THE ISOTROPIC 3-SPHERE

Walter O. Vogel

Mathematisches Institut II, Universität Karlsruhe, Englerstraße 2, D-76128 Karlsruhe, Deutschland

Dedicated to Prof. Dr. Hans Vogler at the occasion of his 60th birthday

Received October 1994

MSC 1991: 53 B 30, 53 C 50

Keywords: Isotropic sphere, degenerate metrics, curve theory in isotropic manifolds

Abstract: Let S^3 be the 3-sphere which is canonically imbedded in the euclidean 4-space E^4 . First we introduce a degenerate metric g of rank 2 on S^3 and consider the metric properties of (S^3, g) , the so-called isotropic 3-sphere $S^{3(1)}$. Next we define a connection ∇ on $S^{3(1)}$, the so-called standard connection, which is symmetric and compatible with the degenerate metric g, and study some properties of the curvature of ∇ . The last chapter is devoted to the curve theory. We develop the fundamentals of this theory up to the derivation equations. There are some analogies to the well-known isotropic 3-space $I_3^{(1)}$.

1. The degenerate metric

We consider the 3-sphere S^3 with its canonical imbedding in the euclidean 4-space E^4 . Our aim is to establish a degenerate metric g of rank 2 on S^3 and to give an introduction to the geometry of the so-called isotropic 3-space $S^{3(1)}=(S^3,g)$. There are some known examples of isotropic 3-manifolds, besides the isotropic submanifolds, e.g. the well-known 1-fold isotropic 3-space $I_3^{(1)}$, which was studied by K. Strubecker, H. Sachs and others, the 2-fold isotropic 3-space $I_3^{(2)}$, the geometry of which was developed by H. Brauner, the 1-fold isotropic manifold $S^2 \times \mathbb{R}$, recently introduced by K. Spitzmüller, and the 1-fold isotropic conform space $C_3^{(1)}$ by W. Vogel.

Let E^4 denote the 4-space \mathbb{R}^4 with euclidean metric <> and suppose the 3-sphere S^3 to be canonically imbedded in the euclidean space

 E^4 . For a point $p \in S^3 \subset E^4$ with position vector $P = (x^1, x^2, x^3, x^4)^{\top}$ we have

$$(1) < P, P >= 1.$$

Then the vectors $X_1 = (-x^3, -x^4, x^1, x^2)^{\top}, X_2 = (-x^4, x^3, -x^2, x^1)^{\top}, X_3 = (-x^2, x^1, x^4, -x^3)^{\top}$ are, together with P, mutually orthonormal in E^4 , i.e.

(2)
$$\langle X_i, X_j \rangle = \delta_{ij}, \langle P, X_i \rangle = 0; \quad i, j \in \{1, 2, 3\}.$$

 X_1, X_2, X_3 span the tangent space T_pS^3 when we identify the space T_pS^3 with the corresponding 3-subspace of \mathbb{R}^4 . They form a basis of the Lie algebra \mathcal{G} of the Lie group $G = S^3$.

Now we define a degenerate metric g_p in T_pS^3 , $p \in S^3$, analogously as in the isotropic 3-space $I_3^{(1)}$, namely

(3)
$$g_p(X_a, X_b) = \delta_{ab} \qquad a, b \in \{1, 2\}, \\ g_p(X_i, X_3) = 0 \qquad i \in \{1, 2, 3\}.$$

 X_3 fixes the isotropic direction in the tangent space T_pS^3 . Then for two vectors $X, Y \in T_pS^3$, $X = \xi^i X_i, Y = \eta^i X_i$, the scalar-product is given by

$$(X,Y) = g_p(X,Y) = \delta_{ab}\xi^a\eta^b.$$

Here and in the following we adopt Einstein's summation convention for the indices a, b, \ldots and i, j, \ldots . For the length (norm) of a vector X we have

$$|X| = \sqrt{(X,X)} \ge 0.$$

X is called an *isotropic vector* if (X,Y)=0 for all $Y \in T_pS^3$. Thus X is isotropic iff |X|=0. In this case $X=\xi^3X_3; \xi^1=\xi^2=0$, and we call

$$(6) ||X|| = \xi^3$$

the colength (conorm) of the isotropic vector X. This is the analogue to the notion "Spanne" in the isotropic 3-space $I_3^{(1)}$. For two non-isotropic vectors X, Y we define the angle φ between X, Y in the usual manner as

(7)
$$\cos \varphi = \frac{(X,Y)}{|X||Y|}.$$

In the case $(X,Y) = |X||Y| \neq 0$, $\varphi = 0$, we introduce the *coangle* between X,Y analogously as in the isotropic 3-space, and so on. This is possible because we are given three distingueshed vectors X_1, X_2, X_3

in T_pS^3 . Finally we mention the scalar triple product of the three vectors X, Y, Z, that is

(8)
$$(X,Y,Z) = \det(X,Y,Z).$$

Now let g be the metric C^{∞} -tensor field on S^3 with $g(p) = g_p$, and $S^{3(1)} = (S^3, g)$. $\mathcal{F}S^3, \mathcal{X}S^3, \mathcal{X}_0S^3$ denote the set of the C^{∞} -scalar fields, C^{∞} -vector fields, C^{∞} -vector fields of isotropic vectors of S^3 respectively. The Lie derivative of the metric g in the isotropic direction is given by

(9)
$$L_{Z_0}g(X,Y) = Z_0(g(X,Y)) - g([Z_0,X],Y) - g(X,[Z_0,Y]),$$
$$X,Y \in \mathcal{X}S^3, Z_0 \in \mathcal{X}_0S^3.$$

It is easy to see that in $S^{3(1)}$

(10)
$$L_{Z_0}g = 0 , \quad Z_0 \in \mathcal{X}_0S^3.$$

As is well-known a degenerate metric g of a manifold M is absolutely reducible iff (10) holds (Dautcourt [2], 320). That means to each point $p \in S^{3(1)}$ there exists a chart $(U, \varphi), p \in U, \varphi(p) = u = (u^1, u^2, u^3) \in \mathbb{R}^3$, such that the component matrix of g has the form

$$(g_{ij}(u^k)) = \begin{pmatrix} g_{11}(u^a) & g_{12}(u^a) & 0 \\ g_{21}(u^a) & g_{22}(u^a) & 0 \\ 0 & 0 & 0 \end{pmatrix}; i, j, k \in \{1, 2, 3\}.$$

If for example the position vector P of a point $p \in S^3 \subset \mathbb{R}^4$ is given by (12)

$$(12) \quad P = \begin{pmatrix} x^1 \\ x^2 \\ x^3 \\ x^4 \end{pmatrix} = \begin{pmatrix} \cos u^1 & \cos u^2 & \cos u^3 \\ \sin u^1 & \cos u^2 & \cos u^3 \\ \sin u^2 & \cos u^3 \end{pmatrix}, \ \cos u^2 \neq 0, \ \cos u^3 \neq 0,$$

the components of the degenerate metric g read

$$g_{11} = \cos^2 u^2 \cos^2 u^3 (1 - \cos^2 u^2 \cos^2 u^3)$$

$$g_{12} = g_{21} = -\cos^3 u^2 \cos^3 u^3 \sin u^3$$

$$g_{13} = g_{31} = \sin u^2 \cos^2 u^2 \cos^2 u^3$$

$$g_{22} = \cos^2 u^3 (1 - \cos^2 u^2 \sin^2 u^3)$$

$$g_{23} = g_{32} = \cos u^2 \sin u^2 \cos u^3 \sin u^3$$

$$g_{33} = \cos^2 u^2,$$

where rank $(g_{ij}) = 2$. Then we can introduce a new coordinate system $(\bar{u}^1, \bar{u}^2, \bar{u}^3)$ such that the component matrix (\bar{g}_{ij}) has the form (11),

namely

(14)
$$(\bar{g}_{ij}(\bar{u}^k)) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos^2 \bar{u}^1 \sin^2 \bar{u}^1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

2. The standard connection

Unfortunately the induced connection of $S^3 \subset E^4$ is not a metric connection relative to g, i.e. it is not compatible with the degenerate metric g. But as is well-known a degenerate metric g admits a symmetric and metric connection ∇ iff g is absolutely reducible (Vogel [7], 107). On the other hand ∇ is, if it exists, not uniquely determined by the degenerate metric g. With the help of the vector fields X_1, X_2, X_3 we define a linear connection ∇ as follows:

- (i) ∇ is the induced connection of $S^3 \subset E^4$ relative to $X_1, X_2,$
- (ii) the covariant derivative relative to X_3 vanishes,
- (iii) ∇ is symmetric.

That means

$$\nabla_{X_1} X_1 = 0, \quad \nabla_{X_1} X_2 = X_3, \quad \nabla_{X_2} X_1 = -X_3, \quad \nabla_{X_2} X_2 = 0,$$

$$\nabla_{X_1} X_3 = 0, \quad \nabla_{X_2} X_3 = 0, \quad \nabla_{X_3} X_3 = 0,$$

$$\nabla_{X_3} X_1 = 2X_2, \quad \nabla_{X_3} X_2 = -2X_1.$$

Then for $X, Y \in \mathcal{X}S^3$; $X = \xi^i X_i, Y = \eta^i X_i$, we have

(16)
$$\nabla_X Y = (\xi^j X_i \eta^i) X_i + \xi^j \eta^i \nabla_{X_i} X_i \quad ; \quad i, j \in \{1, 2, 3\}.$$

 ∇ is a uniquely determined, symmetric and metric linear connection relative to g. We don't write down the components Λ^i_{jk} of the connection ∇ relative to a coordinate system (u^i) of $S^{3(1)}$ because the formulas are a little complicated. We call ∇ the *standard connection* of $S^{3(1)}$.

Since ∇ is symmetric, the torsion vanishes:

(17)
$$T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y] = 0.$$

Next we consider the curvature tensor of ∇

(18)
$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$$

and the sectional curvature

(19)
$$K_{\sigma} = \frac{g(R(X,Y)Y,X)}{g(X,X)g(Y,Y) - (g(X,Y))^2}$$

in the direction of the plane σ spanned by X,Y. For a given vector $X = \xi^i X_i$ let $\bar{X} = \xi^a X_a, a \in \{1,2\}$, denote the horizontal projection of X. Then we find

(20)
$$R(X,Y)Z = R(\bar{X},\bar{Y})\bar{Z} = 4(g(\bar{Y},\bar{Z})\bar{X} - g(\bar{X},\bar{Z})\bar{Y}).$$

It is R(X,Y)Z = 0 if any of the vectors X,Y,Z is an isotropic vector. Since $g(X,Y) = g(\bar{X},\bar{Y})$ we see that the denominator (and also the numerator) of K_{σ} vanishes if σ is an *isotropic plane* (contains the isotropic vector X_3), and vice versa, and then K_{σ} is not defined. In case K_{σ} is defined we have $K_{\sigma} = \text{const}$, exactly

$$(21) K_{\sigma} = 4.$$

The Ricci curvature tensor of ∇

(22)
$$\operatorname{Ric}(Y,Z) = \operatorname{trace}(X \to R(X,Y)Z)$$

is a constant multiple of the degenerate metric tensor g, namely

(23)
$$Ric = 4g.$$

3. Curve theory

Let $c: I \to S^{3(1)}, t \mapsto c(t)$ be a curve in $S^{3(1)}$ and X, Y two vector fields along c. In particular $T: t \mapsto T(t)$ denotes the tangent vector field $T = \dot{c}$. The covariant derivative of X along c is defined as usual by

(24)
$$\frac{DX}{dt} = \nabla_{\dot{c}} \tilde{X},$$

where $X = \tilde{X} \circ c$, and ∇ means the standard connection on $S^{3(1)}$. Since ∇ is a metric connection relative to g we have the product formulas

(25)
$$\frac{D(g(X,Y))}{dt} = \frac{d(g(X,Y))}{dt} = g\left(\frac{DX}{dt},Y\right) + g\left(X,\frac{DY}{dt}\right),$$

and especially

(26)
$$\frac{D|X|^2}{dt} = \frac{d|X|^2}{dt} = 2g\left(\frac{DX}{dt}, X\right).$$

If X is an isotropic vector then

(27)
$$\frac{D||X||}{dt} = \frac{d||X||}{dt} = \left| \left| \frac{DX}{dt} \right| \right|.$$

In the following we make the general assumption that T is not an isotropic vector:

$$(28) |T(t)| \neq 0 , t \in I.$$

Then we can use the curve length of c

(29)
$$s = \int_{t_0}^t \sqrt{g(\dot{c}(\tau), \dot{c}(\tau))} d\tau$$

as the parameter of the curve. In what follows we consider the mapping $c: I \to S^{3(1)}, s \mapsto c(s)$ and write c' instead of \dot{c} . Thus the tangent vector field T(s) = c'(s) is a unit vector field:

$$(30) |T(s)| = 1, s \in I.$$

 $B(s) = X_3 \circ c(s)$ describes the isotropic unit vector field along c, hence

(31)
$$||B(s)|| = 1 \quad s \in I.$$

At the point p = c(s) the derivative $\frac{DT}{ds}(s)$ may be an isotropic or a non-isotropic vector. As in the isotropic 3-space $I_3^{(1)}$ the theory splits into two cases according as the derivative of the unit tangent vector T along c is an isotropic vector or not.

First we consider

case 1
$$\left| \frac{DT}{ds}(s) \right| = 0 \; , \quad s \in I.$$

Thus $\frac{DT}{ds} = kB$. The factor k is the colength of $\frac{DT}{ds}$,

(32)
$$k = \left| \left| \frac{DT}{ds} \right| \right|,$$

and is called the *curvature* of the curve c in the case 1. As we have seen the covariant derivative of the isotropic vector field B along c vanishes. All together we obtain the derivation equations

(33)
$$\frac{DT}{ds} = kB \\ \frac{DB}{ds} = 0$$

If we write the tangent vector T in the form

(34)
$$T = t^{1}X_{1} \circ c + t^{2}X_{2} \circ c + t^{3}X_{3} \circ c,$$

it follows

(35)
$$t^{1} = \cos \varphi(s), t^{2} = \sin \varphi(s), t^{3}(s),$$

where

The derivative of the third component t^3 of T with respect to s is equal to the curvature k.

To find the curve P(s) in $S^3 \subset E^4$ in the case 1 we have to integrate the differential equation P' = T, T given by (34). In detail

$$(37) P'(s) = \begin{pmatrix} \frac{dx^1}{ds} \\ \frac{dx^2}{ds} \\ \frac{dx^3}{ds} \\ \frac{dx^4}{ds} \end{pmatrix} = t^1 \begin{pmatrix} -x^3 \\ -x^4 \\ x^1 \\ x^2 \end{pmatrix} + t^2 \begin{pmatrix} -x^4 \\ x^3 \\ -x^2 \\ x^1 \end{pmatrix} + t^3 \begin{pmatrix} -x^2 \\ x^1 \\ x^4 \\ -x^3 \end{pmatrix},$$

where t^1 , t^2 , t^3 are the functions (35), and $\varphi(s)$, $t^3(s)$ satisfy (36). P(s) can be described as follows. There exists an orthonormal frame in E^4 with coordinates (y^1, y^2, y^3, y^4) such that

(38)
$$P(s) = \begin{pmatrix} y^{1}(s) \\ y^{2}(s) \\ y^{3}(s) \\ y^{4}(s) \end{pmatrix} = \begin{pmatrix} r_{0} \cos \alpha_{1}(s) \\ r_{0} \sin \alpha_{1}(s) \\ \bar{r}_{0} \cos \alpha_{2}(s) \\ \bar{r}_{0} \sin \alpha_{2}(s) \end{pmatrix},$$

 $r_0={\rm const}, \bar{r}_0={\rm const}, r_0^2+\bar{r}_0^2=1$. The projections of the curve into the (y^1,y^2) -plane and the (y^3,y^4) -plane lie on circles. The radius r_0 is allowed to be arbitrary. The angular velocities $\alpha'=\frac{d\alpha}{ds}$ depend on the curvature k of the curve and are given by

(39)
$$\alpha' = t^3 \pm 1$$
 , $t^{3'} = k$.

In the case of k=0, $\frac{DT}{ds}=0$, the angular velocities are constant $\alpha'=t_0^3\pm 1$. There are closed and non-closed curves with vanishing curvature k (geodesics) according as t_0^3 is a rational or an irrational number.

Now we suppose

case 2
$$\left|\frac{DT}{ds}(s)\right| \neq 0$$
 , $s \in I$.

We define the principal normal vector H(s) of the curve by

(40)
$$H = \pm \left| \frac{DT}{ds} \right|^{-1} \frac{DT}{ds},$$

and the binormal vector B(s) by

$$(41) B = X_3 \circ c.$$

As can be seen the triple product of the vectors T, H, B is equal to ± 1 . We choose the sign resp. orientation of H so that

$$(42) (T, H, B) = 1.$$

The vectors T, H, B form the moving frame of the curve. The derivation equations can be found in the usual manner and read

(43)
$$\frac{\frac{DT}{ds}}{\frac{DH}{ds}} = -\kappa T + \tau B$$

$$\frac{DB}{ds} = 0$$

They have the same shape as in the isotropic 3-space $I_3^{(1)}$ and are in some sense analogous to the formulas of Frenet in the euclidean space. κ is the isotropic curvature and τ the isotropic torsion of the curve. The formulas for κ, τ are

(44)
$$\kappa = \left(T, \frac{DT}{ds}, B\right), \quad \tau = \left|\frac{DT}{ds}\right|^{-2} \left(T, \frac{DT}{ds}, \frac{D^2T}{ds^2}\right).$$

If we write the tangent vector T in the form

(45)
$$T = t^{1}X_{1} \circ c + t^{2}X_{2} \circ c + t^{3}X_{3} \circ c$$

with

(46)
$$t^{1} = \cos \varphi(s), t^{2} = \sin \varphi(s), t^{3}(s),$$

the curvature κ and the torsion τ can be calculated by

(47)
$$\kappa = \varphi' + 2t^3, \tau = \frac{1}{\kappa}t^{3''} - \frac{\kappa'}{\kappa^2}t^{3'} + \kappa t^3 + 1 .$$

Conversely if κ and τ are given the differential equations (47) for the functions $\varphi(s)$, $t^3(s)$ can be solved explicitly by integrals.

To find the curve P(s) in $S^3 \subset E^4$ we have to integrate the differential equation P' = T, T given by (45), (46). Thus P(s) can be represented in the form

$$(48) P(s) = \begin{pmatrix} x^1(s) \\ x^2(s) \\ x^3(s) \\ x^4(s) \end{pmatrix} = \begin{pmatrix} r(s)\cos\alpha_1(s) \\ r(s)\sin\alpha_1(s) \\ \bar{r}(s)\cos\alpha_2(s) \\ \bar{r}(s)\sin\alpha_2(s) \end{pmatrix},$$

with $r^2 + \bar{r}^2 = 1$. r(s) is a solution of a differential equation of third order, involving the curvature κ but not the torsion τ of the curve. The angular velocities $\alpha' = \frac{d\alpha}{ds}$ are given by

(50)
$$\alpha' = t^3 - \frac{1}{2}\kappa \pm \sqrt{\frac{r''}{r} + \frac{1}{4}\kappa^2 + 1}.$$

If r= const , then $\kappa=$ const. The converse is also true. If $\kappa=\kappa_0=$ = const, there exists an orthonormal frame in E^4 with coordinates (y^1,y^2,y^3,y^4) such that

(50)
$$P(s) = \begin{pmatrix} y^{1}(s) \\ y^{2}(s) \\ y^{3}(s) \\ y^{4}(s) \end{pmatrix} = \begin{pmatrix} r_{0} \cos \alpha_{1}(s) \\ r_{0} \sin \alpha_{1}(s) \\ \bar{r}_{0} \cos \alpha_{2}(s) \\ \bar{r}_{0} \sin \alpha_{2}(s) \end{pmatrix},$$

with $r_0^2 + \bar{r}_0^2 = 1$. The projections of the curve into the (y^1, y^2) -plane and the (y^3, y^4) -plane lie on circles. The radius r_0 is allowed to be arbitrary. The angular velocities α' satisfy

(51)
$$\alpha' = t^3 - \frac{1}{2}\kappa_0 \pm \sqrt{\frac{1}{4}\kappa_0^2 + 1}.$$

There is a remarkable relation between the curve theories in $S^{3(1)}$ and in $I_3^{(1)}$. In the isotropic 3-space $I_3^{(1)}$ the curvature and the torsion of a curve have some nice geometric interpretations. Moreover they satisfy the equation (47.2) without the additional term +1 and with t^3 equals to the derivative of the third coordinate function of the curve (Strubecker [6], (2.69)). If we consider curves in $S^{3(1)}$ and in $I_3^{(1)}$ with the same curvature κ and the same function t^3 , the torsions differ only by +1. This property yields both a geometric interpretation of the torsion in $S^{3(1)}$ and a method for constructing a curve in $S^{3(1)}$ with given curvature and torsion, via the curve theory in $I_3^{(1)}$. For example a curve with constant torsion τ in $S^{3(1)}$ corresponds to a curve with constant torsion $\tau - 1$ in $I_3^{(1)}$, especially a curve with vanishing torsion in $S^{3(1)}$ to a curve with torsion -1 in $I_3^{(1)}$. In this context we can use the elegant theory of curves with constant torsion in $I_3^{(1)}$ due to Strubecker [6] and Sachs [3].

References

[1] BRAUNER, H.: Geometrie des zweifach isotropen Raumes I, Journ. f. reine und angew. Math. 224 (1966), 118-146.

- [2] DAUTCOURT, G.: Zur Differentialgeometrie singulärer Riemannscher Räume, Math. Nachrichten 36 (1968), 311-322.
- [3] SACHS, H.: Isotrope Geometrie des Raumes, Friedr. Vieweg u. Sohn Verlag, Braunschweig/Wiesbaden 1990.
- [4] SPITZMÜLLER, K.: Isotrope Kurventheorie auf $S^2 \times \mathbb{R}$, Journ. of Geometry **40** (1991), 186–197.
- [5] SPITZMÜLLER, K.: Flächen im isotropen $S^2 \times \mathbb{R}$, Journ. of Geometry 47 (1993), 141–154.
- [6] STRUBECKER, K.: Differentialgeometrie des isotropen Raumes I: Theorie der Raumkurven. Sitz.-Ber.Akad. Wiss. Wien, Math.-nat. Kl. Abt. IIa, 150 (1941), 1-53.
- [7] VOGEL, W.O.: Über lineare Zusammenhänge in singulären Riemannschen Räumen, Archiv d. Math. 16 (1965), 106-116.
- [8] VOGEL, W.O.: Kurventheorie im konform isotropen Raum $C_3^{(1)}$, Journal of Geometry 50 (1994), 178–185.