (20), permuting cyclically the such obtained equality in (b, c, e) and adding the resulting equations, we get

(24)
$$K_{bc}(a_e - b_e) + K_{ce}(a_b - b_b) + K_{eb}(a_c - b_c) + + (m-1)(g_{bc}Z_e + g_{ce}Z_b + g_{eb}Z_c) = 0.$$

If $a_e - b_e$ and Z_e are linearly independent, then by Lemma 1 (I) we have rank $g_{ab} \leq 2$. Thus, for m > 2, either $Z_b = 0$ or $Z_b \neq 0$ and $Z_e = f(a_e - b_e)$, for $f \in \mathbb{R} - \{0\}$. Subtracting (22) from (19), then substituting $Z_e = f(a_e - b_e)$ and applying Lemma 3 we get $(a_e - b_e)[K_{abcd} + f(g_{bc}g_{ad} - g_{bd}g_{ac})] = 0$ at x. Thus, if $Z_e(x)$ does not vanish and dim M > 2, then on a neighbourhood of x we have $f_{le} = 0$. Moreover, we have

(25)
$$(a_f - b_f)K^f{}_{bce} + g_{bc}Z_e - g_{be}Z_c = 0$$

at a point $x \in M$ where Z_e does not vanish.

From the above made considerations we are in a position to obtain **Theorem 2** (cf [5], Th. 3.3). Let M be a totally umbilical submanifold of a manifold N satisfying the condition (1) for some vector field a_l and suppose that a_l is not orthogonal to M. If condition (22) is satisfied on M for some vector field b_b which does not vanish on a dense subset of M and $\dim M > 2$, then $Z_b = 0$ on M. Conversely, if $Z_b = 0$, then condition (22) holds on M with $b_b = a_b$.

Theorem 3 (cf. [5], Ths. 3.6 and 3.7). Let M (dim M > 2) be a totally umbilical submanifold of a manifold N satisfying the condition (1) for some vector field a_l and suppose that a_l is not orthogonal to M. If Z_b does not vanish on a dense subset of M, then M is a space of constant curvature.

Theorem 4. Let M (dim M > 2) be a totally umbilical submanifold of a manifold N satisfying the condition (1) for some vector field a_l . If M is semi-symmetric (i.e. $K_{abcd'[ef]} = 0$) and Z_b does not vanish on a dense subset of M, then M is a space of constant curvature and $Z_b + \frac{K}{m(m-1)}a_b = 0$.

Proof. Follows from (25) and Lemma 2. \Diamond

Theorem 5 (cf. [5], Th. 4.1). Let M (dim M > 2) be a totally umbilical submanifold of the manifold N satisfying the condition (1). If the vector a_l is orthogonal to M, then M is a conformally symmetric manifold.

Proof. If a_l is orthogonal to M, then $a_e = a_r B_e^r$ vanishes. Using the formulas (19)–(21), by an immediate calculations, we check that $C_{abcdle} = 0$ holds on M. \Diamond

Theorem 6. Let M (dim M > 2) be a totally umbilical submanifold of a manifold N satisfying the condition (1) for some vector field a_l and suppose that a_l is not orthogonal to M. Then the relation

$$(26) K_{abcdle} = c_e K_{abcd}$$

holds on M for some vector field c_e which does not vanish on a dense subset of M, if and only if

$$(27) Z_e = 0$$

and

$$(28) a_e K_{abcd} + a_c K_{abde} + a_d K_{abec} = 0$$

on M.

Proof. Suppose that relation (26) holds on M, i.e. at each point there exists a vector c_e satisfying (26). Consequently, we have on M

$$(29) c_e K_{abcd} + c_c K_{abde} + c_d K_{abec} = 0$$

and relation of the form (22) is also satisfied ([3], Prop. 1). According to the Th. 2, the last condition is equivalent to $Z_e = 0$. Hence, we have (19) with $Z_e = 0$. Substituting (26) and (27) into (19) we obtain

$$(-c_e + 2a_e)K_{abcd} + a_aK_{ebcd} + a_bK_{aecd} + a_cK_{abed} + a_dK_{abce} = 0,$$

whence, in virtue of Lemma 3, $c_e = 4a_e$. Therefore, using (29), we get (28) on M. Conversely, if $Z_e = 0$ and (28) holds on M, then (19) yields $K_{abcd le} = 4a_e K_{abcd}$. \Diamond

Suppose now that $K_{abcd'e}(x) = 0$, $x \in M$. If a_e and Z_e are not linearly dependent, then (20) and Lemma 1(I) yield rank $g_{ab} \leq 2$. Thus, for m > 2, we have either

$$Z_e = 0$$
 and $a_e = 0$ or

$$Z_e = 0$$
 and $a_e \neq 0$ or

$$Z_e \neq 0$$
, $a_e \neq 0$ and $Z_e = fa_e$, $f \in \mathbb{R} - \{0\}$.

Therefore relation (19) and Lemma 3 result in

Theorem 7. Let M (dim M > 2) be a totally umbilical submanifold of a manifold N satisfying the condition (1) for some vector field a_l . If a_l is orthogonal to M, then $Z_e = 0$ if and only if $K_{abcdle} = 0$.

Theorem 8. Let M (dim M > 2) be a totally umbilical submanifold of a manifold N satisfying the condition (1) for some vector field a_l and suppose that M is locally symmetric. If $a_e(x) \neq 0$ and $Z_e = 0$, then M is flat. If a_l is not orthogonal to M and Z_e does not vanish at any point of M, then M is a non-flat space of constant curvature.

4. Some examples

Let N be an open subset of \mathbb{R}^n , (n > 2), endowed with the metric

$$\tilde{g}_{ij}dx^idx^j = (dx^1)^2 + p^2 f_{\alpha\beta}dx^\alpha dx^\beta ,$$

 $\alpha, \beta, \gamma, \dots = 2, \dots, n$, where $f_{\alpha\beta}dx^{\alpha}dx^{\beta}$ is a flat metric and p is a function in x^1 variable satisfying the equation

$$pp'p''' + 3(p')^2p'' - 4p(p'')^2 = 0.$$

For suitable choosen of N there exist solutions such that the condition (1) holds on N and N is not recurrent ([3], Th. 6, Props. 5 and 6).

Let V be a flat manifold of dimension m endowed with the metric $h_{PQ}dx^Pdx^Q$, $P,Q=n+1,\ldots,n+m$. On the manifold $N\times V$ define the metric

$$g_{rs}dx^rdx^s = \tilde{g}_{ij}dx^idx^j + h_{PQ}dx^Pdx^Q.$$

Then on $(N \times V, g)$, for suitable function p, the condition (1) is fulfilled while $R_{hijk'l} = c_l R_{hijk}$ is not satisfied.

Example 1. Let M be an n-dimensional manifold covered by a system of coordinate neighbourhoods $\{W; y^a\}$, $a, b, \dots = 1, \dots, n$, immersed in $N \times V$ and let $x^1 = Q(y^a)$, $x^{\alpha} = y^{\alpha}$, $x^P = C_P$, $C_P = \text{const}$ be its local expression in $N \times V$. Then $B_d^1 = Q_d$, $B_{\beta}^{\alpha} = \delta_{\beta}^{\alpha}$, $B_d^P = 0$, where $Q_d = Q_{Id}$. The covariant and contravariant components of the induced metric tensor of M are respectively

$$g_{11} = (Q_1)^2$$
, $g_{1\alpha} = Q_1 Q_{\alpha}$, $g_{\alpha\beta} = Q_{\alpha} Q_{\beta} + \tilde{g}_{\alpha\beta}$,

$$g^{11} = (Q_{\alpha}Q_{\beta}\tilde{g}^{\alpha\beta} + 1)(Q_{1})^{-2}, \quad g^{1\alpha} = -Q_{\beta}\tilde{g}^{\beta\alpha}(Q_{1})^{-1}, g^{\alpha\beta} = \tilde{g}^{\alpha\beta}.$$

The only components of the Christoffel symbols which may not vanish are

$$\begin{split} \Gamma_{11}^1 &= \frac{Q_{\cdot 11}}{Q_1} \,, \quad \Gamma_{1\alpha}^1 = \frac{Q_{\cdot 1\alpha}}{Q_1} - \frac{p'}{p} Q_{\alpha} \,, \\ \Gamma_{\alpha\beta}^1 &= (Q_{\cdot \alpha\beta} - \frac{p'}{p} \tilde{g}_{\alpha\beta}) (Q_1)^{-1} - 2 \frac{p'}{p} Q_{\alpha} Q_{\beta} (Q_1)^{-1} - \overline{\Gamma}_{\alpha\beta}^{\ \nu} Q_{\nu} (Q_1)^{-1} \,, \\ \Gamma_{\beta\gamma}^{\alpha} &= \frac{p'}{p} (Q_{\beta} \delta_{\gamma}^{\alpha} + Q_{\gamma} \gamma_{\beta}^{\alpha}) + \overline{\Gamma}_{\beta\gamma}^{\ \alpha} \,, \quad \Gamma_{1\beta}^{\alpha} = \frac{p'}{p} Q_1 \delta_{\beta}^{\alpha} \,, \end{split}$$

where $\overline{\Gamma}_{\beta\gamma}^{\alpha}$ are Christoffel symbols of $f_{\alpha\beta}dx^{\alpha}dx^{\beta}$. Then, using (2), we check that $B_{a'b}^r = 0$, so the submanifold M is a totally geodesic one. Consequently, M is a totally umbilical submanifold in $N \times V$ and the vector field $Z_e = \frac{1}{2}H_{le} - a_eH$ vanishes. Moreover, the components of the projection of the vector \tilde{a}_l of $N \times V$ onto the submanifold M are $a_d = \tilde{a}_1 Q_d$. If $\tilde{a}_1 = \frac{p''}{p'} - \frac{p'}{p} \neq 0$ ([3]) and $Q_d \neq 0$, then, according to the Th. 2, condition (22) holds on M with $b_d = a_d$.

The components of the curvature tensor and the Ricci tensor of M are

$$\begin{split} K_{\alpha\beta\gamma\delta} &= \frac{p''}{p} \left[Q_{\beta} Q_{\gamma} \tilde{g}_{\alpha\delta} - Q_{\beta} Q_{\delta} \tilde{g}_{\alpha\gamma} + Q_{\alpha} Q_{\delta} \tilde{g}_{\beta\gamma} - Q_{\alpha} Q_{\gamma} \tilde{g}_{\beta\delta} \right] + \\ &+ (p')^2 (\tilde{g}_{\beta\gamma} \tilde{g}_{\alpha\delta} - \tilde{g}_{\beta\delta} \tilde{g}_{\alpha\gamma}) \,, \\ K_{1\beta\gamma\delta} &= \frac{p''}{p} Q_1 (\tilde{g}_{\beta\gamma} Q_{\delta} - \tilde{g}_{\beta\delta} Q_{\gamma}) \,, \\ K_{1\beta\gamma1} &= \frac{p''}{p} (Q_1)^2 \tilde{g}_{\beta\gamma} \,, \\ K_{1d} &= (n-1) \frac{p''}{p} Q_1 Q_d \,, \\ K_{\alpha\beta} &= (n-1) \frac{p''}{p} Q_{\alpha} Q_{\beta} + \left[\frac{p''}{p} + (n-2)(p')^2 \right] \tilde{g}_{\alpha\beta} \,. \end{split}$$

Moreover, the scalar curvature of M is given by

$$K = (n-1)\left[2\frac{p''}{p} + (n-2)(p')^2\right].$$

One can check, that M is a conformally flat submanifold in $N \times V$. Setting in (28) $a = \alpha$, $b = \beta$, $c = \gamma$, $d = \delta$, $e = \nu$ we easily obtain $(n-3)(n-1)Q_{\nu} = 0$. Thus we have

Proposition 1. For each n > 3 and t > n there exists t-dimensional manifold satisfying (1) admitting n-dimensional totally umbilical and conformally flat submanifold M such that the condition (1) holds on M whereas (26) is not satisfied.

Example 2. Let M be an (n-1)-dimensional manifold covered by a system of coordinate neighbourhoods $\{W; z^{\alpha}\}$, $\alpha, \beta, \gamma = 2, \ldots n$, immersed in $N \times V$ and let $x^1 = C_1$, $x^P = C_P$, $C_P = \text{const}$, $x^{\alpha} = X^{\alpha}(z^2, \ldots, z^n)$ be its local expression in $N \times V$. Then we have $B^1_{\alpha} = B^P_{\alpha} = 0$, $B^{\alpha}_{\beta} = \frac{\partial X^{\alpha}}{\partial z^{\beta}}$, $g_{\alpha\beta} = \tilde{g}_{\mu\nu}B^{\mu\nu}_{\alpha\beta}$, whence $B^1_{\alpha'\beta} = -\frac{p'}{p}g_{\alpha\beta}$, $B^P_{\alpha'\beta} = 0$. Moreover, in virtue of (3) and (4), we get

$$B^{
u}_{lpha\,\prime\,eta} = \left(B^{\,
ho}_{lpha\,\cdot\,eta} + \overline{\Gamma}^{\,\,
ho}_{\mu\eta} B^{\,\mu\eta}_{lphaeta}
ight) \left(\sum_x e_x N^{ au}_x N^{
u}_x \, ilde{g}_{ au
ho}
ight) \,.$$

Setting $f_{\alpha\beta} = \delta_{\alpha\beta}$, $x^{\alpha} = z^2 + \cdots + z^n$ we get

$$a_{\alpha} = \tilde{a}_{r}B_{\alpha}^{r} = 0$$
, $H^{1} = -\frac{p'}{p}$, $H^{\alpha} = H^{P} = 0$, $g_{rs}H^{r}H^{s} - \tilde{a}_{r}H^{r} = \frac{p''}{p}$, $Z_{e} = 0$,

$$K_{\alpha\beta\gamma\delta} = 2(p')^2(p)^{-2}(g_{\beta\gamma}g_{\alpha\delta} - g_{\beta\delta}g_{\alpha\gamma}).$$

Hence we obtain

Proposition 2. For each n > 3 and t > n there exists t-dimensional manifold satisfying (1) admitting (n-1)-dimensional totally umbilical submanifold M such that the recurrence vector is orthogonal to M (cf. Th. 5).

Proposition 3. For each n > 3 and t > n there exists t-dimensional manifold satisfying (1) admitting (n-1)-dimensional totally umbilical submanifold M such that $g_{rs}H^rH^s - a_rH^r$ does not vanish identically on M (cf. Th. 1).

Proposition 4. For each n > 3 and t > n there exists t-dimensional manifold satisfying (1) admitting (n-1)-dimensional totally umbilical locally symmetric submanifold (cf. Th. 7).

References

- [1] CHAKI, M. C.: On pseudo symmetric manifolds, Analele Şt. Univ. "Al. I. Cuza" Iaşi (Seria I: Matematică) 33 (1987), 53-58.
- [2] CHAKI, M. C. and DE, U. C.: On pseudo symmetric spaces, Acta Math. Hung. 54 (1989), 185-190.
- [3] EWERT-KRZEMIENIEWSKI, S.: On some generalisation of recurrent manifolds, *Mathematica Pannonica* 4/2 (1993), 191-203.
- [4] GRYCAK, W.: On generalized curvature tensors and symmetric (0, 2)-tensors with a symmetry condition imposed on the second derivative, *Tensor*, N. S. 33 (1979), 150-152.
- [5] MIYAZAWA, T. and CHŪMAN, G.: On certain subspace of Riemannian recurrent space, Tensor, N. S. 23 (1972), 253-260.
- [6] OLSZAK, Z.: On totally umbilical surfaces immersed in Riemannian conformally recurrent and conformally symmetric spaces, *Demonstr. Math.* 8 (1975), 303-311.
- [7] OLSZAK, Z.: On totally umbilical surfaces in some Riemannian spaces, Colloq. Math. 37 (1977), 105-111.
- [8] OLSZAK, Z.: On Ricci-recurrent manifolds, Collog. Math. 52 (1987), 205-211.

- [9] ROTER, W.: On conformally related conformally recurrent metrics, I. Some general results, Colloq. Math. 47 (1982), 39-46.
- [10] SEN, R. N. and CHAKI, M. C.: On curvature restrictions of a certain kind of conformally flat Riemannian space of class one, *Proc. Nat. Inst. Sci. India* 33/A (1967), 100-102.
- [11] TAMÁSSY, L. and BINH T. Q.: On weakly symmetric and weakly projective symmetric Riemannian manifolds, Coll. Math. Soc. J. Bolyai 56 (1992), 663-670.
- [12] YANO, K.: Notes on submanifolds in a Riemannian manifold, Kodai Math. Sem. Rep. 21 (1969), 496-509.
- [13] YANO, K.: Integral Formulas in Riemannian Geometry, Marcel Dekker Inc.. New York, 1970.