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Abstract: The well known Ky Fan inequality
(%) [[=i/@=z)" <> 2/ S (1—20)
i=1 i=1 i=1

is valid for all real numbers z;€(0,1/2], i=1,...,n. In this paper we present a
new proof, a sharpening and several related inequalities of (x).

1. Introduction

The following celebrated inequality, which is due to Ky Fan, is a
remarkable counterpart of the famous arithmetic mean-geometric mean
inequality.

Ky Fan’s Theorem. If A, and G, (resp. A, and G.,) designate the
weighted arithmetic and geometric means of the real numbers z1,... , T,
(resp.1 —21,...,1 —2,) with z; € (0,1/2], c=1,... ,n, iec
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An:Pizn:pi-’Ei and Gn:ﬁmé"’/Pn
" i=1 i=1

(resp. A, = ;}— Zp,‘(l —z;) and G, = H (1- mi)p;/Pn >
" i=1

=1

n
with P, = Y p; and positive weights p1 ... ,pn, then

=1
(1.1) G./G, < A,/Al,
with equality holding if and only if z1 = ... = z,.
Inequality (1.1) (with p; = ... = p, = 1) had been published

for the first time in 1961 in the well-known book “Inequalities” by E.
F. Beckenbach and R. Bellman [4, p. 5]. Since then Fan’s result has
received a lot of attention and many interesting new proofs, extensions,
sharpenings and variants have been discovered; see [5] and the refer-
ences therein. The aim of this paper is to present some new results
concerning Fan’s inequality. In Section 2 we provide a new proof; a
sharpening of (1.1) (with p; = ... = p, = 1) is given in Section 3, and
certain results related to Fan’s inequality will be presented in the final
section.

In what follows we maintain the notations introduced in this sec-
tion. Further we denote by a, and g, (resp. a}, and g;,) the unweighted
arithmetic and geometric means of zy,... ,z,(resp.1 —21,... ,1 —2,)
with z; € (0,1/2],i=1,... ,n.

2. A new proof

In [7] one can find what G. H. Hardy, J. E. Littlewood and G.
Pdlya call “the most familiar of all proofs” [7, p. 19] of the arithmetic
mean-geometric mean inequality, which “is due (so far as we have been
able to trace it) to Maclaurin” [7, p. 19]. We use this technique (which
is explained in detail in [7, §2.6]) in order to provide a new proof of
Fan’s Theorem.

If z; = ... = z,, then we obtain obviously
G./G = A, /AL .
Next we assume that the numbers z; € (0,1/2],7=1,... ,n, are not all

equal. Without loss of generality we may suppose z1 # z2. We denote
by f the function
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f:00,1] =R,
f(p) = ( - )P < - >1_P P =21) + (1= p)(1 — )

1—2z 1—-2, pr1+ (1 —p)zs

A simple calculation yields that log(f) is strictly convex and since
f(0) = f(1) = 1 we conclude f(p) < 1 for p € (0,1), and if we set
p = p1/(p1 + p2), then the last inequality is equivalent to

(21) ( 1 )Pl( T )pz<[ 1Ty + paza P1t+p2
1—z; 1— 2, p1(l — z1) + pa(1l — z3) '

Next we define

9(331, s ,:I)n) = H(ml/(l - mi))pi ?
1=1
then we obtain from (2.1) for all z; € (0,1/2],7i=1,...

(2.2) g(z1,...,za)<g (plml + Paz ’P15L‘1 T P2 , L3, ,:En> .
P1+ p2 P1+ p2

Let us denote the maximum of the set

{g(yl,... )0 <y <1/2,i=1,...,n, Zpiyizzpiw,-}
=1 =1

by g(y%,-.. ,y%). Since yf #0,i =1,...,n, we conclude from (2.2)
Yy =y; = ... =y}, and hence we have

1 n
y - — pi:],“ .
1 Pn p— 1

Finally we get
H(mi/(l —zi))P < H(y?/(l =y )P = (Aa /A7),

which we had to show. {
3. A sharpening of Fan’s inequality
In this section we present a refinement of inequality (1.1) for the

special case p; = ... =p, = 1.
Theorem 1. If z; € (0,1/2], i =1,... ,n (n > 2), then
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1/n
(3.1) n/gn < H Zfﬂj/ Y (1-g)) < an/ay,.
e
If n = 2, then the left-hand side of (3.1) is an identity. Otherwise,
equality holds if and only if x1 = = Ip.

Proof. For n > 3 we conclude from Fan’s inequality:

n n C\1/(-1) n [ =m n
Hlf ZI;IH(l—m) | S]._I Z‘”i/;(l"fﬂj) )
J#z

i=1 i=1 \ j=1
JFi JFi
where the sign of equality holds if and only if we have for every i €

e{1,...,n}

Ty =T =...=ZTj-1 =Ti+1 = .- =Tn,
ie. 1 =...=z,. Let n > 2; we set
1 k3
s,:n_lzm],z 1, , 7
=1
JF#
then s; € (0,1/2],i=1,... ,n, and we obtain from Fan’s inequality:
1/n
n n n n s ‘1/n
| > e/ | =1(:%) <
=1\ j=1 J=1 =1
j?fi o
S EED o) 3 Bl
where equahty is va.hd 1f and onlyifs1 =...=spie z1=...=25. O

We have tried unsuccessfully to extend (3.1) to Welghted mean
values in order to provide a sharpening of inequality (1.1). We note
that a similar (but different) result of (3.1) for weighted means is given
in [10].

4. Related inequalities

n [2] the following converse of inequality (1.1) (with p1 = ... =
= pn = 1) has been proved: If z; € (0,1), ¢ = 1,...,n, are real
numbers, then
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(4.1) Z /Z(l—w)<H /(1 = z;) r/Zlej

with equa,lzty holdmg if and only zf z; = ... = z,. Here we give a
generalization and a counterpart of inequality (4.1).

Theorem 2. Let z; € (0,1), i =1,... ,n, be real numbers. If p; > 0,
t = 1,...,n, are real numbers which are not all equal to 0, then we
have for A >0 and v > 0:

H A/(l )P i(1- Ir)/z -, piQ1- 1‘:)

i=1

(A)/(Al)u<H ’\‘/(1 ))P-I/Z_lpsz.

(4.2)

For positive p;, 1 =1,... ,n, the equalities are valid if and only if 1 =

— .=

Proof. We define for = € (0,1):
f(z) =log(z*/(1 - 2)")* and g(z) = log(a*/(1 —2)")'7*.

Because of
)\ v v A v A

f”((l?) 1—$+(1—$)2 >0 and g”(.’E)Z—;——l—_g—m—2<0
we conclude that f and ¢ are respectively strictly convex and strictly
concave, and double-inequality (4.2) is an immediate consequence of
Jensen’s inequality for f and g. ¢
Remark. Setting A = v = p; = ... = p, = 1 in the second inequality
of (4.2) we obtain (4.1).

The following inequality, due to P. Henrici [8], had been published
in 1956: If y; > 1, i=1,... ,n, are real numbers, then

n

1+ [Ty/m =Y
=1

(4.3)

If0<y; £1,1=1,...,n, then inequality (4.3) is reversed. Equality
holds if and only if y1 = ... = yn.

Concerning extensions of Henrici’s theorem we refer to [5], [9] and
the references therein. Recently, J. Sdndor [11] made the interesting
discovery that inequality (4.3) and Fan’s inequality (1.1) (with p; =
=...=p, = 1) are equivalent. Our next proposition presents a slight
extension of Sandor’s result to weighted means.
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Theorem 3. The two inequalities

(4.4) Gn/G'nSAn/A;1 (0<2;,<1/2,i=1,...,n)
and

Pn = i .
(45) — <3P (s o1 )

L4 [y St

=1
are equivalent.

Proof. If weset z; =1/(14+y;),¢=1,... ,n, in (4.4), then we obtain
(4.5); and if we put y; = (1 — z;)/zi, 1 =1,... ,n, in (4.5), then we get
(4.4). ¢

Because of the equivalence of (4.4) and (4.5) and since Henrici’s
inequality was published five years before Fan’s inequality, Sandor pro-
poses to call (1.1) the inequality of Henrici-Fan. We note that already
in 1943 P. Kesava Menon discovered the following generalization of
Henrici’s theorem for the special case p; = ... = p, = 1: If a and
Y1,.-. ,Yn are positive real numbers and if t # 0 is a real number such
thaty; > aft, 1 =1,... ,n, then

Pn = )
(4 N SRy
<a+ II yii/P"> =1
i=1

If yi < aft, i = 1,...,n, then the inequality is reversed. (We re-
mark that the inequality given in [9, p. 284] is stated incorrectly.) This
proposition follows from applying Jensen’s inequality to the function
z — (a+ e*)”" and then replacing e® by y;, i =1,... ,n.

An application of inequality (4.6) leads to a new extension of (1.1).

Theorem 4. Lett be a real number with 0 <t < 1. Then we have for
z; € (0,t/(t+1)],:=1,... ,n:

(4.7) Gn/Gp <ty pizi/ Y pi(l—gf)
i=1 i=1
with equality if and only ift=1and z, = ... = z,.

Proof. Setting a = 1 and y; = (1 — z;)/2;, 1 = 1,... ,n, we obtain
y; > 1/t,i=1,...,n, and from (4.6) we conclude
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Pa(14Gr/Gr)™ <) pizl
i=1

which is equivalent to

n n 1/t
(4.8) (1 + ZPi(l —zl)/ 2])@5) <14+GL/G,.
=1 =1

Using the generalized Bernoulli inequality [9, p. 34] we get a lower
bound for the left-hand side of (4.8):

. . " n 1/t
(4.9) 1-I—Zpi(1—zf)/t2pimf < (1 + Zpi(l — )/ ZP#‘f) :
i=1 1=1 =1 =1

Equality holds in (4.9) if and only if ¢ = 1. From (4.8) and (4.9) we
obtain immediately inequality (4.7). If equality is valid in (4.7), then
we conclude that £ = 1 and from Fan’s theorem we getzy =...=2,.0

In 1984 W.-L. Wang and P.-F. Wang [12] proved a noteworthy
counterpart of Fan’s inequality: If H, (resp. H!,) denotes the weighted
harmonic mean of z1,... ,z, (resp. 1—z1,... ,1—2,) with z; € (0,1/2],
1=1,...,n, ie.

H, =P,/ Zpi/ﬂfz‘ (resp. H, = Pn/zpi/(l —z;)),

then
(4.10) H,/H, <G,/G,
with equality holding if and only if x1 = ... = z,. We note that

Wang/Wang proved inequality (4.10) for the special case p; = ... =
= pn = 1. A proof for (4.10) can be found in [3].

In what follows we present an extension of the double-inequality
(4.11) H,/H, <G,/G) < A,/A .
We define for real values a and z; € (0,1/2],4=1,... ,n:

Ap o = ,% ;piw?/[zf L1 - 2)°]

and
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Hn,oz = Pn/zpz[m;y + (1 - zl)a]/m? .
i=1

A, o and H,’I,a will be obtained from A, o and H, o by replacing z; by
1—=z;,t=1,...,n. Then we have
Theorem 5. If a > 0 and z; € (0,1/2],i=1,... ,n, then

(412) H",G/Hvlz,oz S (Gn/GIn)a S A”,Q/Aln,oz

with equality holding if and only if z1 = ... = zn.
Proof. If we replace in (4.11) the values z; by z¢/[z{ + (1 — z;)%],
i=1,...,n, then we get (4.12). §
Remark. Setting o = 1 in (4.12) we obtain (4.11) (see [11]).
In [1] a proof for the inequality

(4:13) gn — g;L < an— a’n

is given. Inequality (4.13) is an additive counterpart of g» /g, < an/a;,.
In the last section of this paper we want to give an additive coun-

terpart of (gn/gn)" < (an/a),)". The following surprising proposition

holds:
Theorem 6. If z; € (0,1/2], ¢ =1,... ,n, then

(4.14) (an)" = (an)" < (gn)" — (92)"-
Ifn=1,2o0rifzy =... = z,, then equality holds in (4.14). Ifn > 3,
then equality is valid if end only if z1 = ... = z,.

Proof. The main tool of our proof is the following intriguing identity
due to A. Dinghas [6]:

n

(“n)n—(gn)n=2k12( ok — ak-1)’ Qr—2(ak, ar-1) H z;

k=2 i=k+1
where Qo(z,y) =1 and
Qi-2(z,y) = ¥ 2 4+ 22F By (k1) k>3,
This leads to

n

(435) [(an)" — (90)"] ~ [(a)" = ()] = 3 5ok — axa )

k=2
n n
Qr—2(ak,ar-1) H T — Qr—2(1 — ax,1 —ag—1) H (1—zi)
i=k+1 i=k+1

Since Qr—2(z,y) (k > 3, z > 0, y > 0) is strictly increasing in z and
y we conclude that the term in square brackets is non-positive which
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proves (4.14). If n = 1,2 or if 23 = ... = z,, then equality holds in
(4.14) obviously. We assume

O0<zi<z9<23<...<2,<1/2 and n>3.

If equality holds in (4.14), then each term in the sum of (4.15) must be
equal to 0. For k = 2 we get:

%(332 - -’171)2 gﬂfz - 1;[3(1 —z;)| =0

which implies z3 = ... = z,, = 1/2. For k = 3 we obtain

1
glzs — a2)?[Q1(as,az) — Q1 (1 — as, 1 — a2)](1/2)" % = 0.
Since ay < 9 < z3 we have

@1(as,a2) = Q1(1 —as,1 — az)

and hence a3 = 1—ay,i.e. 21 = 9 = 1/2. Thus, if n > 3, then equality
holds in (4.14) if and only if zy = ... = z,. This completes the proof
of Th. 6. {
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