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Abstract: Let F be an arbitrary Coo-smooth closed strictly convex hyper-
surface in the euclidean space R;. We describe characterizations for F to be
a sphere or an ellipsoid in the form that the support function of F is a pre-
scribed function of special curvatures of F. The method of proof consists in
the application of the theory of evolutions.

1. Introduction

In 1967 U. Simon ([9], Satz 6.1.) proved that a Cyo-smooth,
strictly convez closed hypersurface (ovaloid) in the euclidean space Ry
is a sphere if its k-th normalized elementary symmetric function Hy of
the principal curvatures ky of F and its support function h > 0 with
respect to the inner point o of F' are related by

(1) Hy=Gh) 1<k<d-1)
for a Cy-function G with

dG
@) dh — 0

Especially F' must be a sphere for k¥ = 1 with H; =: H = mean curva-
ture and £ = d — 1 with Hy_; =: K = Gauss Kronecker curvature of
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F. 1953 K. P. Grotemeyer ([5], 3.) showed that hereby assumption (2)
cannot be dropped in general by indication of a rotational ellipsoid in
R3 with '

0 - = (5) e

«

ﬁ) : R® (@, B = const. > 0)

where obviously

dG
(4) EE > 0.

Now the question arises whether a sphere also may be character-

ized by Hy = G(h) (k = 1,...,d — 1) for special functions G with
iG

v > 0as

(5) H=c?.h
or

(6) K=c"h

(¢ = const. > 0). We want to emphasize that the question of a char-
acterization of a sphere by (6) just occured in a paper of W. J. Firey
(1974 [3]). There Firey investigated the evolution procedure {Fi}i>0 of
the surface of a worn stone in Rj, initially being smooth and strictly
convex, which is controlled by the evolution equation

(7) % = —av:K; (a = const. > 0)

(hy = support function, v; = volume and K; = Gauss curvature of ).
Under the additional assumption that Fy (and therefore all the F} for
t > 0) are centrally symmetric with respect to the origin o he was able
to prove that the F} for ¢ — oo contract to the “round point” o. In

other words this means that the rescaled surfaces
1

Vo

(8) F = (;)_ Fy (t>0)

=

with constant volume v, converge to a sphere F., of radius (%9)
about o for ¢ — oo in the Hausdorff topology.

A basic tool of Firey’s was the following
Lemma 1. If F is a smooth ovaloid in the euclidean space Ry (d > 3),
centrally symmetric with respect to the origin o of Ry, whose support
function h and Gauss curvature K are related by

(9) h=c? K (c=const. >0)
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(compare (6)) then F' must be the sphere S.(0) about o with radius ¢ > 0
(see [3], Th. 3 in the case d = 3).

Proof. If one denotes the unit sphere about o by Q and its volume
resp. surface area element by wy resp. dw then the volumes v and v* of
F and its polar surface F* with respect to o may be computed by

_1 dw_]. d _d
(10) v—E/QhK_E/chw—cwd

(see (9)) and

*_l *\d __1_ dw
(11) U—d/Q(r)dw—d/th

if r* is the radius function of F** with respect to o. But trivially

(12) r>h

for the radial function r of F', and combining (10), (11) and (12) with
the formula

1 hdw c? dw
13 S - bt
(13) wd d/Q Krd d Jo rd

(see (9)) for the volume wy of Q we get

d
N c dw
(14) V-V zwd-g/nﬁ—:wd‘wd.

But on the other hand the Blaschke-Santalo inequality yiélds for the
minimal value of v - v*, attained at the Santalo point of F which is the
origin because of the central symmetry of F', the estimate

(15) veout <wgwyg.

Now (14) and (15) imply equality in (12) from which the assertion of
Lemma 1 immediately follows. ¢

In this proof the assumption that F' is centrally symmetric with
respect to o is only used to guarantee that o is the Santalo point of
F, needed for the validity of (15). Therefore Firey in his paper [3],
p-10 settles the conjecture that his Lemma 1 holds true without this
assumption. This problem has not yet been solved up to now but we
are able to prove similar sphere characterizations as well as, by the same
method, a local version of Firey’s problem expressed in the following
two theorems:
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2. Characterizations of spheres

Theorem 1. If F' is an arbitrary smooth ovaloid in Ry with

(16) h=c* H

or

(17) h=c? Kot

(¢ = const. > 0) then F must be a sphere about o of radius c:
(18) F = 5.,0).*

Theorem 2. Let F be an arbitrary smooth ovaloid in Ry (d > 3) the
shape of which is sufficiently close to a sphere in the sense of the validity
of the inequalities

(19) £k > C(B) K1+ ...+ Ka—1) (k=1,...,d—1)

for its principal curvatures where C(B) is a suitable constant depending
only on B > Ei—l with

1
20 R
(20) ClB) < 73
and

1

21 Jii = —,
(21) pim C(f) = -
If moreover F fulfils the condition
(22) h=cld-Dh+1 B
(generalizing (17)) then F' must be a sphere about o with radius c:
(23) F = 5.(o).

Remark 1. In the special case § =1 Th. 2 provides the fact that the
sphere locally is the only solution of Firey’s problem in the case of no

symmetry assumptions for F.
Proof of Th. 1. We consider the array

(24) Fr=~01)-F

*Addendum after submission: the first part of the theorem has just been
proven more generally for hypersurfaces with nonnegative mean curvature H by G.
Huisken (Asymptotic behaviour for singularities of the mean curvature flow, J. Diff.

Geom. 31 (1990), 285-299, Th. 4.1).
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of hypersurfaces homothetic to F' with respect to the origin o where
v(%) is a suitable Coo-function of the parameter 7 > 0 which fulfils the
initial condition
(25) 1(0) = 1.
Then we easily compute
(26) he = (r) - h
as well as
(27) Hy = (4(r)" B
and
(28) Ky = (4(r)"V . K
for the support function h., the mean curvature H, and the Gauss
curvature K, of F,.
The idea of the proof of Th. 1 is now to choose the factor y(7) in

(24) in such a way that F, is the solution of the well known evolution
equation for F:

Oh,
2 =—
(29) o = —H:
or
Oh, -y
(30) 3 = —(K;) :
Indeed, using (16) and (27) or (17) and (28) we find
Ohy _ dy(r) dy(r) dy(1) 5, .
1 = ch = : = —¢ -H,
(31) or ar " dr ¢ 7 dr © Wr)-H
or
Ohr _ dy(r) dy(r) 5,2 dy(7) » - NI T
2 — . = L 7. d—1 — < A K d—1
(32) 57 o h T c Kz o C () (K;)
such that we have to solve the ordinary differential equation
d
(33) PO 2y = -1

under the initial condition (25) in order to obtain (29) or (30). The
solution of (33) and (25) is
(34) y(r)=(1-2c72r)* (0<7<==T)

&

and therefore we have to consider the array

(35) F,o= (1 — 20—27')% B
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during the time interval [0,T) with

1
(36) T := 5(:2 >0 .

The array (35) represents the solution of the evolution procedures (29)
and (30) which contract to the origin o. As Firey did in his paper [3]
it is important to introduce the “normalized procedures”

1
, Ap\ =1
(37) F, = (f) . F,
(A, = total area of F}) respectively
1
- q
(38) Fo= <3‘l) .F,
Uy
(vr = total volume of F;). Obviously in our case the rescaled hyper-
surfaces F- resp. F, coincide with F"
(39) F.=F,=F (0<7<T)

because of (35).

We can now apply a theorem Gage and Hamilton ([4], p. 70) that
says that in the case d = 2 the coinciding conditions (29) and (30)
imply (in the Coo-topology)

(40) lim Fr = Se(o)

as a circle obeying (16) or (17) so that (18) holds because of (39).
Moreover, after another theorem of G. Huisken ([6], p. 238) we have in
the case d > 2 because of (29) (again in the Co-topology)

(41) lin%ﬂﬁ'r = S.(0)

as a sphere obeying (16) which yields (18) in connection with (39). Last
not least condition (30) in the case d > 2 provides

(42) lim F, = S.(0)

(in the Coo-topology) as a sphere obeying (17) after Th. 1.3 of B. Chow
in [2] and so again (18) holds true because of (39) as the convergence of

the rescaled hypersurfaces F, is an obvious consequence of (39)V). All
these facts complete the proof of Th. 1. {

1)We need the convergence of the F, because there is a gap in the proof of
Chow of this fact.
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Proof of Th. 2. In the same manner as in the proof of Th. 1 we

consider the array (24) for which we conclude, inserting (22) together
with (28),

Oh+ d’)’(T)h _ dy(7) ld=1)B+1 B

MNT - - -
= g T () (1)
(B > %) instead of (32). For this reason we solve the differential
equation
dr
compare (33)) together with (25) in order to get the evolution equation
g LG
Oh, 8
45 =— (K-
(45) o = (k) |
for the hypersurfaces F;. The solution of (44) has the form
1
(46) ()= (1= ((d= 1B+ 1)@ DA+ ) T

0<7< (C% =: T). Again we have (39) and a generalization

of Th. 1.3 of Chow, namely his Th. 5.1 which is valid because of (45)
under the additional assumptions (19), (20) and (21) for F', now implies
(47) lim F, = S,(o)

T—T

is a sphere obeying (22). Finally the combination of (39) and (47)
provides the assertion (23) of Th. 2. {

3. Characterizations of ellipsoids

At the end of this paper we shall give a new short proof of a char-
acterization of ellipsoids given first by C. Petty (1985 [8]), Def. 7.3 and
Lemma 9.6, although under weaker assumptions for the hypersurface
F'. The reason to do so is the fact that our proof works with the same
method also used for the proofs of Ths. 1 and 2. This characterization
of ellipsoids may be formulated as follows in
Theorem 3. If F' is an arbitrary smooth ovaloid in Ry wzth

(48) h =¢%+ . KT3T (¢ = const. > 0)




74 K. Leichiwetss

(compare (22) for § = E_—lﬁ < 725 which was excluded in Th. 2) then
d

F must be an ellipsoid about o of volume c®wy :
(49) F = E(o).
Remark 2. Without loss of generality we may refer the support func-

tion h of F in Th. 3 to the Santalo point s of F instead to o (as Petty
did) because (48) and Minkowski’s relation

(50) /Q n“j”g:; ~0

imply

dw(n)

51 ————— =

oy fo e =

being characteristic for

(52) s=o

(compare [8] (3.1)).
Proof of Th. 3. As before we see as a consequence of assumption (48)
that the array of homothetic hypersurfaces

2 2d
(53) Fr=5(r) - F:= (1—d2_:l1c_3%7> - F
0<7T< %cﬁ% =:T) fulfils the evolution equation
Oh, 1
54 = —(K,;)&1
(54) LN

(compare (46) with § = E-lﬁ ). But it is well known that the evolution
controlled by (54) is equivalent to an affine evolution controlled by

Oz, 1 .,

gr Y= g A

(z, = position vector of a point of F; with the affine normal vector y,
and the affine Beltrami operator A?; see [1], (1-1) and (1-2) as well as

[7]) because of

(85)

(56) (K,.)le =< Yr,Nr >

(n, = euclidean inner unit normal vector of F;). Therefore we have
especially for 7 =0

(57) y=T10 ().
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(see (55) and (53)). But (57) characterizes F' as a smooth strictly con-
vex closed affine hypersphere which must be an ellipsoid about o, the
intersection point of the affine normals of F. Finally a trivial compu-
tation shows that F' must have the volume c%wy such that we are sure

that (49) holds. ¢

It is possible that our method of proof also is applicable for other

characterization problems where the support function and a special
curvature are involved.
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