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Abstract: We prove that real functions f and g, defined on a real interval
I, satisfy

fltz 4+ (1 - )y) < tg(z) + (1 - t)g(y)
for all «,y € I and t € [0, 1] iff there exists a convex function h : T — R such
that f < h < g. Using this sandwich theorem we characterize solutions of two
functional inequalities connected with convex functions and we obtain also
the classical one-dimensional Hyers-Ulam Theorem on approximately convex

functions.

Introduction

It is the aim of this note to characterize real functions which can be
separated by a convex function. This leads us to functional inequality
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(1) Fltz + (1 —t)y) <tg(z)+ (1 -1)g(y).

Using this characterization we describe also solutions of the inequalities
(2) flz 4+ (T —t)y) <tf(e) + (T —1)f(y)

and

(3) ftz+ (T —t)y+ (1 —T)zo) < tf(z) +(T —t)f(y) + (1~ T)f(20).

Functions fulfilling (2) appear in a connection with the converse of
Minkowski’s inequality in the case where the measure of the space con-
sidered is less than 1 (see [4; pp. 671-672] and [5; Remark 16]).

1. A sandwich theorem

Our main result reads as follows.
Theorem 1. Real functions f and g, defined on a real interval I, satisfy
(1) for all z,y € I and t € [0,1] off there ezists a convez function
h:I-— R such that
(4) f<h<yg.

Proof. We argue as in [1; proof of Th. 2]. Assume that functions f,g :
: I — R satisfy (1) and denote by E the convex hull of the epigraph of
g:
E =conv{(z,y) € I xR:g(z) <y}.

Let (z,y) € E. It follows from the Carathéodory Theorem (see [3; Cor.
17.4.2} or [6; Th. 31E] or [7; the lemma on p. 88]) that (z,y) belongs to
a two-dimensional simplex S with vertices in the epigraph of ¢g. Denote

yo =inf{z € R:(z,2) € S}.
Then y > yo and (z,y0) belongs to the boundary of S. Consequently
(z,y0) = t(z1,y1) + (1 — t)(z2,y2) with some ¢t € [J,1] and (z1,y1),
(z2,y2) € I x R such that g(z;) < y; and g(z2) < y2. Hence, using also
(1), we get

y 2 yo =1ty1 + (1 —t)y2 = tg(z1) + (1 — t)g(z2) 2

> f(tzy + (1 —t)z2) = f(=).
This allows us to define a function A : I — R by the formula

h(z) = inf{y e R:(z,y) € F}
and gives f < h. Moreover, since (z,g(z)) € E for every z € I, we
have also h < g. It remains to show that A is convex. To this end fix
arbitrarily z1,z2 € I and ¢t € [0,1]. Then, for any reals y1, y2 such that
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(21,91),(22,92) € E we have (tz1 + (1 — t)z2,ty1 + (1 — t)y,) € E,
whence h(tz1 + (1 — t)z2) < ty1 + (1 — t)yo. Passing to infimum we
obtain the desired inequality: h(tzy + (1 —t)xz) < th(z1)+(1—1)h(zs).
This ends the proof (of the “only if” part but the “if” part is obvious). ¢

The following example shows that Th. 1 cannot be generalized for
functions defined on a convex subset of the (complex) plane.
Example 1. Let D € C be the open ball centered at zero and with the
radius 2, and let z;, 23, z3 be the (different) third roots of the unity.
Define the functions f and g on D by the formulas

0 le#O 0 ifZG{Zl,zQ,Z;;}
f(=z) = . 9(2) = .
1 fz=0 3 ifze D\ {z,2,23}.

It is easy to check that (1) holds for all z,y € D and ¢ € [0,1]. Suppose
that there exists a convex function k : D — R satisfying (4). Then

1= £(0) = f (%(zl P 23)> <h (%(zl +ot 23)) <

< %(h(h) + h(2z2) + h(z)) < %(9(21) +9(22) + 9(23)) = 0,
a contradiction.

Arguing as in the proof of Th. 1 we can get however the following
results.

Theorem la. Real functions f and g, defined on a convez subset D of
an (n — 1)-dimensional real vector space, satisfy

(5) FUD timi ) <3 tig(zy)
j=1 7=1

for all vectors z1,...,z, € D and reals t,,...,t, € [0,1] summing up
to 1 iff there ezists a convez function h: D — R satisfying (4).
Theorem 1b. Real functions f and g, defined on a convez subset D of a
vector space, satisfy (5) for each positive integer n, vectors zq,...,z, €
€ D and reals t1,...,t, € [0,1] summing up to 1 iff there ezists a
convez function b : D — R satisfying (4). ‘

2. Applications

We start with an application of Th. 1 connected with approxi-
mately convex functions. :
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If € is a positive real number and a real function f, defined on a
real interval I, satisfies

flz+ (1 —t)y) <tf(z) + (1 - f(y) +e
forall z,y € I and t € [0,1], then (1) holds with ¢ = f+¢ and it follows
from Th. 1 that there exists a convex function h : I — R such that
flz) <h(z) < f(z)+e for z€l.
Putting ¢(z) = h(z) — €/2 we obtain a convex function ¢ : I — R such
that -
lo(z) — f(z)| <e/2 for zel.
This is the classical one-dimensional Hyers-Ulam Stability Theorem (see

{2; Th. 2}; cf. also [1; Th. 2] and [3; Th. 17.4.2}).

Further applications of our Th. 1 concern solutions of the inequal-
ities (2) and (3). Denote by J either [0,+00) or (0, +00). Given T' > 0
and f : J — R we define the function fr : J — R by the formula
fr(z) =T f(Tx).
Theorem 2. Let T be a positive real number. A function f:J — R
satisfies (2) for all z,y € J and t € [0,T) iff there ezists a convex
function ¢ : J — R such that

(6) er< f<e.

Proof. Assume that f: J — R satisfies (2). Putting T - ¢ in place of ¢
in (2) we have

(7) fr(te + (1 - t)y) <tf(z) + (1 —1)f(y)

for all z,y € J and t € [0,1]. Applying Th. 1 we obtain a convex
function A : J — R such that

(8) fr<h<f.
Define now ¢ : J — R by the formula
(9) o(z) = Th(T'z).

Then ¢ is convex and (6) holds.

Conversely, if (6) holds with a convex function ¢ : J — R then
(9) defines a convex function h : J — R which satisfies (8) whence (7)
follows for all z,y € J and ¢ € [0,1]. But this means that (2) holds for
all z,y € Jand t € [0,T]. ¢
Example 2. If T € (0,1), then taking ¢(z) = 22 for z € [0, +o0) we
get by Th. 2 that every function f : [0, +00) — R satisfying

Tz? < f(z) <z? for z€0,+o0)
is a solution of (2). Similarly, if T € (1, 4+00), then taking ¢(z) = 1/z
for z € (0,400) we see that every function f : (0,4+00) — R such that
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1/(T?*z) < f(z) < 1/z for z € (0,+00)
satisfies (2). ‘ : ' :
Now we pass to inequality (3). Fix a real interval I and a point
zg € I. For T €-(0,1) put "
IT =TI+ (1-T)z. , _
Given a real function ¢ with the domain containing 17, we define @
: I — R by the formula

o(z) = T (T2 + (1 - T)z) — (1 = T)p(20)) -
Theorem 3. Let T € (0,1). A function f: I — R satisfies (3) for all
z,y € I and t € [0,T] iff there ezists o convez function ¢ : I¥ - R
such that - ' N
(10) o7(z) < f(z) for z€l and f(z)<y(z) for z€lf.

Proof. Assume that f satisfies (3). Putting 7' ¢ in place of ¢ in (3) we
have

(11) fr(tz 4+ (1 =t)y) <tf(z) + (1 —1)f(y)
for all z,y € I and ¢ € [0,1]. Applying Th. 1 we obtain a convex
function & : I — R such that
(12) fr<h<f.
Since f7.(z0) = f(20), we have h(z0) = f(20). Define ¢ : I — R by the
formula
(13) p(z) = Th(T™'(z — (1 = T)z0)) + (1 — T)f(z0).
Then ¢ is a convex function, ¢(z0) = f(zo),
PHa) = h(e) < f(z) for el

and
(@) 2 TIH(T (z ~ (1~ T)z0)) + (1 = T)f(20) = f(z) for z€If.

Conversely, if (10) holds with a convex function ¢ : Ir - R
then f(z0) = ¢(2z0) and (13) defines a convex function A : I — R
which satisfies (12). This implies (11) for all z,y € I and ¢t € [0,1].
Consequently f satisfies (3) for all z,y € I and ¢ € [0,T]. {

References

[1] CHOLEWA, P. W.: Remarks on the stability of functional equations, Aequa-
tiones Math. 27 (1984), 76-86.

[2] HYERS, D. H. and ULAM, S. M.: Approximately convex functions, Proc.
Amer. Math. Soc. 3 (1952), 821-828.




144

(3]

[4]
[5]
(6]
[7]

K. Baron, J. Matkowsk: and K. Nikodem

KUCZMA, M.: An Introduction to the Theory of Functional Equations and
Inequalities. Cauchy’s Equation and Jensen’s Inequality, Paristwowe Wydaw-
nictwo Naukowe & Uniwersytet Slgski, Warszawa-Krakéw-Katowice, 1985.

MATKOWSKI, J.: The converse of the Minkowski’s inequality theorem and
its generalization, Proc. Amer. Math. Soc. 109 (1990), 663-675.

MATKOWSKI, J.: LP-like paranorms, Grazer Math. Ber. 316 (1992), 103-
138.

ROBERTS, A. W. and VARBERG, D. E.: Convex Functions, Academic Press,
New York-London, 1973.

RUDIN, W.: Functional analysis, McGraw - Hill Book Company, New York-
St. Louis - San Francisco - Diisseldorf- Johannesburg - Kuala Lumpur - London -
Mexico- Montreal - New Delhi-Panama- Rio de Janeiro- Singapore- Sydney -
Toronto, 1973 (Russian edition: Mir Publishers, Moscow 1975).





