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Abstract: In the paper the affine theory of areal spaces is investigated.
There is given a relationship between the positively homogeneous connections

k
of the Grassmann cone bundle Z*r;; and those of the Whitney sum @7 of
order k. This method leads to a characterization of Riemannian metrizability
of linear connections on a manifold.

1. Introduction: Area and areal spaces

In the usual differential geometric spaces the basic metrical notion
is the arclength and the area of different dimensional submanifolds is
a deduced concept only. (Differently from this, in an areal space [5,
6] the starting point is the area.) This is well known in Riemannian
spaces V,,. In a Finsler space F;, = (M, L) with an n dimensional base
manifold and fundamental function L the area can be deduced in the
following way [10, 13]. Let z*, i = 1,... ,n be local coordinates on
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U C M and y* in the tangent space Ty, M. Then L(zq,y) = 1 is the
indicatrix I(z¢). I(z), playing the role of the unit sphere, determines
the norms of the vectors of T, M, and thus makes T, M into a finite
dimensional Banach space, i.e. into a Minkowski space M,,. The solid
body determined by I will be denoted by B. Let ® C M be a k-
dimensional (k < n) submanifold of M given in local coordinates by
gt = z*(ul,... ,u") (u is taken from a parameter domain B) and p(u)
an infinitesimal surface element of ® laying in the tangent space o C
C Ty(uyM. Since Minkowski areas of domains D; and D, of the same
dimension and laying in the same linear subspace of T, M are related as
their euclidean areas: ||Di||ar:||D2llse = ||D1]|E: || D2||E, Where || . ||
is the euclidean area-measure in an arbitrary euclidean metric of T, M
[3], we have

(1) lp(w)llae: BN ollar = flp(w)le: [|B N olle.

Since B plays the role of the solid unit sphere (n-dimensional disk),
it is quite natural to define ||B N o| as the value of the area of the
k-dimensional sphere which will be denoted by w(¥). Thus (1) can be
considered as the definition of ||p(u)||as, for in (1) everything is defined
except ||p(u)||ar. Furthermore an F), is infinitesimally an M,,. Hence
the Finsler measure ||p(u)||F of the infinitesimal p(u) equals |[p{u)| .
Thus one can define for the Finsler measure of ®

(2) l]lr = /B Ip(w)l| .

Other recent investigations touching upon Finsler area can be found
in [1]. ||p(u)||r depends on I(z(u)) and thus indirectly on the given
fundamental function L. Hence the integrand in (2) can be expressed

as F(z,p):
18] = /B Pa(u), p(u))du.

Finally it is clear that the function F' must be positively homogeneous
of order one in p. We mean by Ap a k-dimensional domain in ¢ such
that ||Ap]le = |A| - ||lplle. Then as a consequence of (1) we obtain
F(z, Ap) = |A|F(z, p)-

An areal space AP [5, 6] is locally a couple (M, F') of a manifold

and a function

F:U x GKnx — RT, (z,p)— F(z,p), UCM
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positively homogeneous of order one in p, where GK,, ; means the
Grassmann cone [2, 9], whose elements can be represented as paral-
lelotops P spanned by k vectors v!,... ,v* € ¢ C R™, where o is a
k-dimensional linear subspace of R™. p can be expressed in form of a
k-vector as p = v! A ... Av*. {0} is the total space of the Grassmann
manifold G, [14, 2]. — Then the areal measure ||®||4 of ® is defined

by [5, 6, 12]
184 = /B Fe(u), p(w)) du,

where p = 86% Ao A aauzk . We remark that F'(z,p), and thus the area

measure of an Aslk) cannot be deduced in general from a Finsler space
Fp ([11]). This means that areal spaces are more general than Finsler
spaces with respect to area measuring.

2. Connections in A%¥ and in vector bundles

1. The role of the vectors of a Riemannian or Finsler geometry
is taken over in an Aﬁl’“) by the elements of GK,, . Thus connections

of areal spaces can and must be defined in the fibre bundle, called the
Grassmann cone bundle of M

ZFry = (Z¥TM, 7, GK,, i, M)

where Z*T M is the total space, 7 is the projection operator, GK, j is
the typical fibre and M is the base manifold.

Unfortunetaly, GK, ; is no vector space and this can make much
incovenience. We want to show that a homogeneous nonlinear con-
nection Hyzs,,, of Z*7y [4, 8] can be identified with a certain special

homogeneous nonlinear connection H, on a vector bundle, the k-
SoEy s

Whitney sum of the tangent bundle T,

k k k
brm = (@TMJW7R n7M)

with a k-n dimensional vector space as fibre over the same base manifold

M as Z¥ry, and conversely, every such special H determines a
DTm
Hyer: Hzep,, <= spec H,

D

k
A nonlinear connection H, in @7y is given by the splitting
Srm
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k .
T.E=V,E® H,E, ®TM = E, z € E. Let 2* be local coordinates in

U C M, then (z%,y%), i=1,...,n, a=1,... ,kn arelocal coordinates
of z € n71(U) C E. Then H,E is spanned by
0 o}
§; = — — N (z,y)—
g Vi (@50

where N2(z,y) are the connection coefficients. Positive homogeneity
means that for y,: (z,y?%) — (2%, ty*)

(dps)bi(z,y) = bi(z, ty)

which is equivalent with N?(z,ty) = tN}(z,y).
2. Now let y be an element of 771 (z) = R*™ with the components
y*, a = 1,... ,kn and let ba = 1,... ,k be k vectors in R™ with

components 5 = yla=lnti  Thus y «» (11), ,5) = P which P is a
representation of a p € GK,, ;. This representation can be considered
as a mapping 0: GK, x — {P}. o is multivalent and onto, while p™* is
univalent. P; and P, are two representations of p, in signs: Py ~ Py, iff
A) they lay in the same k-dimensional linear subspace o, and B) they
have the same volume with the same sign. ~ is an equivalence relation.

Thus each p can be identified wits its equivalence class. The other

. 1 k
elements of the equivalence class of a yo = (vg,... ,V0) are, because of

A),y=(,...,0) with

(3) =130, a,B=1,2,.. ,k
and then, because of B)
Det|tz| = +1

Conversely, such transformations take an element of a class always into
another element of the class. This means that any equivalence class is
generated from one of its elements by special unimodular linear trans-
formations sl. Their set is denoted by S!, and by matrix multipilication
S1 becomes a group. The whole class of yp is Slyp.

3. Our idea is the following. Given a linear connection H,
ST™m

it takes yo € 7~(z) into a §o € 7~ (z + dz) and a y € Slyo into a
j. If these j form also an equivalence class in 77" (z + dz), i.e. if also
i € Slijp holds, then we obtain a p(z) — p(z 4 dz) and this determines
a Hze,,,. We want to obtain conditions for § € Slgo.
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Let v:= z(t) be a curve in M, zy = (2z0,%0), To = z(to) an
element of 77 1(z) and Z(t) = (z(t),Jo(¢)) the parallel transport of zg
along v. If zy and z( + dz are neighbouring points on -, then §* —yg =
= N(zo, Yo )d:v + o(dz) (o(dz) means the terms of order higher than
lin dm) ie.

(4) dy® = N{(zo,y0)da’

Conversely, if (5) holds everywhere along v, then §o(t) is the parallel
translated vector of yg.

Let be yo = (vo,... ,’U()) and y = (71), ,v) € Slyo, moreover let

1 k 1 k
Yo = (00,... ,00) and § = (0,...,0) be their parallel translated from
zo to zg + dz. Then in components
oz]
(5) U = Uo + N(a 1)n+]($07y0)d9” + o(dz)
2‘] (a n+j
(6) i =4 + N, (zo,y) dz* + o(dz),

al
where ¥, is the j-th component of the vector 130.

o B
Since § € Sl o, we obtain § = s§vo with Det[t§| = 1. s§ depends
on zg and dz. Therefore
sg(zo + dz) = sg(z0) + s3; dz' + o (dz)

where 3‘51 are the partial derivatives of s3 at zo. In components

al ol —1Vnit; .
b =8+ NV (ao,y) do’ + ofde) =
() =s3(zo —{—dz:)( + NI 00) da? +o(dm)> -

ﬁj
= sg(zo + dz)v,
and hence
ol o o i ﬂj a—1)n+j
(v — (Sﬂ(%) + Sg; dz")v,) + (Ni( Y +](3«‘0,y0)—
—(s§(z0) + s5; dz* )NV (24, 40)) da’ + o(dz) = 0.

These must hold on any curve starting from z, i.e. (6)—(8) must hold

(8)

J
for any dz. Then (8) yields o = sﬂgo Comparing this with (3) we
obtain

(9) sg = tg.
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In view of this we get from (8) that

. . j .
(10) Ni(a_l)n—ﬂ(:l:,y) = thi(ﬁ_l)n_H(:I:, Yo) + Sgigo Vz,Vo= t%go

We obtained that if H,  preserves equivalence classes then N2 must
Orm
satisfy (10) with Det|t3| = +1 and with some (s§;).

We show that (10) also suffices for this. First we recall that %o

and 5 are parallel translated vectors of vy and v resp. iff (6) holds up to
terms linear in dz (up to o(dz)). Therefore, concerning parallelity the
last terms in (5-8) are unimportant if these equations hold otherwise
for any z and dz. Now from (3), (9) and (10) follow (7) and (5) up
to linear terms in dz, and this means that § € Slj;. Thus we have
obtained

Proposition. H,  preserves equivalence classes defined by S iff its

DT
connection coefficielr‘blts N(z,y) satisfy (10).
Such H,  are called special and will be denoted by sp H,

Drm

OTm
We show that any sp H,  determines a homogeneous H zx and

TM?
Bram

conversely.
p € GK, | can be considered as a simple p-vector (see [9]) p =

= 11)0 AL /\50 = 11)/\ /\1]3 Then pjl"'j’c is the value of the k& x k&
determinant formed from the ji-th, ..., ji-th columns of the n x k

matrix (zc)u) These p’/t~/* are the components of the simple k-vector p

and represent local coordinates for p over a neighborhood U, C GK,, .
1 k 1 k 3

F=ToA.. . Ao =DTA...AG = (b+d0)A.. . A(b+dS) = p+dp(z, dz) +

+ o(dz), where dp is linear in dz. Hgzx ., is defined by these dp which

depend on dv, and so on the given sp H, . We also show that Hyzx .,
DTa
determined by a sp H,  is a homogeneous connection. This is true

™

if Hyk,,, takes tp int(??gg supposed that it takes p into p. We know
that the representation g is homogeneous, i.e. tyg is a representation of
tp: 07! (tyo) = tp provided p7*(yo) = p. Then Hyz:,,, takes tp into
0~ 1(tyo) which is ¢~ (tfs) because of the homogeneity of p.
Conversely, also a positively homogeneous connection Hzi,,, in

k
Z*r3r determines a special connection in @Ty;. Really, given a curve
v : z(t) C M the Hzi,,, determines the parallel translated p(z(t)) =
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= p(t) of a p(ty) € 7 !(z(to)). Then p(t) = %}(t)k/\ A 113(15), hence
o(p(t)) = 2(t) = (%)(t), . ,1’3(t)) means curves in T M through each

zo = (11J(0), e ,1’3(0)) € o(p(to)). These z(t) form an equivalence class
in 77 !(z(t)). Considering n curves v;, i = 1,...,n having linearly in-
dependent tangents ¥;(t), we get through any zo n curves z;(t). Their
tangents are never vertical and span up a linear n-dimensional sub-

k .
space in T,,(®7T M) which can be considered as horizontal subspace of
T,,E. Performing this for each z and z we obtain a positively homo-

k
geneous connection in @7ys. This connection takes equivalence classes

into equivalence classes. Hence it is a special connection sp H,
DTy
and thus its connection coeflicients satisfy (9). Moreover this special

k
connection of @7y induces the given connection of Z*71y;.

Theorem 1. A positively homogeneous connection Hz: e 08 equivalent
in the considercd representation of GK, r with a special vector bundle

connection H which satisfies (10) and so preserves certain equiva-
Srm
lence classes.

3. Riemannian metrizability of symmetrical linear
connections

We apply the ideas of the previous section in order to investigate
the Riemann-metrizability of a linear connnection I' without torsion.

A torsion free linear connection I' on a manifold M is called
metrizable if there is at least one covariant constant, symmetrical, pos-
itive definite 2-form g; in local coordinates: there exists a g;;(z) such
that gi;(z) = gji(z), gij(z)€'¢7 > 0 V€ # 0, and Vigij = 0. This is
equivalent with the existence of a field of ellipsoids g;;(z)€*¢’ = 1 in the
tangent spaces denoted by I(z) and called indicatrices which are abso-
lute parallel, i.e. the parallel translation of an I(z() along any curve to
z yields I(z).

I(z)is determined by n conjugate diameters which can be replaced
by n linearly independent vectors ba=1,...,n showing from the
origin to an endpoint of a diameter. The parallel displaced %(:c,v) of

these v from z, to an arbitrary z along a curve v form in general,
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even in the case of a metrical I', no absolute parallel vector fields, but
they always form conjugate axes of ellipsoids depending on v and z.
However in a metrical connection I' these ellipsoids are the same at one
point, they depend on the point z and are independent of the curve v;
and conversely, if the ellipsoids determined by the parallel displaced of
v depend on z alone, then T is metrizable, and the g;x(z) sought for
are the coefficents in the equation g;x(z)£4€F = 1.

Given T, in a local coordinate system by I‘;k(m), consider the
vector bundle By = (éLBTM,W,R”'",M) and the connection He'far
with local coefficients Y

P
(11) Ni(z,y) := I‘pri(m)f) a=1,...,n°
a=(k—=Un+r, i,pk,r=1,...,n,

ie.
T r 1P n+tr r 2P
Ni(z,y) =T, i(z)v , N (z,y) =T, i(z)v ,....

This H 2 is homogeneous, for the connection coefficients defined by
™

(11) are so. We form equivalence classes in the fibres of éSTM. Let
a: (é, L E) (111, . ,17}) = yo be a linear transformation which takes
an orthonormal base é, ... ,€ of R™ endowed with a euclidean metric

into the conjugate axis 11J, ..., 0 of an ellipsoid. Let f € O*(n,R) be an
orientation preserving rotation of R®. We consider

af=aofoa T, M — @T,M
and
A ={as| f € 07 (n,R)}
and we define the equivalence class of yo as Afyo = ¥. Then the

1 n
(0,...,9) =y € Y form all conjugate-axis systems of the ellipsoid
determined by the conjugate axis (11), .. ,0).

We consider the set {Y'} whose elements represent ellipsoids. The

set {Y'} can be given a (natural) manifold structure (each Y can be
identified with an ellipsoid and this with the coefficients g;; of its equa-

tion which correspond to a point of R ). Thus {Y'} becomes a manifold

Y, and we consider the fiber bundle Z"ry = (Z"TM, 7, Y, M).

Acccording to (11) Hé§ acts in case of parallel translation on the
™
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components v of a Yy = (zl), ce ,5) just as I'. But I' takes an ellipsoid by
parallel translation into an ellipsoid again, and takes every conjugate
axis system of the first ellipsoid into a conjugate axis system of the

image ellipsoid. This means that HE?B preserves equivalence classes.
™
Hence it induces a connection Hgn ., in Z™7y,.

If Hzn., is integrable for one Y (zg) at least, then the parallel
translated Y of Y (z¢) by Hz~r,, are independent of the route v and

depend on the point z alone. To such a Y corresponds in ETéTM an equiv-
alence class which is represented by an ellipsoid, and then the parallel
translated of such an ellipsoid by Hé corresponding to Hzn,,, de-

pend also on the point z alone. But 7'tﬂ}llis means that the coefficients
gik(z) of these ellipsoids are covariant constant and yield a metrization
of T.

Thus we have obtained
Theorem 2. A torsion free linear connection is metrizable iff the above
determined Hzn ., is integrable for a Y (zo).
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