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Abstract: Let P be a plane convex polygon contained in the unit circle X,
and let P* be the polar reciprocal of P with respect to K. In this paper it
is proved that the area sum of P and P* is greater than or equal to 6 with
equality if and only if P is a square inscribed in K.

1. Introduction

Let K be the unit circle centred at the origin O, and let P be
a convex polygon inscribed in K and containing O in its interior. We
denote by P* the circumscribed polygon whose points of contact with
K are the vertices of P. J. Aczél and L. Fuchs [1] proved that

(1) ao(P) +a(P%) 2 6,

where a(X) denotes the area of the set X. Equality holds if and only
if P is a square. An alternative proof was given by E. Trost [5]. Com-
plementary remarks to (1) were made by J. Ratz [4]. More genereally,
L. Kuipers and B. Meulenbeld [3] found the infimum of the weighted
area sum wa(P) + (1 — w)a(P*) for any weight w between 0 and 1, the
infimum depending on w. They also obtained a similar result for the
weighted perimeter sum of P and P*.
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In the present paper we shall extend inequality (1) to more general
domains.
Theorem. Let P be a convez polygon contained in the unit circle K. If
P* is the polar reciprocal domain of P with respect to K, then inequality
(1) holds and equality occurs only if P is a square inscribed in K.

2. Proof of the Theorem

We begin with a further proof of the theorem by Aczél and Fuchs.
Let P be a convex polygon inscribed in K, and let P* be the polar
reciprocal domain of P. We may assume that P contains the centre
O of K in its interior, since otherwise a(P*) = co. Let us denote the
central angles spanned by the sides of P by 2z;,... ,2z,, where

) O0<zy<z2<... <z, < /2,
1+ ...+, =
If the function f is defined by
f(z) =sinzcosz + tan z,

we have to show that
(3) S=> flz:) =6
i=1

with equality only for n = 4 and 21 = 23 = 23 = z4 = 7/4.
From

1

cos? g

f'(z) =2cos®z — 1+

and

f'(z) =2 ST (1 — 2cos* m)

cosd
we see that (i) f is strictly increasing in 0 < z < w/2; (ii) strictly
concave in 0 < z < z¢, and convex in zq < z < 7/2, where

zo = arccos 1/4/[4]2 = 32.765...° .
In the proof of (3) we may assume that
(4) ) S 9.

If, on the contrary, 0 < z; < z3 < 2o, we can replace z; and zy by z}
and z/ such that

0§9:'1<:v1 §w2<m;§m0,
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T) + 5 = 21 + 22
and z] = 0 or 2}, = 2y or both. Since f is strictly concave in [0, 2], this
process reduces the sum S. Moreover, the number of the z;’s contained
in (0,z0) would decrease. After a finite number of steps we obtain a
finite set of points, again denoted by {z1,...,z,}, which satisfies (2)
and (4) and yields a smaller S.
We now show that S can be diminished by displacing z; if

(5) O0<zi<zg <2 <...<2, <7/2.

Since f is strictly convex in [zg,7/2), we have
T — 21

(6) S 2 flar) +(n—1)f (E==1) = (o)

with equality only if 2 = ... = 2, = (v —21)/(n —1). By (5), we note
that (n — 1)z¢ < 7, whence

n < 6.
From (6) it follows that

(1) S'(z) = <0052 1 — cos’ - $1><2 — cos % 21 cos 2 iz} :1:1>.
n—1 n—1

We now distinguish the following cases:
n =3 or 4. For 0 < z; < zy we have
™ T — X1 T — I

2 > n—1 > 3 > %o,
which shows that
cos® £, — cos? TTn >0,
n-—1
and
™ — I ™ — X 1
=0.655... < —
cos —— < cos 5 ) <\/§,
whence
2 —cos 2zycos? i < 0.
n—1
Thus
‘ Sl(ﬂ}l) <0
and
(8) S(z1) > S(z0)

if z1 < zo.
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n = 5 or 6. The function g defined by

g(z1) = 2cos 1 cos - 3311 = cos (7;1‘7311 + $1> + cos (7;—_3;1 . 931)

has the derivatives
1 ™ — I3
! . _ .
g(m)“ (1 n—1)51n<n—1 +w1)+

1 . ™ — I
(=) (=T )

Pl =1 ) o (E2 )

1 2 T—
—(1—}—”*1) cos(n_l1 —ml).

In view of 7= < 7 and z; < zo < § we have g"(z1) < 0 so

that g is positive and strictly concave on [0,z¢]. This implies that
cos™?% z; cos 2 T—L is strictly convex and

h(z1) = 2 — cos™ 2 21 cos > A

n—1
is strictly concave in [0, zo].
n = 5. Since h(z;) > 0 for z; close to 0, and cos® 520 <

< coslzy = %, the function h passes from positive to negative values

on (0,z0]. By (7), S’ and h have the same sign, since z; < ™** on
[0, zo]. Hence S attains its minimum only at one of the end points of the
interval [0, zo]. The fact that S(0) = 4f(7) = 6 and S(z¢) = 6.010...
shows that

(9) S(z1) > 5(0)

for z; > 0.
n = 6. The supposition (5) restricts the variable z; to

0< 2 <7 —dzg,
where T — 5z¢ < z¢. Since h is strictly concave on [0, 7 — 5z¢], ~(0) =
=1 —tan%(7/5) > 0 and h(r — 5zg) = 2 — cos™2 zg cos *(m — 5zp) >
> 2 —cos™*zy = 0 we conclude that h(z;) > 0 for z; > 0. Because
(m —21)/5 > 2o > 21, we have

T — I

cos? z; — cos? > 0.

By (7), this shows that S'(z1) > 0 and (9) is satisfied once more.
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In conclusion, we state that

(10) S > inf mf(l>

m
for m = 3,4, ..., where 7/m > zo. But m < n/z¢ implies that m = 3,4
or 5. The required inequality (3) follows from 3f(7/3) = 15v/3/4 =
=6.495...,4f(x/4) =6 and 5f(w/5) = 6.010....

Let P be a convex polygon contained in the unit circle K with
centre 0. To prove inequality (1) we may assume that O is an interior
point of P, since otherwise a(P*) = co. Let n > 3 be given. By a
convex n-gon we mean a convex polygon with at most n sides. There
exists a convex n-gon P contained in K and containing O in its interior
and having the property that a(P) + a(P*) attains its minimum. The
proof of our theorem is completed by the following lemma.

Lemma. All the vertices of P are on the boundary of K.

Proof. Let P = A;4,... A, and P* = B1B,...B, be such that
[4] B; V B;+1 is the polar of A;, for 1 = 1,... ,n. Suppose that A,
is an inner point of K. Then B; V By does not intersect K. We denote
the interior angles of P* at By and By by f; and f; respectively and
distinguish the following two cases.

B1 + B2 > w. The lines B, V By and B3 V B; intersect outside P*
at a point U which is the pole of A; V A,,. The segment joining O and
U intersects By Bs at an inner point I'. The polar ¢t of T is parallel to
A,V A, and contains the vertex A;. Since OT < OU, the line 45,V A,
separates O and A;. Without loss of generality, we may assume that
B:T < TB,. We displace A; on t through a small distance and obtain
a new convex n-gon P' = Aj A, ... A, contained in K. The polar n-gon
P"™ = B{B}B; ... B, arises from P* by rotating B; V B, about 7. We
choose the direction of the displacement of A; so that Bj lies on By Bs
and B{ on the elongated segment B,B;. Let p be the ray radiating
from B,, parallel to B, V B; and intersecting the interior of P* (this
is possible because 5, + B2 > 7). The segment B] Bj intersects p at a
point By. Then

BT <TB} <TB),
whence
a(TB1B}) < o(T By By)
and

a(P"™) < a(P*).
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Since a(P') = a(P), we have a contradiction to the assumption that
a(P) + a(P*) is minimal.

1 + B2 < w. By displacing A; on the ray OA; towards the
boundary of K through a small distance z we obtain a new convex
n-gon P' = A1 A, ... A,. Let b be length of the orthogonal projection
of A3 A, onto the perpendicular to O V A;. Then

a(P") — a(P) = a(A; A} An) + a(A1 AL Ay),
whence

i—(a(P’) — a(P)) = %b.

In view of b < A3 A, < 2 this implies
(11) La(P') —a(P)) < 1.
A

If OA; = d, the polar of A} has the distance 1/(d+z) from O. Thus the
polar n-gon of P', P”* = B{ BB ... By, arises from P* by displacing
the side By B; parallel to itself towards O through the distance

1 1 T

d d+z dld+z)

Hence
a(P*) — CL(PI*) = CL(BleBéB:’l)

But clearly

BB, 2cot%+cot%2cot%+tau%22

and also B{Bj}, > 2. Since d <1 and d + z < 1, we finally have
1
=(a(P*) — a(P'*)) > 2.
T
The combination with (11) yields
a(P") + a(P™) < a(P) + a(P*)

which is impossible. Thus the lemma and the theorem are proved. ¢
Corollary. Let C be a closed conves set contained in the unit circle K
and let C* be its polar reciprocal. Then

(12) a(C) + a(C*) > 6.
If C is contained in the interior of K, then strict inequality holds.
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Proof. It suffices to consider a closed convex subset C' of K having the
centre O of K as an inner point. The sets C and C* can be approxi-
mated by pairs of polar reciprocal convex polygons. Therefore, (12) is
a consequence of the theorem. For any r € (0,1), the set rC is in the

interior of K, and (rC)* = 1C*. The function

£(r) = a(rC) + a(-C*) = 1%a(0) + ~a(C¥)
has a negative derivative
F1(r) = 22 (r*a(C) ~ a(C¥)) <0
Hence

f(r) > f(1) = a(C) + o(C*) 2 6,

as required. ¢

3. Remarks

(i) It may be that in (12) equality holds only if C is a square in-
scribed in K.

(ii) In the corollary, the assumption of convexity of C is essential.
If C' is the boundary of K, then a(C) + a(C*) = .

(iii) In FEuclidean 3-space let K be a solid unit sphere, P a convex
polyhedron inscribed in K and P* the polar reciprocal of P with respect
to K. In the following list the values of V(P) + V(P*) are collected,
where P is a regular polyhedron (characterized by its number n of
vertices), and V the volume

n V(P)+ V(P*)
4 14.36960. ..
6 9.33333. ..
8 8.46780. ..
12 8.08644 . ..
20 7.83921 ..

and V(K) 4+ V(K™*) = 8.37758 ... The infimum of V(P) + V(P*), ex-
tended over all convex polyhedra P inscribed in K, remains unknown
and is not attained by the cube or the regular octahedron. In place
of the volume, various other functionals may be considered. A sim-
ple example is given by the mean width M(C) of a convex body C in
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E4(d > 2), i.e. the mean value of the widths of C, taken over all possi-
ble directions in E¢. Let the origin O be an interior point of a body C
which need not necessarily be a subset of K. W. Firey observed that
L(—Jiz-c—) D K (formula (1) in [2]). This implies that

M(C)+ M(C*) >4

with equality only if C = K. However, if O is not an interior point of
C, than C* is unbounded.
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