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Abstract: Let S® be the 3-sphere which is canonically imbedded in the
euclidean 4-space E*. First we introduce a degenerate metric g of rank 2 on
5% and consider the metric properties of (S%, g), the so-called isotropic 3-

sphere $*"). Next we define a connection V on 51 the so-called standard
connection, which is symmetric and compatible with the degenerate metric g,
and study some properties of the curvature of V. The last chapter is devoted
to the curve theory. We develop the fundamentals of this theory up to the
derlvatlon equatlons There are some analogies to the well-known isotropic
3-space

1. The degenerate metric

We consider the 3-sphere S with its canonical imbedding in the
euclidean 4-space E*. Our aim is to establish a degenerate metric g of
rank 2 on S? and to give an introduction to the geometry of the so-called
isotropic 3-space S(1) = (S3,g). There are some known examples of
isotropic 3-manifolds, besides the isotropic submanifolds, e.g. the well-
known 1-fold isotropic 3-space I, (1) , which was studied by K. Strubecker,

H. Sachs and others, the 2-fold isotropic 3-space I§ ), the geometry of
which was developed by H. Brauner, the 1-fold isotropic manifold S? x
X R, recently introduced by K. Spitzmuller, and the 1-fold isotropic
conform space C’él) by W. Vogel.

Let E* denote the 4-space R* with euclidean metric < > and sup-
pose the 3-sphere S? to be canonically imbedded in the euclidean space
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E*. For a point p € S3 C E* with position vector P = (z*,22,2%,2*)7
we have
(1) < P, P >=1.
Then the vectors Xy = (—z3, —z*,z!,2%)7, Xy = (—2%,2%,—2%,21)7,
Xs= (—2z?,z', 2%, —2%)T are, together with P, mutually orthonormal
in B%, ie.
(2) <Xi,Xj >= 5ij,<P,Xz' >=0; i,j€{1,2,3}.
X1,X32,X5 span the tangent space T,5° when we identify the space
T,S% with the corresponding 3-subspace of R%. They form a basis of
the Lie algebra G of the Lie group G = S3.

Now we define a degenerate metric g, in 7,5, p € S°, analogously

) . . (1)

as in the isotropic 3-space I3 ', namely
(3) gP(Xa’Xb) - 6ab a, be {1, 2},
gp(Xi,X3)=0 i € {1,2,3}.
X3 fixes the isotropic direction in the tangent space T,5%. Then for
two vectors X, Y € 1,53, X = £'X;,Y = n'X;, the scalar-product is
given by

(4) (X,Y) = gp(Xa Y)= 5ab£a77b‘
Here and in the following we adopt Einstein’s summation convention
for the indices a,b,... and ¢,7,... . For the length (norm) of a vector

X we have

(5) X[ =V(X,X) 20.

X is called an isotropic vectorif (X,Y) =0 forall Y € T,5° Thus
X is isotropic iff | X| = 0. In this case X = £3X3;¢! = £2 =0, and we
call

(6) X = ¢

the colength (conorm) of the isotropic vector X. This is the analogue to
the notion ,Spanne” in the isotropic 3-space I:gl). For two non-isotropic

vectors X,Y we define the angle ¢ between X,Y in the usual manner
as

(X.Y)
(7) cos X[Y]
In the case (X,Y) = |X||Y| # 0, ¢ = 0, we introduce the coangle
between X,Y analogously as in the isotropic 3-space, and so on. This
is possible because we are given three distingueshed vectors X1, Xs, X3
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in T;,S®. Finally we mention the scalar triple product of the three vectors
X,Y, Z, that is
(8) (X,Y,Z) =det(X,Y, Z).

Now let g be the metric C®-tensor field on S with g(p) = gy,
and SN =(S3,g). FS3 XS% AS® denote the set of the C*°-scalar
fields, C'°-vector fields, C>®-vector fields of isotropic vectors of S re-
spectively. The Lie derivative of the metric ¢ in the isotropic direction
is given by
(9) LZog(X’Y) = Zo(g(X, Y)) - g([Z07X]7Y) - g(X7 [ZO,Y])a

XY e XS3,Zy € X,5°.
It is easy to see that in S3(1)
(10) Lz,g=0, Zyc€ XS
As is well-known a degenerate metric ¢ of a manifold M is absolutely
reducible iff (10) holds (Dautcourt [2], 320). That means to each point
p € 53 there exists a chart (U, ),p € U, (p) = u = (ul,u? u®) € R,
such that the component matrix of g has the form

g11(u®) g12(u®) O i,j. k€ {1,2’3}

(W) = | ga1(u®)  gaa(u® ;
(635u9) = | gm(u?) gmlu®) 0 ac{1,2)

If for example the position vector P of a point p € S C R? is given
by (12)

x! cosu! cosu? cosu?
2 o1 2 3
T sinu’ cosu® cosu 9 3
12 P= =1\ cos U 0, cosu 0
( ) $3 sin 'U,2 cos u3 I 7’4 ) # ?
zt sin u?

the components of the degenerate metric g read

g11 = cos? u? cos® u*(1 — cos? u? cos® u?)

gi12 = g21 = — cos® u? cos® u® sin u®

g13 = g31 = sin u? cos? u? cos? u®

gaa = cos® u*(1 — cos® u? sin® u*)

2 _- 3 : 3
g23 = g32 = COS U™ 51N u? cos u® sin u

g3z = COS2 U2

Where rank (g;;) = 2. Then we can introduce a new coordinate system
(@!,u?,a%) such that the component matrix (g;;) has the form (11),
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namely
1 0 0
(14) (gij(a’“)) =10 cos?alsin?u! 0
0 0 0

2. The standard connection

Unfortunately the induced connection of S C E* is not a metric
connection relative to g, i.e. it is not compatible with the degenerate
metric g. But as is well-known a degenerate metric ¢ admits a sym-
metric and metric connection V iff g is absolutely reducible (Vogel [7],
107). On the other hand V is, if it exists, not uniquely determined by
the degenerate metric g. With the help of the vector fields X;, X2, X3
we define a linear connection V as follows:

(i) V is the induced connection of S 3 C E* relative to X1, X3,

(ii) the covariant derivative relative to X3 vanishes,

(iii) V is symmetric.
That means

Vx, X1=0, Vx,Xo=X3, Vx, X1 =—-X3, Vx,Xp =0,
(15) Vx,X3=0, Vx,X3=0, Vx,X3=0,
Vx, X1 =2X,, Vx,X;=-2X;.

Then for X,Y € X5%; X = ¢'X;,Y = n'X;, we have
(16) VxY = (&¥X;n") Xi+&n'Vx,Xi ; i,j€{1,2,3}.
V is a uniquely determined, symmetric and metric linear connection
relative to g. We don’t write down the components A%, of the connec-

tion V relative to a coordinate system (u’) of S*(") because the formulas
are a little complicated. We call V the standard connection of G531,
Since V is symmetric, the torsion vanishes:

amn T(X,Y)=VxY -VyX - [X,Y]=0.
Next we consider the curvature tensor of V

(18) R(X,Y)Z =VxVyZ—-VyVxZ—-Vxy4
and the sectional curvature

T R YY,X)
(19) Ko = 3 X)g(¥,Y) — (a(X, 7))
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in the direction of the plane ¢ spanned by X,Y. For a given vector
X =¢X;let X =¢°X,,a € {1,2}, denote the horizontal projection of
X. Then we find

(20)  R(X,Y)Z =R(X,Y)Z =4(g(Y,2)X — g(X,2)Y).

It is R(X,Y)Z = 0 if any of the vectors X,Y,Z is an isotropic vec-
tor. Since g(X,Y) = ¢g(X,Y) we see that the denominator (and also
the numerator) of K, vanishes if o is an isotropic plane (contains the

isotropic vector X3), and vice versa, and then K, is not defined. In
case K, is defined we have K, = const, exactly

(21) K, =4.

The Ricci curvature tensor of V

(22) Ric(Y, Z) = trace(X — R(X,Y)Z)
is a constant multiple of the degenerate metric tensor g, namely
(23) Ric = 4g.

3. Curve theory

Letc: I — S31) ¢t c(t) be a curve in $3(1) and X, Y two vector
fields along c. In particular T : ¢t — T(¢) denotes the tangent vector
field 7' = ¢ . The covariant derivative of X along c is defined as usual
by

DX

(24) ===V,

where X = X oc, and V means the standard connection on S$3). Since
V is a metric connection relative to g we have the product formulas

(25) D(g(X,Y)) d(g(X,Y)) _, <DX Y) by (X DY),

dt

dt T dt dt Cdt
and especially
D|X|? B d| X |? DX
(26) @ - @ Y at
If X is an isotropic vector then
D||X d|| X
(27) X1 _ HH H H
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In the following we make the general assumption that T' is not an
isotropic vector:

(28) IT@)| £0 , tel

Then we can use the curve length of ¢

(29) ’'= / VI@), &) dr

as the parameter of the curve. In what follows we consider the mapping
c: I — 53 s 5 ¢(s) and write ¢’ instead of ¢ . Thus the tangent
vector field T'(s) = ¢/(s) is a unit vector field:

(30) IT(s)| =1, sel.

B(s) = X3 oc(s) describes the isotropic unit vector field along ¢, hence

(31) IB(s)l|=1 sel

At the point p = ¢(s) the derivative ZL(s) may be an isotropic or a
non-isotropic vector. As in the isotropic 3-space Is(l) the theory splits
into two cases according as the derivative of the unit tangent vector T

along c is an isotropic vector or not.
First we consider

DT
case 1 E(S) =0, sel
Thus —%SI = kB. The factor k is the colength of %,
DT
(32) E=1as )

and is called the curvature of the curve c in the case 1. As we have seen
the covariant derivative of the isotropic vector field B along ¢ vanishes.
All together we obtain the derivation equations

DT _ .5
(33) ds

DB 0

ds

If we write the tangent vector T in the form

(34) T=t'Xi0c+t*Xy0c+t*X;00¢,
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it follows
(35) t' = cosp(s),t* = sin(s),t3(s),
where

3

' = -2t

The derivative of the third component ¢ of T' with respect to s is equal
to the curvature k.

To find the curve P(s) in S C E* in the case 1 we have to
integrate the differential equation P' =T, T given by (34). In detail

dz?

ds, —z? —x4' —z?
dz 4 3 1
TR Brra R Rt 2 T 3 T
(37) P ('5) - d:‘* =t .’El +1 —(IJ2 +1 $4 )
ds
dz* 332 z! —z3
ds

where t!, ¢, ¢ are the functions (35), and ¢(s), t3(s) satisfy (36). P(s)
can be described as follows. There exists an orthonormal frame in E*
with coordinates (y!,y?,y?,y*) such that

y;(s) o cos a;(s)
(59 PO = Y5 | = | remnts |
y*(s) 7o sin az(s)

rg = const,7y = comst,r2 + 72 = 1. The projections of the curve into
the (y',y?)-plane and the (%, y*)-plane lie on circles. The radius rg is
allowed to be arbitrary. The angular velocities o' = %‘% depend on the
curvature k of the curve and are given by

(39) o =t*+1 , ¥ =k
In the case of £ = 0, % = 0, the angular velocities are constant
o' = t3 + 1. There are closed and non-closed curves with vanishing

curvature k (geodesics) according as t3 is a rational or an irrational
number.
Now we suppose

case 2 [%(3)1;&0 , s€l
We define the principal normal vector H(s) of the curve by
| DT | DT
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and the binormal vector B(s) by

(41) B=X;3o0c¢.

As can be seen the triple product of the vectors T, H, B is equal to
+1. We choose the sign resp. orientation of H so that

(42) (T,H,B) = 1.

The vectors T, H, B form the moving frame of the curve. The deriva-
tion equations can be found in the usual manner and read

—DdTT = kH
(43) % = —gT + 7B
2o o

They have the same shape as in the isotropic 3-space Iél) and are in
some sense analogous to the formulas of Frenet in the euclidean space.
k is the isotropic curvature and T the isotropic torsion of the curve.

The formulas for &, are
(DT D°T
"ds ds? )

DT D
(44) K= (T B) , T = T
If we write the tangent vector T in the form

*ds ds

(45) T=t'X,0c+t*X30c+t’X30¢
with
(46) t' = cosp(s),t? = sinp(s),t*(s),

the curvature « and the torsion 7 can be calculated by

1 n K

(47) k=g 2% 7=t - ¥ p et 1
K K

Conversely if « and 7 are given the differential equations (47) for the
functions ¢(s),3(s) can be solved explicitely by integrals.

To find the curve P(s) in S C E* we have to integrate the dif-
ferential equation P' = T, T given by (45) , (46). Thus P(s) can be

represented in the form

:1:;(3) 7‘(8)695011(3)
as pe= 20| <[ et )

z4(s) 7(s) sin ay(s)
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with r?2 + 7 = 1. r(s) is a solution of a differential equation of third
order, involving the curvature x but not the torsion 7 of the curve. The

angular velocities o' = %% are given by

1 "1
(50) a'zts—iﬁi\/%——}-;nz—i—l.

If r = const , then & = const. The converse is also true. If Kk = xp =
= const, there exists an orthonormal frame in E* with coordinates
(y',y*,y°, y*) such that

y;(é‘) ro COS ai(s)
0 =g )= | Hea
y4(3) 70 sin 012(8)

with r2 + 72 = 1. The projections of the curve into the (y!,y*)-plane
and the (y°,y*)-plane lie on circles. The radius rp is allowed to be
arbitrary. The angular velocities o' satisfy

1 /1
(51) Ol, = ts - —2~F\‘,0 + ZKJ% + 1.

There is a remarkable relation between the curve theories in S3(%)
and in Iél). In the isotropic 3-space Iél) the curvature and the torsion
of a curve have some nice geometric interpretations. Moreover they
satisfy the equation (47.2) without the additional term +1 and with ¢*
equals to the derivative of the third coordinate function of the curve
(Strubecker [6], (2.69)). If we consider curves in S*) and in I§1) with
the same curvature k and the same function ¢3, the torsions differ only
by +1. This property yields both a geometric interpretation of the
torsion in S3®) and a method for constructing a curve in S*() with
given curvature and torsion, via the curve theory in I3(1). For example
a curve with constant torsion 7 in S3(*) corresponds to a curve with
constant torsion 7 —1 in I:gl) , especially a curve with vanishing torsion
in S to a curve with torsion —1 in Iél). In this context we can

use the elegant theory of curves with constant torsion in Iél) due to

Strubecker [6] and Sachs [3].
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