ON (r, t)-COMMUTATIVITY OF $n_{(2)}$ -PERMUTABLE SEMIGROUPS

I. Babcsányi

Department of Mathematics, Transport Engineering Faculty, Technical University, H-1111 Budapest, Müegyetem rkp. 9, Hungary

A. Nagy

Department of Mathematics, Transport Engineering Faculty, Technical University, H-1111 Budapest, Müegyetem rkp. 9, Hungary

Dedicated to Prof. Hans Vogler on the occasion of his 60th birthday

Received May 1994

MSC 1991: 20 M 05

Keywords: Free semigroups, $n_{(2)}$ -permutable semigroups, (r,t)-commutative semigroups.

Abstract: In this paper we deal with the connection of n(2)-permutable semigroups and (r,t)-commutative ones. We show that, for every pair of integers n and c with $n \ge 3$ and $n-1 \le c \le 2n-4$, there is a semigroup S such that p(S) = n and c(S) = c, where p(S) and c(S) denote the degree of n(2)-permutability and of commutativity of S, respectively. Moreover, we prove that, for every pair of integers n and m with $n \ge 5$ and $n \le 2 \le m \le 2n-4$, there is a semigroup which is n(2)-permutable but not n(2)-commutative for any $n \ge n$ and $n \ge n$ with $n \ge n$. By these results we have $n \ge n$ and $n \ge n$ and $n \ge n$ and $n \ge n$ which is a partial answer to the open problem raised in $n \ge n$

Throughout this paper \mathbb{N}^+ denotes the set of all positive integers. For notations and notions not defined here, we refer to [3]. As in [8], a semigroup S is said to be $n_{(2)}$ -permutable $(n \in \mathbb{N}^+, n \geq 2)$ if, for any n-tuple (s_1, s_2, \ldots, s_n) of elements of S, there is an integer t with

This research was supported by OTKA No. 1965.

 $1 \le t \le n-1$ such that

$$s_1 s_2 \cdots s_t s_{t+1} \cdots s_n = s_{t+1} \cdots s_n s_1 s_2 \cdots s_t.$$

By the degree of $n_{(2)}$ -permutability of a semigroup S we shall mean an integer $p(S) \geq 2$ such that S is $p(S)_{(2)}$ -permutable but not $(p(S)-1)_{(2)}$ -permutable. Following [6], a semigroup S is said to be (r,t)-commutative $(r,t \in \mathbb{N}^+)$ if for any elements $s_1, s_2, \ldots, s_{r+t}$ of S,

$$s_1 s_2 \cdots s_r s_{r+1} \cdots s_{r+t} = s_{r+1} \cdots s_{r+t} s_1 s_2 \cdots s_r.$$

In [1], it is proved that every (r,t)-commutative semigroup is also (1,r+t)-commutative. Thus we can define the degree of commutativity ([1]) of a semigroup S as an integer $c(S) \in \mathbb{N}^+$ such that S is (1,c(S))-commutative but not (1,c(S)-1)-commutative.

It is clear that an (r,t)-commutative semigroup is $(r+t)_{(2)}$ -permutable. It is obvious that the converse is true if $r+t \leq 3$ (see [8]). By Lemma 2 of [8] and the fact that every (r,t)-commutative semigroup is (r',t')-commutative for every $r' \geq r$, $t' \geq t$, it follows that, for every integer $n \geq 4$, there is a semigroup which is $n_{(2)}$ -permutable but not (r,t)-commutative for any positive integers r and t with $r+t \leq n$. In [8], the author raised the following question. Does $n_{(2)}$ -permutability $(n \geq 4)$ of a semigroup S imply (r,t)-commutativity of S for some r and t. In [2], the authors gave a positive answer to this question for finite semigroups. In [4], M. Gutan proved that the answer is positive for arbitrary semigroups. He proved that every $n_{(2)}$ -permutable semigroup is (n-1,n-1)-commutative $(n \geq 4)$. In [5], he also proved that every $n_{(2)}$ -permutable semigroup is (1,2n-4)-commutative $(n \geq 4)$. Denoting by $\mathcal{P}_{m,n}(m,n \in \mathbb{N}^+, n \geq 2)$ the proposition

 $\mathcal{P}_{m,n}$: If S is an arbitrary $n_{(2)}$ -permutable semigroup then there exist r and t in \mathbb{N}^+ with r+t=m such that S is (r,t)-commutative, consider

$$\varphi(n) = \min\{m \in \mathbb{N}^+; \mathcal{P}_{m,n} \text{ is true}\}.$$

It is evident that $\varphi(2) = 2$ and, by [8], $\varphi(3) = 3$. In [5], it was proved that $\varphi(n) \leq 2n - 3$ and so $\varphi(4) = 5$. It is an open problem to find $\varphi(n)$ for $n \geq 5$ (see [5]). It is obvious that $\varphi(n) \geq n$ (see also Lemma 2 of [8]). In this paper we show that $2n - 4 \leq \varphi(n) \leq 2n - 3$ for $n \geq 5$.

For a product $s_1 s_2 \cdots s_n$ of elements s_i (i = 1, 2, ..., n) of a semi-group S let $p_i = s_i \cdots s_n s_1 \cdots s_{i-1}$ and $I_{p_i} = \{j \in \{1, 2, ..., n\}; p_i = p_j\}$. We note that s_0 denotes the identity element of S^1 . The following lemma plays an important role in our investigations.

Lemma 1. If S is an $n_{(2)}$ -permutable semigroup then, for every nonnegative integer k and $p_1 = s_1 s_2 \cdots s_{n+k} \in S^{n+k}$, the cardinality of I_{p_1} is at least k+2.

Proof. We proceed by induction on k. Let $|I_{p_1}|$ denote the cardinality of I_{p_1} . If k=0 then $|I_{p_1}|\geq 2$ for every $p_1\in S^n$, because S is $n_{(2)}$ -permutable. Assume that $|I_{p_1}|\geq k+2$ for some nonnegative integer k and for every $p_1\in S^{n+k}$. Let s_1,s_2,\ldots,s_{n+k+1} be arbitrary elements of S. As S is an $n_{(2)}$ -permutable semigroup, by Lemma 1 of [8], S is also $(n+k+1)_{(2)}$ -permutable. Hence, there is an index $i\in\{2,\ldots,n+k+1\}$ such that $p_1=p_i$. Consider the product $q=s_1s_2\cdots(s_{i-1}s_i)\cdots s_{n+k+1}\in S^{n+k}$. By the assumption $|I_q|\geq k+2$. As $|I_q|<|I_{p_1}|$, therefore $|I_{p_1}|\geq k+3$. \Diamond

Construction. Let \mathcal{F}_X be the free semigroup (without the empty word) over the set $X = \{a, b\}$. If $w \in \mathcal{F}_X$ then l(w) denotes the length of w. Let z be an integer with $z \geq 4$. Consider the pairwise disjoint subsets A_z , B_z C_z , D_z of \mathcal{F}_X defined as follows. Let

$$A_{z} = \{a^{z}\},\$$

$$B_{z} = \left\{a^{z-(2g-1)}ba^{2g-2}; \quad g = 1, 2, \dots \left[\frac{z+1}{2}\right]\right\},\$$

$$C_{z} = \left\{a^{z-2h}ba^{2h-1}; \quad h = 1, 2, \dots \left[\frac{z}{2}\right]\right\},\$$

$$D_{z} = \{w \in \mathcal{F}_{X}; \quad l(w) = z\} - (A_{z} \cup B_{z} \cup C_{z}).$$

For a fixed integer $n \geq 4$ and for an arbitrary nonnegative integer k, define the following congruence

$$\alpha_{n+k} = \{(w_1, w_2) \in \mathcal{F}_X \times \mathcal{F}_X : w_1 = w_2 \text{ or } l(w_1), l(w_2) > n+k \text{ or}$$

$$\exists \ 0 \le i, j, t, \le k \ (w_1, w_2 \in B_{n+i} \text{ or } w_1, w_2 \in C_{n+j} \text{ or } w_1, w_2 \in D_{n+t})\}.$$
Let $S_{n+k} = \mathcal{F}_X / \alpha_{n+k}$.

Theorem 1. The factor semigroup S_{n+k} is $n_{(2)}$ -permutable if and only if $k \leq n-4$. In this case $p(S_{n+k}) = n$.

Proof. Assume that S_{n+k} is $n_{(2)}$ -permutable. As the length of the elements of B_{n+k} and C_{n+k} is n+k, both of B_{n+k} and C_{n+k} have at least k+2 elements (see Lemma 1). Hence $|B_{n+k} \cup C_{n+k}| \geq 2k+4$. On the other hand $|B_{n+k} \cup C_{n+k}| = n+k$. Therefore, $2k+4 \leq n+k$ from which we get $k \leq n-4$.

Conversely, assume that $k \leq n-4$. Let $s_1, s_2, \ldots, s_n \in S_{n+k}$ be arbitrary elements. Consider words $q_i \in \mathcal{F}_X$ such that $q_i \alpha_{n+k} = s_i$

 $(i=1,2,\ldots,n)$. If $l(q_1q_2\cdots q_n)>n+k$ then $(q_1q_2\cdots q_n,q_2\cdots q_nq_1)\in \alpha_{n+k}$ and so $s_1s_2\cdots s_n=s_2\cdots s_ns_1$. Assume $l(q_1q_2\cdots q_n)\leq n+k$. Then there is an integer $i\in \{0,1,\ldots,k\}$ such that $l(q_1q_2\cdots q_n)=n+i$. If $q_1q_2\cdots q_n\in D_{n+i}$ then $(q_1q_2\cdots q_n,q_2\cdots q_nq_1)\in \alpha_{n+k}$ and so $s_1s_2\cdots s_n=s_2\cdots s_ns_1$. Assume $q_1q_2\cdots q_n\in B_{n+i}$. Then there is an index $j\in \{1,2,\ldots,n\}$ such that the word q_j contains the letter b as a factor (and so $q_1,q_2,\ldots,q_{j-1},q_{j+1},\ldots q_n$ do not contain b). Assume that $l(q_1q_2\cdots q_t)$ and $l(q_r\cdots q_n)$ are odd numbers for all $t\in \{1,2,\ldots,j-1\}$ and $r\in \{j+1,\ldots,n\}$. If j=1 then $l(q_n)$ is odd and $l(q_r)$ $r=2,3,\ldots,n-1$ is even. Hence

$$l(q_1q_2\cdots q_n) \ge 2(n-2) + 2 > 2n-4.$$

This is a contradiction. In case j=n we can get a contradiction in a similar way. Assume $j \notin \{1, n\}$. Then $l(q_1)$ and $l(q_n)$ are odd and $l(q_r)$ is even for every $r=2,3,\ldots j-1,j+1,\ldots,n-1$. Therefore,

$$l(q_1q_2\cdots q_n) \ge 2(n-3) + 3 > 2n-4$$

which is a contradiction. Consequently, $l(q_1q_2\cdots q_t)$ or $l(q_r\cdots q_n)$ is even for some $t\in\{1,2,\ldots j-1\}$ and $r\in\{j+1,\ldots,n\}$. Thus $q_{t+1}\cdots q_nq_1\cdots q_t\in B_{n+i}$ or $q_r\cdots q_nq_1\cdots q_{r-1}\in B_{n+i}$ and so

 $s_1s_2\cdots s_n=s_{t+1}\cdots s_ns_1s_2\cdots s_t \text{ or } s_1s_2\cdots s_n=s_r\cdots s_ns_1s_2\cdots s_{r-1}$ for some $t\in\{1,2,\ldots j-1\}$ and $r\in\{j+1,\ldots,n\}$. We get a similar result in case $q_1q_2\ldots q_n\in C_{n+i}$. If $q_1q_2\cdots q_n\in A_{n+i}$ then $s_1s_2\cdots s_n=s_2\cdots s_ns_1$. Thus S_{n+k} is $n_{(2)}$ -permutable. As S_{n+k} is not $(n-1)_{(2)}$ -permutable, $p(S_{n+k})=n$. \Diamond

Corollary 1. The semigroup S_{n+k} $(4 \le n, 0 \le k \le n-4)$ is (1, n+k)commutative, but not (1, n+k-1)-commutative.

Proof. It is clear that S_{n+k} is (1, n+k)-commutative. As $B_{n+k} \cap C_{n+k} = \emptyset$, the semigroup S_{n+k} is not (1, n+k-1)-commutative. \Diamond

Next we deal with the connection between p(S) and c(S) for an arbitrary semigroup.

Theorem 2. For every integers n and c with $n \geq 3$ and $n-1 \leq c \leq 2n-4$, there is a semigroup S such that p(S) = n and c(S) = c.

Proof. By Remark 2 of [8], a semigroup is $3_{(2)}$ -permutable if and only if it is (1,2)-commutative. Assume $n \geq 4$. It is evident that every (1,t)-commutative semigroup is $(t+1)_{(2)}$ -permutable. From this it follows that c(S) < p(S) implies c(S) = p(S) - 1. By the construction contained in the proof of Th. 3 of [1] or Th. 3 of [9], it follows that there are semigroups S such that p(S) = n and c(S) = n - 1. Therefore, we

can suppose that $n \leq c \leq 2n-4$. Then, for the semigroup S_c defined above, p(S) = n and c(S) = c. \Diamond

Theorem 3. For every pair of integers n and m with $n \geq 5$ and $2 \leq m < 2n - 4$, there is a semigroup which is $n_{(2)}$ -permutable but not (r,t)-commutative for any r and t with r+t=m.

Corollary 2. For every integer $n \geq 5$, we have $2n-4 \leq \varphi(n) \leq 2n-3$. **Proof.** By Th. 3, if $\mathcal{P}_{m,n}$ is true for some positive integers m and n with $n \geq 5$ then $m \geq 2n-4$. Thus $\varphi(n) \geq 2n-4$. This and the fact $\varphi(n) \leq 2n-3$ proved in [5] together imply our assertion. \Diamond

The following lemma is an addendum to the problem of finding the exact value of $\varphi(n)$.

Lemma 2. If an $n_{(2)}$ -permutable semigroup S $(n \ge 4)$ is (r,t)-commutative for some r and t with r+t=2n-4 then either r and t are even or S is (1,2n-5)-commutative.

Proof. Assume that S is a semigroup such that it is $n_{(2)}$ -permutable and (r,t)-commutative for some integers n,r and t with $n \geq 4$, r+t=2n-4. Assume that S is not (1,2n-5)-commutative. Let d denote the greatest common divisor of t and r. By Cor. 1 of [1], S is (hd, 2n-4-hd)-commutative for every $h=1,2,\ldots,\frac{2n-4}{d}-1$. Then $d\geq 2$. We can suppose that d>2. As S is not (1,2n-5)-commutative, there are elements $s_1,s_2,\ldots s_{2n-4}$ of S such that

$$p_1 = s_1 s_2 \cdots s_{2n-4} \neq s_2 \cdots s_{2n-4} s_1 = p_2.$$

By Lemma 1, $|I_{p_1}|, |I_{p_2}| \ge n-2$. As $I_{p_1} \cap I_{p_2} = \emptyset$, $|I_{p_1}| = |I_{p_2}| = n-2$.

For $i = 0, 1, \dots d - 1$, let

$$J_i = \left\{ (h-1)d + i + 1; \ h = 1, 2, \dots, \frac{2n-4}{d} \right\}.$$

It is easy to see that J_i contained in either I_{p_1} or I_{p_2} for every $i = 0, 1, \ldots d - 1$. Moreover

$$\bigcup_{i=0}^{d-1} J_i = \{1, 2, \dots, 2n-4\}.$$

Therefore, $n-2=\frac{2(n-2)}{d}g$ for some positive integer g. From this it follows that d=2g. Thus r and t are even. \Diamond

We note that, from Lemma 2, it follows that if a semigroup S is $n_{(2)}$ -permutable and (r,t)-commutative such that n-2 is a prime, $n \geq 4$ and r+t=2n-4 then S is (2,2n-6)-commutative.

References

- [1] BABCSÁNYI, I.: On (m,n)-commutative semigroups, PU.M.A. (Ser. A) 2 (1991), 175-180.
- [2] BABCSÁNYI, I. and NAGY, A.: On a problem of $n_{(2)}$ -permutable semi-groups, Semigroup Forum 46 (1993), 398-400.
- [3] CLIFFORD, A.H. and PRESTON, G. B.: The Algebraic Theory of Semi-groups, Amer. Math. Soc., Providence, I (1961), II (1967).
- [4] GUTAN, M.: Sur une propriété de permutation des semi-groupes, C. R. Acad. Sci. Paris 317 (1993), Série I, 923-924.
- [5] GUTAN, M.: On $n_{(2)}$ -permutable semigroups, $PU.M.A.\ 4/2$ (1993), 167–173.
- [6] LAJOS, S.: Fibonacci characterizations and (m,n)-commutativity in semi-group theory, PU.M.A. (Ser. A) 1 (1990), 59-65.
- [7] NAGY, A.: On the structure of (m,n)-commutative semigroups, Semigroup Forum 45 (1992), 183-190.
- [8] NAGY, A.: Semilattice decomposition of $n_{(2)}$ -permutable semigroups, Semigroup Forum 46 (1993), 16–20.
- [9] NAGY, A.: Permutation functions and (n,m)-commutativity of semigroups, Semigroup Forum 48 (1994), 71–78.