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Abstract: In this paper a concept of L-multifunction is introduced and other

related objects are defined. Next their properties are presented.

1. Introduction

The notion of Cartesian product plays an important role in the
usual theory of functions and multifunctions. The Cartesian product
of two fuzzy subsets A € I* and B € IY may be defined as the subset
AXB of X xY characterized by (A x B)(z,y) = min(A(z), B(y)). This
definition has the inconvenience that when A x B is known and A x B #
# 0, it is impossible to retrieve again the subsets A and B. The notion
of fuzzy Cartesian product which is introduced in paper [1] is free from
this inconvenience. The L-multifunctions which are introduced in this
paper are the subsets of a special case of Cartesian product and also
free from this inconvenience. We will introduce and develop basic ideas
of the L-multifunction theory, necessary for our further considerations
on economical systems. ‘
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2. Introduction and general properties of L-multi-
functions

Let X, Y and Z denote arbitrary but for further considerations
fixed reference spaces. Next P(X), P(Y) and P(Z) denote respectively
“the families of all non-void subsets of X, Y and Z.

Definition 2.1. An L-multifunction, F : X — P(Y) say, is a subset
of the Cartesian product X x P(Y) x I x I¥ satisfying the following
conditions:

(i) if (z,B,r, f) € F, then supp f = B,

(ii) if (z,B,r, f) € F, then r = 0 implies B = §) and r = 1 implies

f(y) =1for any y € B,

(iii) if (z,B,r1, f1) € F and (z,B,r2, f2) € F, then r; > ry implies
fi2 fa

Let {z,r} denote a fuzzy singleton in X with support z and value

r. This fuzzy singleton is now transformed by F to a family of the fuzzy
subsets in Y.
Definition 2.2. A converse L-multifunction, F~! say, to an L-multi-
function F': X — P(Y") is a subset of the Cartesian product ¥ x P(X) x
x I x IX satisfying the following condition:
— (y,4,t,h) € F~1 if there exists (z, B,r, f) € F such that z € A,
yE€B, f(y)=t, h(z)=r.
Definition 2.3. A composite, Go F': X — P(Z) say, of two L-multi-
functions F: X — P(Y)and G : Y — P(Z) is an L-multifunction such
that
— (z,C,r,h) € Go F iff there exist (z,B,r, f) € F and (y,C,t,h) €
€ G such that Y € B, f(y) =t.
Let X, Y and Z denote the linear spaces.
Definition 2.4. An L-multifunction, F : X — P(Y) say, is called
conscal iff for any (z,B,r, f) € F and for any a > 0 (az,aB,r,af) €
€ F, where (af)(y) = f(Ly) forany y € Y.
Theorem 2.1. If an L-multifunction is conical, then its converse L-
multifunction i3 conical too.
Proof. As a matter of fact, let F be a conical L-multifunction. Let
(y,A,t,h) € F~l. So, taking into account Def. 2 there exists
(z,B,r,f) € Fsuch that z € A, y € B, f(y) = ¢, h(z) = r. So,
with respect to Def. 4 for any & > 0 we have (az,aB,r,af) € F.
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Moreover az € ad, ay € aB, af(ay) = f(y) = t, ah(az) = h(z) =
= r. This means that (ay,aA,t,ah) € F7'. So, F~! is a conical
L-multifunction. ¢

Theorem 2.2. If F and G are conical L- m'u,ltzfunctzons then GoF is
a conical L-multifunction too.

Proof. Let (z,C,r,h) € GoF. So, taking into account Def. 3 there exist
(z,B,r, f) € F and (y,C,t,h) € G such that y € B, fly)=t. Fand G
are conical L-multifunctions, so for any a > 0 we have (az, aB,r, af) €
€ F and (ay,aC,t,ah) € G. Because y € B, f(y) =t, so ay € aB,
af(ay) = f(y) = t. This means that (az,aC,r,ah) € Go F. {

Definition 2.5. An L-multifunction, F' : X — P(Y) say, is called
superadditive iff for any (z1, B1,71, f1) € F and (22, Ba, 72, f2) € F, we
have (21 + 22, B1 + Ba,min(ry,r2), fi + f2) € F, where (f; + f2)ly) =

= sup min(f1(y1), fa(y2)) forany y € Y.
y1+y2=y

Theorem 2.3. If an L-multifunction is superadditive then its converse
L-multifunction is superadditive as well.

Proof. In point of fact, let an L-multifunction, F : X — P(Y) say,
satisfy the assumption of the theorem. Let
(y1,A1,t1,h1) € F71 and  (yo,As,tp, hy) € F7L.
Then from the Def. 2 it follows that there exist
(z1,B1,71,f1) € F and (zq,B2,7m9,f2) € F
such that
21 €A1, 1 €B1, z3€A;, y€B,,

hi(zi) =r1, ha(z2)=r2, fily)=t1, folya) =ts.
We can assume that z1, x2, fi and f, are such that

hi(z1) = sup hi(z) =r1, ho(zs) = sup hy(z) = r2
T€EA; TEA

and

(y1) = sup fi(y) =t1, fa(y2) = sup fa(y) =ts.
yebB, yEB;s

Because F is superadditive L-multifunction, so
(z1 4+ z2,B1 + By,min(ry,ry), fi + fa) € F.
Moreover 7 :
T1 + T3 € Ay + Az, (R1 + h2)(z1 + 22) = min(ry,r2)

and
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Y1+ y2 € B1+ B, (fi + fo)(y1 + y2) = min(t1,t3).

This means that
(y1 +y2, A1 + Az, min(t1,12), k1 + ho) € F71.

So, F~1 is a superadditive L-multifunction. ¢
Theorem 2.4. If F' and G are superadditive L-multifunctions then
G o F is a superadditive L-multifunction too.
Proof. Let (z1,C1,r1,h1) € Go F and (z3,C2,73,h2) € Go F. Then,
from the Def. 3 it follows that there exist (z1,Bi,r1,f1) € F,
(y1,C1,t1,h1) € G such that y1 € By, fi(y1) = t1 and there exist
(:Eg,Bz,’r‘z,fg) c F, (yg,CZ,tz,hg) € G Such that Y2 € Bz, fg(yz) = tz.
We can assume that

fl(yl) = sup fl(y) =1t; and fz(yz) = Ssup fz(y) =13.
yEB: y€B;

Because F' and G are superadditive L-multifunctions, so

(21 + z2, B1 + By, min(r1,m2), fi + f2) € F
and

(y1 +y2,C1 + Cg,min(tl,tz), hi + hg) €G.
Moreover

y1+y2 € Bi+ By and (f1 + f2)(y1 + y2) = min(t1,%2).
This means that »
(z1+ 22,C1 + Cy,min(r1,r2),h1 + h2) E Go F,
i.e. G o F is superadditive L-multifunction. ¢ '
Definition 2.6. By the graph of L-multifunction, F : X — P(Y") say,
it is understood a set Wy of the elements (z,y,r,t) € X x ¥ x I x I
such that there exist B € P(Y) and f € IY satisfying the following
conditions:
(i) y € B,

(i) t = f(y),
(iii) (z,B,r, f) € F.
Definition 2.7. Let o,8 € I. An a, 8-cut of W, I/I/'Fo"[jT in symbol,
is a set of the elements (z,y) € X X Y such that for r > o and t > 8
(z,y,r,t) € Wp.
Theorem 2.5. If F: X — P(Y) is a conical L-multifunction then for
any a,B € I, the a, B-cut of Wr 45 a cone.
Proof. Let (z,y) € W;’ﬁ. Then for r > a and t > B, (z,y,7,t) €
€ Wp. This means that there exist B € P(Y) and f € IY such that
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y € B,t = f(y) and (z,B,r,f) € F. Because F is a conical L-multi-
function, so for any A > 0, (Az,AB,r,Af) € F. Moreover \y € 2B,
t = Af(Ay) = f(y). This means that (\z,)\y,r,1) € Wy and finally
(Az, \y) e Wah. ¢
Theorem 2.6. If F' is a conical and superadditive L-multifunction then
for any a,B € 1, WFa’ﬂ 18 @ conver set.
Proof. Let (z1,y1), (z2,y2) € WFa’ﬂ. Then for any ry,7p > a and
t1,t2 > B
(z1,91,m1,8) € Wr,  (22,y2,72,t2) € Wr.
This means that there exist By,B; € P(Y) and fi, f» € IY such that
y1 € By, t1 = fi(n1), y2 € Ba, fo(ye) = t2 and (z1,By,m1, f1) € F,
(z2,B2,7m2, f2) € F. Because F is a conical and superadditive L-multi-
function so for any A > 0
(Az1,AB1,ri, A1) € F, (1= A)za(1 — M) By ,re, (1 — Af:)eF,
and
(Az1 + (1= A)zg ,AB; + (1 = A)B;z,min(ry,ry), A\ f1 + (I1-MNf2)eF.
This means that
(/\IEl —+ (1 — )\)332, )\yl + (1 — /\)yz,min(ﬁ,rz),min(tl,tz)) € WF .

Because min(ry,r3) > a and min(t;,%,) > 8 so
(Az1 4 (1= N2, Adys + (1 — N)ya) € WP,

. o .
1.e. a set WF’ﬂ is convex. ¢

3. Some topological properties of Z-multifunctions

Now, let us assume that the reference spaces X, Y and Z are finite
dimensional Euclidean spaces.

Definition 3.1. An L-multifunction, F' : X — P(Y) say, is called
closed iff its graph Wp is a closed set.

Corollary. For any closed L-multifunction its converse L-multifunc-
tion 15 closed.

Definition 3.2. An L-multifunction F ;: X — P(Y) say, is sequentially
bounded iff for any bounded sequence S = {z,} and any sequence R =
={ra}, zn € X, r, € (0,1), the set

{ly,t) €Y X I: (zn,y,mn,t) € Wp,zp, € S, € R}

is bounded.
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Theorem 3.1. If F : X — P(Y) and G : Y — P(Z) are closed L-
multifunctions and F is sequentially bounded, then G o F is a closed
L-multifunction.
Proof. Let (zn,2n,7n,Pn) € Wgor and let (zn,2n,Tn,pn) — (0, 20,
ro,Po) as n — oo (the convergence may be taken with respect to each
coordinate separately), z, € X, z, € Z, rn,pn € (0,1). We will prove
that (zo,20,70,p0) € Wgor. In fact, for any n, (zn, 2n,n,pn) belongs
to Wgor iff there exist C,, € Z, h,, € IZ such that (2n,CnyTayhn) €
€ GoF and z, € Cp, hyn(2n) = pn. An element (zn,Cr,7n, hn) € Go F
iff there exist (zn, Bn,7n, fn) € F and (yn,Cn,tn, hs) € G such that
Yn € By, and fn(yn) = tn. From the above conditions it follows that

(xnaynanutn) € WF and (yn,zn7tn,pn) € Wa.
Because F' is a sequentially bounded and closed L-multifunction we
observe that the sequences {y,} and {¢,} are bounded and without
losing generality we may assume that y, — yo and ¢, — t; as n — oo.
Moreover

(z0,Y0,70,t0) € Wr and  (yo, 20,%0,00) € We .
This means that there exist By € P(Y), fo € I¥ such that y, €
€ By, fo(yo) = to, (z0,Bo,70, fo) € F and there exist Cp € P(Z),
ho € IZ such that 2y € CO, ho(ZO) = Do, (yo,CO,to,ho) € G This
means that (zo,Cy,ro,ho) € G o F. Because zg € Cy, ho(z0) = po, s0
(z0,20,70,P0) € Wgor. ¢
Theorem 3.2. If an L-multifunction F' : X — P(Y) is closed and
conical and for any r,t € I, (0,y,r,t) ¢ Wr for y # 0, then F is a
sequentially bounded L-multifunction. .
Proof. According to Def. 3.2 it suffices to show that for any bounded
sequence S = {z,} and any sequence R = {r,}, z, € X, r, € (0,1)
theset T = {(y,t) € Y xI: (zp,y,7n,t) € Wp, 2, € S, 7 € R} is
bounded. Suppose that the set T is unbounded for some S and some
R. Then there exist the sequences {yn}, {tn}, (yn,tn) € T such that
lyn|| — 0o as n — oo. But (zn,Yn,™n,tn) € W and F is a conical L-
multifunction, so (z/||ynll, Yn/l|YnllsTn,tn) € Wr. Hence, there exist
subsequences Z,, Yn,, 'ny, tn, such that

(@ne /NYnells Yri NYnalls i try ) = (0,90,70,t0)
as k — oo, where yg # 0 because limyn, /||yn,|| = 1 = yo. Because

F' is a closed L-multifunction, so (0,yo,70,t0) € Wr for yo # 0, a
contradiction. ¢
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Definition 3.3. A fized point of the L-multifunction F : X — P(X)
is an element T € X such that there exist r,¢ € I such that (Z,Z,r,t) €
€ Wp.

Theorem 3.3 (Fixed point theorem) Let C' be a nonempty, convex
and compact subset of X. If ' : C — P(C) is a closed, conical and
superadditive L-multifunction, then F has a fized point in C.

Proof. Let us consider a point-to-set mapping F' : C — P(C) such
that for any z € C

F(:c):{yGC'HrtEI(:I: y,m,t) € Wr}.
First we will prove that 7 is a fixed point of F'iff 7 is a fixed point of
F. I 7 is a fixed point of F. then 7 € F(F). This means that there
exist r,t € I such that (:c,:c,r,t) € Wr, i.e. T is a fixed point of F.
Now, if T is a fixed point of F then from Def. 3.3 it follows that there
exist r,¢ € I such that (Z,%,r,t) € Wr. This means that T € F(T), i.e.
T is a fixed point for F. ¢

Now, we will show that F satisfies the hypothesis of Kakutani
fixed point theorem, i.e. that F'is a closed mapping and for any z € C
F(z) is a convex set.

Let y1, y2 be elements from ﬁ’(z) From the definition of F' it fol-
lows that there exist elements r1,7ry,%1,t, € I such that (z,y1,m1,t1) €
€ Wr and (z,y2,7r2,t2) € Wr. This means that there exist B{,B; €
€ P(C) and fi, fo € I¢ such that

(‘T,B17r17f1)EF7 (waB27T2’f2)EF
and

yi €B1, y2€By, filyi)=t1, faly)=t,.
Because F' is a conical and superadditive L-multifunction, so for any
a>0
(z,aB; + (1 — a)By ,min(ry, ), af; + (1 — a)f,) e F.

This means that

(z,0y1 4+ (1 — &)y, min(ry,m2),t) € W,
where

t=(afi +(1—a)f2)(ayr + (1 - a)ys),
ie. ay +(1—a)y; € F(z).

Now, let us consider a sequence {z,}, z, € C such that z,, — z

asn — oo. Let y, € F(:cn) and y, — yo as n — oo. We will prove that
Yo € F(:co) Ify, € F(.’En) then for any n there exist r,,t, € I such
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that (zn,Yn,Tn,tn) € Wp. Without losing generality we may assume
that r, — rg; t, — to as n — oco. Because F is a closed L-multifunc-
tion, so (zo,Yo,70,t0) € Wp. This means that yo € F(z), i.e. F is
a closed mapping. So, according to the Kakutani theorem there exists
T € C such that 7 € F(Z). This means that an L-multifunction F has
a fixed point T in C. ¢
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