UNENDLICH VIELE KUGELN DURCH VIER TANGENTEN

Hellmuth Stachel

Institut für Geometrie, Technische Universität Wiedner Hauptstraße 8-10/113, A-1040 Wien, Österreich

Herrn Prof. Hans Vogler zum 60. Geburtstag gewidmet

Received January 1995

MSC 1991: 51 N 20

Keywords: Spheres tangent to four lines, Plücker conoid.

Abstract: In the Euclidean 3-space the bisector of two skew lines g_i , g_j is an orthogonal hyperbolic paraboloid Φ_{ij} . Hence the centers of spheres that contact four pairwise skew given lines g_1, \ldots, g_4 are the points of the algebraic variety $\Phi_{12} \cap \Phi_{13} \cap \Phi_{14}$. As a supplement to [3] it is proved that just in two cases there is a continuum of such spheres: g_1, \ldots, g_4 are either generators of a one-sheet hyperboloid of revolution or they are generators in concyclic position on a Plücker conoid.

1. Vorbemerkungen

Kürzlich wurde von M. Husty und H. Sachs [3] erneut das klassische Problem der Bestimmung einer Kugel durch vier Tangenten behandelt. Diese Fragestellung erwies sich jüngst als bedeutsam für die Robotik [2] wie auch für die Analyse gefährlicher Konfigurationen in der Satellitengeodäsie [7]. In der vorliegenden Arbeit soll nun die in [3] offen gebliebene Frage nach allen Annahmen, die unendlich viele Lösungen zulassen, unter der Voraussetzung paarweise windschiefer Tangenten geklärt werden.

2. Das Abstandsparaboloid

Zunächst einige bekannte Aussagen aus der Geometrie des euklidischen Raumes E^3 :

Satz 1. g_1 und g_2 seien windschiefe Geraden des E^3 mit $\varphi := \triangleleft g_1 g_2$, $d := \overline{g_1 g_2}$.

1. $\Phi_{12} = \{ X \mid \overline{Xg_1} = \overline{Xg_2} \}$ ist ein orthogonales hyperbolisches Paraboloid, das Abstandsparaboloid¹⁾ mit der Gleichung

$$(1) z - \frac{\sin \varphi}{d} xy = 0,$$

sofern g_1 und g_2 den Gleichungen $z=\pm \frac{d}{2}$ und $x\sin \frac{\varphi}{2}=\pm y\cos \frac{\varphi}{2}$ genügen.

- 2. Die Symmetrieachsen von g_1 und g_2 sind die Scheitelerzeugenden von Φ_{12} , die gemeinsame Normale n_{12} von g_1, g_2 ist die Paraboloidachse. g_1 und g_2 sind polar bzgl. Φ_{12} .
- 3. Φ_{12} wird im Punkt X von der Symmetrieebene der Fußpunkte der aus X auf g_1 bzw. g_2 legbaren Normalen berührt.
- 4. Genau die auf Φ_{12} gelegenen Erzeugenden sind die Achsen von Drehungen mit $g_1 \mapsto g_2$, also die Achsen der durch g_1 und g_2 legbaren Drehhyperboloide. Alle diese Drehhyperboloide haben übrigens dieselbe Nebenachsenlänge $b = \frac{d}{2} \cot \frac{\varphi}{2}$.

Beweis. Für die Distanz des Punktes X mit Ortsvektor $\mathfrak x$ von der Geraden g_i mit der Vektordarstellung $\mathfrak p_i + \mathbb R \mathfrak v_i$ gilt bei $\|\mathfrak v_i\| = 1$

(2)
$$\overline{Xg_i}^2 = (\mathfrak{x} - \mathfrak{p}_i)^2 - [(\mathfrak{x} - \mathfrak{p}_i).\mathfrak{v}_i]^2.$$

Der obige Ansatz für g_1 und g_2 führt unmittelbar auf die Gleichung $(1)^{2}$.

Die Schnittpunkte von g_1 und g_2 mit der Paraboloidachse sind zueinander konjugiert bzgl. Φ_{12} und ebenso die Fernpunkte der beiden Geraden. Damit ist g_2 die Polare zu g_1 .

Ist a die Achse einer Drehung mit $g_1 \mapsto g_2$, so gilt für jeden Punkt $X \in a$ $\overline{Xg_1} = \overline{Xg_2}$, also $X \in \Phi_{12}$ und somit $a \subset \Phi_{12}$. Umgekehrt: Zu jedem Punkt $X \in \Phi_{12}$ gibt es zwei gleichsinnige Bewegungen mit $g_1 \mapsto g_2$, die X festlassen. Beide Bewegungen bringen den Normalenfußpunkt F_1 zu X auf g_1 mit dem Fußpunkt $F_2 \in g_2$ zur Deckung; sie übertragen nur die Orientierung von g_1 unterschiedlich auf g_2 . Jede gleichsinnige Raumbewegung mit einem Fixpunkt X ist eine Drehung, und X ist ein

¹⁾Bezeichnung nach [3]. Dort wird auch auf G. Salmon und W. Fiedler verwiesen (vgl. [5], Seite 154).

²⁾Eine in gewissem Sinn umgekehrte Fragestellung wird übrigens in [1] behandelt.

Punkt der Drehachse. Somit sind die durch X gehenden zwei Erzeugenden von Φ_{12} die Achsen von Drehungen mit $g_1 \mapsto g_2$. Beide Achsen liegen in der Symmetrieebene des Punktepaares $F_1 \mapsto F_2$, und damit ist auch die Tangentialebene von Φ_{12} in X gefunden.

Nach W. Wunderlich [10] und J. Krames [4] gilt für die Distanz d und den Winkel φ von je zwei windschiefen Erzeugenden eines Drehhyperboloides mit der Nebenachsenlänge b die oben angegebene Gleichung. Das Geradenpaar g_1, g_2 legt demnach bereits die Nebenachsenlänge aller hindurchgehenden Drehhyperboloide fest. \Diamond

Gemäß [3] heißen zwei Geraden g_1, g_2 assoziiert bzgl. des orthogonalen hyperbolischen Paraboloids Φ_{12} , wenn Φ_{12} das zu g_1 und g_2 gehörige Abstandsparaboloid ist. Nach [3] liegen alle bzgl. Φ_{12} assoziierten Geradenpaare auf dem Plückerkonoid Ψ_{12} mit der Gleichung

$$(x^2 + y^2)z - kxy = 0$$
 bei $k := \frac{d}{\sin \varphi} = \text{konst.}$

Es läßt sich zeigen, daß Ψ_{12} genau die Scheitelerzeugenden der mit Φ_{12} konfokalen hyperbolischen Paraboloide und der Fokalparabeln von Φ_{12} enthält.

3. Kugeln durch vier Tangenten

Es seien vier paarweise windschiefe Geraden g_1, \ldots, g_4 gegeben. Der Punkt M ist genau dann der Mittelpunkt einer Kugel, welche alle vier Geraden berührt, wenn M im Durchschnitt

$$(3) V := \Phi_{12} \cap \Phi_{13} \cap \Phi_{14}$$

dreier Abstandsparaboloide liegt. Diese drei Paraboloide sind paarweise verschieden, denn etwa bei $\Phi_{12} = \Phi_{13}$ wären g_2 und g_3 gemäß Satz 1 polar zu g_1 bzgl. Φ_{12} und damit identisch. Da die linke Seite der Gleichung von Φ_{12} in (1) bis auf einen konstanten Faktor mit der Differenz $(\overline{Xg_1}^2 - \overline{Xg_2}^2)$ übereinstimmt, gehören alle sechs Abstandsparaboloide Φ_{ij} , $i, j \in \{1, \dots, 4\}, i < j$ einer Linearschar von Flächen 2. Ordnung an, die z.B. von Φ_{12} , Φ_{13} und Φ_{14} aufgespannt wird.

³⁾Die Behauptung von Satz 1, 4. wurde bereits in [9] formuliert und ist auch in [10] (Seite 75) und [4] (Seite 4) zu finden.

Satz 1. Eine Kugel Σ ist genau dann eine mehrfache Lösung in der Schar der g_1, \ldots, g_4 berührenden Kugeln, wenn die Berührpunkte F_1, \ldots, F_4 von Σ mit den vier gegebenen Tangenten komplanar liegen. Beweis. Die algebraische Varietät V aus (3) ist der Schnitt der algebraischen Kurve $c_{123} := \Phi_{12} \cap \Phi_{13}$ mit Φ_{14} . Die Mitte M einer mehrfachen Lösung ist entweder ein singulärer Punkt von c_{123} oder regulär, wobei die Tangente an c_{123} in der Tangentialebene an Φ_{14} liegt. Beide Fälle zusammengenommen sind durch koaxiale Lage der Tangentialebenen von M an Φ_{12}, Φ_{13} und Φ_{14} zu kennzeichnen. Gemäß Satz 1 sind genau dann die Verbindungsgeraden der Normalenfußpunkte F_1F_2, F_1F_3, F_1F_4 komplanar (vgl. [6], Th. 2). \Diamond

Sollen unendlich viele g_1, \ldots, g_4 berührende Kugeln existieren, so muß die in (3) definierte Varietät V eine der folgenden Bedingungen erfüllen:

- (a) V ist eine irreduzible Quartik,
- (b) V enthält eine irreduzible Kubik,
- (c) V enthält einen einteiligen Kegelschnitt,
- (d) V enthält eine eigentliche Gerade g.

Diese Fälle werden nun im einzelnen diskutiert.

Die in (d) genannte Bedingung ist hinreichend: Gemäß Satz 1 ist nämlich g die Achse eines einschaligen Drehhyperboloides durch g_1, \ldots, g_4 , und die diesem Drehhyperboloid einschreibbaren Kugeln stellen eine einparametrige Lösungsschar dar, wie schon in [3] festgestellt wird.

4. V ist eine irreduzible Raumkurve 4. Ordnung

In diesem Fall gehören alle Φ_{ij} einem Büschel \mathcal{B} von Flächen 2. Ordnung an. Sind zwei Abstandparaboloide mit komplementären Indizes identisch, also z.B. $\Phi_{12} = \Phi_{34}$, so liegen alle Φ_{ij} in dem von Φ_{12} und Φ_{13} aufgespannten Büschel. Dieser bereits in [3] genannte Fall mit unendlich vielen Berührkugeln wird sich als Spezialfall einer allgemeineren Lösung herausstellen (siehe Satz 3). Wir können daher im folgenden die sechs Abstandsparaboloide paarweise verschieden voraussetzen. Dann wird das Büschel \mathcal{B} von je zwei der sechs Abstandsparaboloide aufgespannt.

Das Büschel der Fernkurven der Flächen aus \mathcal{B} enthält mehr als drei (absolut konjugierte) Geradenpaare; daher besteht es aus lauter

Geradenpaaren. Eine gemeinsame Komponente dieser Fernkurven ist wegen der Irreduzibilität von V unmöglich⁴⁾. Daher besteht das Fernkurvenbüschel aus den Paaren der Involution absolut konjugierter Geraden durch einen festen Punkt U. Für das Abstandsparaboloid Φ_{ij} ist U der Fernpunkt der gemeinsamen Normalen n_{ij} von g_i und g_j . Also gilt

(i) Wenn alle Φ_{ij} einem Büschel angehören, so sind die Geraden g_1, \ldots, g_4 alle parallel zu einer Ebene π .

Diese Ebene sei als xy-Ebene vorausgesetzt. Wir können annehmen, daß das Flächenbüschel $\mathcal B$ von den orthogonalen Paraboloiden

$$\Phi = z - 2xy = 0$$
 und $\overline{\Phi} = z - c - b[(x-m) + (y-n)][(x-m) - (y-n)]$

aufgespannt wird. Dann genügt die Polare zur Ferngeraden der xy-Ebene bzgl. der Büschelfläche $t\Phi+\overline{\Phi},t\in\mathbb{R}$ den Gleichungen

$$x = b \frac{mb - nt}{b^2 + t^2}, \quad y = b \frac{nb + mt}{b^2 + t^2}.$$

Bei m=n=0 sind diese Polaren, darunter die Achsen der in \mathcal{B} enthaltenen Paraboloide, alle identisch. Ansonsten liegen sie auf dem Drehzylinder mit der Gleichung

(4)
$$x^2 + y^2 - mx - ny = 0.$$

Auch die gemeinsamen Normalen n_{ij} der sechs Geradenpaare gehören dazu. Ein Normalriß in Richtung der Zylindererzeugenden zeigt allerdings, daß dies nur möglich ist, wenn wenigstens zwei verschiedene Geraden g_i, g_j deckungsgleich sind – im Widerspruch zur Voraussetzung. Somit bleibt m=n=0, also

(ii) Wenn alle Φ_{ij} einem Büschel angehören, so liegen g_1, \ldots, g_4 im Normalennetz einer Geraden a.

Im folgenden falle a in die z-Achse. Für die gegebenen Geraden setzen wir die Parameterdarstellungen

(5)
$$g_i: (0,0,z_i) + \mathbb{R}(\cos \varphi_i, \sin \varphi_i, 0)$$
 für $i = 1, \dots, 4$ voraus. Dann folgt aus (2)

(6)
$$\overline{Xg_i}^2 = \frac{1}{2}(x^2 + y^2) + z^2 - 2zz_i + z_i^2 - \frac{1}{2}(x^2 - y^2)\cos 2\varphi_i - xy\sin 2\varphi_i$$
.

 $^{^{4)}}$ Auch bei reduziblem V können etwa Φ_{12} und Φ_{13} keine gemeinsame Fernerzeugende besitzen. Dann wäre nämlich eine Symmetrieachse des Paares (g_1, g_2) parallel zu einer Symmetrieachse von (g_1, g_3) und somit g_2 parallel zu g_3 .

60 H. Stachel

Die Paraboloide $\Phi_{12}, \Phi_{13}, \Phi_{14}$ gehören genau dann einem Büschel an, wenn die zugehörigen Polynome in den Unbestimmten x, y, z, nämlich $(\overline{Xg_1}^2 - \overline{Xg_2}^2)$, $(\overline{Xg_1}^2 - \overline{Xg_3}^2)$ und $(\overline{Xg_1}^2 - \overline{Xg_4}^2)$, linear abhängig sind. Genau dann existiert nach (6) ein nichttriviales reelles Quadrupel (a_1, a_2, a_3, a_4) mit

$$\sum_{i=1}^{4} a_i = \sum_{i=1}^{4} a_i z_i = \sum_{i=1}^{4} a_i z_i^2 = \sum_{i=1}^{4} a_i \cos 2\varphi_i = \sum_{i=1}^{4} a_i \sin 2\varphi_i = 0.$$

(iii) Die Abstandparaboloide Φ_{ij} der Geraden aus (5) gehören genau dann einem Büschel an, wenn die vierzeilige Matrix $(1, z_i, z_i^2, \cos 2\varphi_i, \sin 2\varphi_i)$ den Rang ≤ 3 hat. Ist der Rang kleiner als 3, so müssen zwei Abstandsparaboloide und damit auch zwei der vier Geraden identisch sein.

Satz 2 liefert eine geometrische Deutung dieser Bedingung. Es gilt (iv) Für paarweise verschiedene Geraden aus (5) gilt

$$\operatorname{Rg}(1, z_i, z_i^2, \cos 2\varphi_i \quad \sin 2\varphi_i) = 3$$

genau dann, wenn ein Punkt X existiert, dessen Normalenfu β -punkte auf einem Kreis liegen. In zutreffenden Fall kommt diese Eigenschaft jedem Raumpunkt $X \not\in a$ zu.

Beweis. Der Normalenfußpunkt auf der Geraden g_i aus (5) zum Raumpunkt $X = (\xi, \eta, \zeta)$ ist $F_i = (x_i, y_i, z_i)$ mit

$$x_i = \frac{\xi(1+\cos 2\varphi_i) + \eta \sin 2\varphi_i}{2}, \ y_i = \frac{\xi \sin 2\varphi_i + \eta(1-\cos 2\varphi_i)}{2}.$$

Die Punkte F_1, \ldots, F_4 sind genau dann komplanar und nicht kollinear, wenn $(\xi, \eta) \neq (0, 0)$ und

(7)
$$\operatorname{Rg}(1, x_i, y_i, z_i) = \operatorname{Rg}(1, \cos 2\varphi_i, \sin 2\varphi_i, z_i) = 3$$

ist. Damit diese vier Fußpunkte auf einer Kugel liegen, muß das Gleichungssystem

$$2x_i m + 2y_i n + 2z_i o + p = x_i^2 + y_i^2 + z_i^2, \quad i = 1, ..., 4$$

nach den Unbekannten m, n, o, p auflösbar sein, und dies ist äquivalent zu

(8)
$$\operatorname{Rg}(1, x_i, y_i, z_i) = \operatorname{Rg}(1, x_i, y_i, z_i, x_i^2 + y_i^2 + z_i^2).$$

Wegen $x_i^2 + y_i^2 = \frac{1}{2}[(\xi^2 + \eta^2) + (\xi^2 - \eta^2)\cos 2\varphi_i + 2\xi\eta\sin 2\varphi_i]$ folgt aus (7) und (8) genau die angegebene Ranggleichung. Diese ist vom Punkt X unabhängig. \Diamond

Wenn für einen Punkt $X \not\in a$ die Fußpunkte der vier paarweise windschiefen Geraden g_1, \ldots, g_4 aus dem Normalennetz von a komplanar liegen, so gehören g_1, \ldots, g_4 einem Plückerkonoid Ψ an. Zur Begründung genügt ein Blick auf den Normalriß in Richtung a. Auf einem Plückerkonoid Ψ sind bekanntlich die Fußpunktkurven aller Punkte X eben, nämlich bei $X \not\in a$ Ellipsen f_X derselben linearen Exzentrizität in Tangentialebenen von Ψ (siehe [8], Seite 39ff).

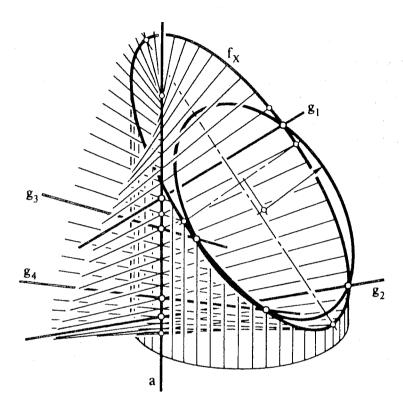


Abbildung 1 Vier konzyklische Geraden g_1, \ldots, g_4

Wenn für die vier Erzeugenden g_1, \ldots, g_4 von Ψ die Fußpunkte F_1, \ldots, F_4 zu X auf einem Kreis liegen, so sollen diese Erzeugenden konzyklisch heißen. Dann gilt dies nach (iv) für jeden Raumpunkt $Y \notin a$. Dies ist auch wie folgt einzusehen: Je zwei Fußpunktkurven $f_X, f_Y \subset \Psi$ werden durch die Erzeugenden von Ψ affin aufeinander bezogen, wobei gleichartige Ellipsenscheitel einander entsprechen. Vier konzyklische Punkte $F_1, \ldots, F_4 \in f_X$ sind als Grundpunkte eines Kegelschnitt-

büschels zu kennzeichnen, dessen Desarguesinvolution auf der Ferngeraden die Fixpunkte in den Achsenfernpunkten von f_X hat. Und diese Eigenschaft ist invariant gegenüber der speziellen Affinität $f_X \mapsto f_Y$.

Um demnach zu drei Erzeugenden $g_1,...,g_3$ des Plückerkonoids Ψ eine vierte zu finden, die mit $g_1,...,g_3$ konzyklische Lage hat, muß nur zu beliebigem $X \notin a$ der Restschnittpunkt der Fußpunktkurve f_X mit dem Umkreis der Fußpunkte auf g_1,g_2 und g_3 aufgesucht werden (siehe Abb. 1). Ein Zusammenfallen dieser vierten Geraden mit einer der drei gegebenen ist allerdings möglich.

Konzyklische Lage auf einem Plückerkonoid ist auch in dem oben ausgeschlossenen Fall $\Phi_{12}=\Phi_{34}$ gegeben, denn bzgl. Φ_{12} assoziierte Geradenpaare schneiden die Ellipse f_X auf Ψ_{12} in Punkten, die bzgl. der Nebenachse von f_X symmetrisch liegen.

Satz. Die sechs Abstandsparaboloide Φ_{ij} , $i, j \in \{1, .., 4\}, i < j$ zu vier paarweise windschiefen Geraden g_1, \ldots, g_4 gehören genau dann einem Büschel an, wenn g_1, \ldots, g_4 konzyklische Erzeugende eines Plückerkonoids Ψ sind.

Die folgende Diskussion wird zeigen, daß in den genannten Fällen die Grundkurve des Büschels stets irreduzibel ist.

5. V enthält einen einteiligen Kegelschnitt

Dieser Fall wird sich als unmöglich erweisen: Angenommen, $\Phi_{12} \cap \Phi_{13}$ enthält einen einteiligen Kegelschnitt. Dann muß das von Φ_{12} und Φ_{13} aufgespannte Flächenbüschel, dem auch Φ_{23} angehört, ein Paar reeller Ebenen oder eine doppelt gezählte reelle Ebene enthalten. Wieder gibt es mehr als drei Büschelflächen mit singulären Fernkurven; also müssen die Fernkurven aller Büschelflächen singulär sein. Da der Fall einer gemeinsamen Ferngeraden von Φ_{12} und Φ_{13} laut Fußnote ⁴) auszuschließen ist, bilden die Fernkurven der Flächen des von Φ_{12} und Φ_{13} aufgespannten Büschels wiederum die Elementepaare der Involution absolut konjugierter Geraden durch einen festen Punkt U. Und die Paraboloidachsen wie auch die singuläre Gerade s des Ebenenpaares liegen gemäß (4) auf einem Drehzylinder mit der Spitze U oder sie fallen alle zusammen.

Die Schnittgerade s des Ebenenpaares schneidet Φ_{12} neben U noch in einem eigentlichen Punkt S, und auch dieser ist ein Berührpunkt zwischen Φ_{12} und Φ_{13} . Die gemeinsame Tangentialebene ist nach Satz 1

die Symmetrieebene zwischen den Fußpunktepaaren (F_1, F_2) und (F_1, F_3) . Dies aber hat $F_2 = F_3$ und damit schneidende Geraden g_2, g_3 zur Folge, und das ist ein Widerspruch⁵⁾.

6. V enthält eine irreduzible Kubik

Die Annahme, daß alle Abstandsparaboloide eine Kubik c gemein haben, wird sich gleichfalls als unmöglich erweisen: Dann nämlich schneiden je zwei verschiedene Abstandsparaboloide einander noch in einer Geraden. So ist etwa der Restschnitt a_m der Paraboloide Φ_{ij} und Φ_{ik} $(m \neq i,j,k,j \neq k)$ gemäß Satz 1 die Achse eines Drehhyperboloids durch die Geraden g_i,g_j,g_k . Die Achsen a_1,\ldots,a_4 dieser vier Drehhyperboloide durch je drei der vier gegebenen Geraden sind paarweise verschieden. Andernfalls nämlich würden alle Abstandsparaboloide dem Büschel mit der Grundkurve $c \cup a_4$ angehören, und dies ist nach Satz 3 ausgeschlossen.

Wir betrachten eines dieser Drehhyperboloide genauer: Die Achse a_4 des Drehhyperboloids durch g_1,g_2,g_3 falle in die z-Achse, und wir setzen

(9)
$$g_i = (a\cos\varphi_i, a\sin\varphi_i, 0) + \mathbb{R}(-a\sin\varphi_i, a\cos\varphi_i, b)$$
, für $i = 1, 2, 3$

mit a, b als Achsenlängen der Meridianhyperbeln. Mittels (2) folgt als Gleichung des Abstandsparaboloids

(10)
$$\Phi_{ij}: (a^2+b^2)(s_{ij}x-c_{ij}y)+(c_{ij}x+s_{ij}y)[a\overline{c}_{ij}(-s_{ij}x+c_{ij}y)+bz]=0$$

für
$$i,j \in \{1,2,3\}.$$
 Dabei ist zur Abkürzung

$$s_{ij} := \sin \frac{\varphi_i + \varphi_j}{2}, \quad c_{ij} := \cos \frac{\varphi_i + \varphi_j}{2}, \quad \overline{c}_{ij} := \cos \frac{\varphi_i - \varphi_j}{2}$$

gesetzt. Der in der xy-Ebene gelegene Grundriß der Schnittkubik $c\subset\subset(\Phi_{12}\cap\Phi_{13})$ genügt der Gleichung

$$\frac{a^2+b^2}{a}(x^2+y^2)-(c_{12}x+s_{12}y)(c_{13}x+s_{13}y)(c_{23}x+s_{23}y).$$

 $^{^{5)}}$ Werden g_1 und g_2 als schneidend vorausgesetzt, so zerfällt Φ_{12} in ein Ebenenpaar. Bei der Suche nach Konfigurationen mit unendlich vielen Lösungen entfallen die unter (a) und (b) angeführten Möglichkeiten einer Quartik bzw. Kubik. Analog bei parallelen g_1 , g_2 .

Der Ansatz y = tx führt auf die folgende rationale Parameterdarstellung von c:

$$x = \frac{(a^2 + b^2)(1 + t^2)}{(c_{12} + s_{12}t)(c_{13} + s_{13}t)(c_{23} + s_{23}t)}$$

$$y = \frac{(a^2 + b^2)t(1 + t^2)}{(c_{12} + s_{12}t)(c_{13} + s_{13}t)(c_{23} + s_{23}t)},$$

$$z = \frac{(a^2 + b^2)(s_{12} - c_{12}t)(s_{13} - c_{13}t)(s_{23} - c_{23}t)}{(c_{12} + s_{12}t)(c_{13} + s_{13}t)(c_{23} + s_{23}t)}.$$

Die Hyperboloidachse a_4 schneidet c in den konjugiert komplexen Punkten

(12)
$$\left(0, 0, \pm \frac{i(a^2 + b^2)}{b}\right).$$

Die Tangentialebenen an Φ_{12} und Φ_{13} in diesen Punkten sind übrigens isotrop⁶⁾.

Wie die Nenner in (11) zeigen, hat c drei paarweise verschiedene reelle Fernpunkte U, V, W. Da durch c sechs orthogonale Paraboloide legbar sind, liegen diese Fernpunkte in paarweise orthogonalen Richtungen. Wir können VW als gemeinsame Fernerzeugende von Φ_{12} und Φ_{34} , UW als Erzeugende von Φ_{13} und Φ_{24} sowie UV als Erzeugende von Φ_{14} und Φ_{23} voraussetzen.

Auf dem Abstandsparaboloid Φ_{ij} besteht eine Erzeugendenschar aus lauter Bisekanten von c, darunter die Achsen a_k, a_l der Drehhyperboloide durch g_i, g_j, g_l bzw. g_i, g_j, g_k . Die in der Fernebene gelegene Bisekante ist eine der vorhin genannten Seiten des Dreiecks UVW.

Nun projizieren wir die Kubik c, die Drehachsen a_1, \ldots, a_4 und alle Abstandsparaboloide aus einem Punkt $Z \in c$ in eine Ebene π : Wir können Z verschieden von U, V, W und außerhalb der Achsen a_1, \ldots, a_4 voraussetzen: Das Bild von c ist ein Kegelschnitt c^z (siehe Abb 2). Die auf Φ_{ij} gelegenen nichtprojizierenden Bisekanten erscheinen als Geraden eines Büschels. Büschelträger Φ_{ij}^z ist der Riß jener Erzeugenden von Φ_{ij} , welche durch Z geht und alle Bisekanten von c schneidet. Die Bildgeraden a_k^z, a_l^z durch Φ_{ij}^z sind verschieden und dürfen c^z gemäß (12)

 $^{^{6)}}$ Für jeden dieser Schnittpunkte liegen die Normalenfußpunkte von g_1 , g_2 und g_3 auf einer der Hyperboloiderzeugenden innerhalb der Scheiteltangentialebenen $z=\pm ib$. Die Fußpunkte sind also kollinear (vgl. Satz 1, 3.).

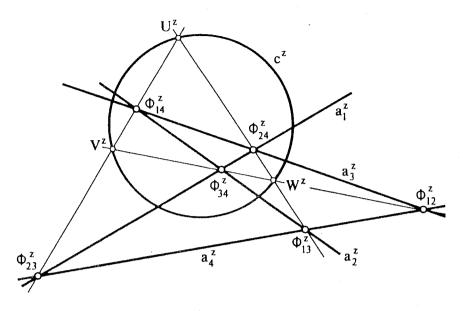


Abbildung 2 Zentralriß der Kubik c und der Hyperboloidachsen a_1, \ldots, a_4

nicht reell schneiden. Φ^z_{ij} liegt damit im Außengebiet von c^z für alle $i,j\in\{1,..,4\}, i< j$.

 $U^zV^zW^z$ bilden ein dem Kegelschnitt c^z eingeschriebenes Dreieck. Jede Dreiecksseite ist Bild einer Bisekanten, die zwei Paraboloiden gleichzeitig angehört. Daher liegen die Büschelträger $\Phi_{12}^z = a_3^z \cap a_4^z$ und $\Phi_{34}^z = a_1^z \cap a_2^z$ auf der Verbindung V^zW^z , $a_1^z \cap a_3^z$ und $a_2^z \cap a_4^z$ auf U^zW^z sowie $a_1^z \cap a_4^z$ und $a_2^z \cap a_3^z$ auf U^zV^z . Die Seiten des Dreiecks $U^zV^zW^z$ sind also Diagonalen des Vierseits a_1^z, \ldots, a_4^z . Die Punkte $V^z, W^z \in c^z$ trennen Φ_{12}^z und Φ_{34}^z harmonisch. Daher kann nur genau einer dieser beiden Büschelträger im Außengebiet von c^z liegen – im Widerspruch zur oben gemachten Feststellung.

7. Hauptsatz

Wir fassen zusammen:

Satz 4. Es gibt zwei Fälle, bei welchen vier paarweise windschiefe Geraden g_1, \ldots, g_4 von unendlich vielen Kugeln berührt werden: Entweder liegen die gegebenen Tangenten auf einem Drehhyperboloid oder sie sind konzyklische Erzeugende eines Plückerkonoids Ψ (siehe Abb. 1).

Im zweitgenannten Fall ist die Mittenkurve der Berührkugelschar

eine rationale Quartik; ihr Normalriß in Richtung der Leitgeraden a von Ψ ist eine gleichseitige Hyperbel mit den Rissen der Torsalerzeugenden von Ψ als Asymptoten. Die Hüllfläche der Kugeln ist eine Kanalfläche, und zwar eine, die vier Geraden trägt.

Literatur

- [1] BOTTEMA, O. and VELDKAMP, G. R.: On the lines in space with equal distances to n given points. Geom. Dedicata 6 (1977), 121-129.
- [2] HUSTY, M. and ANGELES, J.: Kinematic Isotropy in 3R Positioning Manipulators. In A. J. Lenarčič, B. B. Ravani (eds.): Advances in Robot Kinematics and Computationed Geometry, 181–190, Kluwer Academic Publishers, 1994.
- [3] HUSTY, M. und SACHS, H.: Abstandsprobleme zu windschiefen Geraden I, Sitzungsber. d. Österr. Akad. Wiss., math.-naturw. Kl. (im Druck).
- [4] KRAMES, J.: Über die in einem Strahlnetz enthaltenen Drehhyperboloide, Rad. Jugosl. Akad. Znan. Umjet., Mat. Znan. 2 (1983), 1-7.
- [5] SALMON, G. und FIEDLER, W.: Analytische Geometrie der Raumes. 1. Theil: Die Elemente und die Theorie der Flächen zweiten Grades, Verlag Teubner, Leipzig, 1863.
- [6] STACHEL, H. und ABDELMOEZ, H.: Voronoi Diagrams and Offsets of Polyhedra, Proc. International Conference on Applied Informatics, Eger (1993), 1-10.
- [7] WUNDERLICH, Th. A.: Die geometrischen Grundlagen der GPS-Einzelpunktbestimmung. Ingenieurvermessung 92, Band 1, I 2/1-2/12, Ferd. Dümmlers Verlag, Bonn (1992).
- [8] WUNDERLICH, W.: Darstellende Geometrie II. Bibliographisches Institut Mannheim (1967).
- [9] WUNDERLICH, W.: Aufgabe 879, Elem. Math. 37 (1982) S. 93. Auflösung von A. Müller, 38 (1983), 71–72.
- [10] WUNDERLICH, W.: Die Netzflächen konstanten Dralls, Sitzungsber. d. Österr. Akad. Wiss., math.-naturw. Kl. 191 (1982), 59-84.