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Abstract: The notion of curvature for polygons, developed in the context of
exterior parallelism for polyhedra (see the author’s paper in Math. Pannonica
2/2 (1991), 95-106), is studied. It is shown that in the case of constant
side lengths, a simply closed polygon in the plane admits at least four sides
with locally extremal curvature unless it is circrumseribed to a circle. These
extrema are called curvature vertices of the polygon.

This kind of four-vertex-theorem is a special case of the polygonal version of
a more general vertex-theorem going back to R.C. Bose (Math. Z. 35 (1932),
16-24) in the case of smooth ovals. Here the number of vertices is estimated
from below by counting osculations of the curve with circles, contained in the
interior of the curve. A polygonal version of Bose’s theorem is formulated and
proved in this paper. The main tool for the proof is the part of the sysmmetry
set which is contained in the interior of the polygon.

1. Introduction

For sufficiently smooth ovals « in the Euclidean plane R.C. Bose
[2] developed a method to determine a lower bound for the number of
their vertices by counting the number of intersections of a with circles
contained in the closure of the interior of « as follows: If o admits n
distinct circles ¢;, ¢ = 1,...,n, of this type with v; (v; > 2) points
of osculation, then o has at least 2 + >  (v; — 2) vertices (points
with locally extremal curvature). An order geometric version of this
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theorem has been established by O. Haupt [4]. That Bose’s theorem
can be extended to simply closed curves which are sufficiently smooth,
has been shown in the framework of classical differential geometry in
[10], using a very simple method of proof.

By establishing a suitable notion of curvature for polygons a four-
vertex-theorem has been proved for closed convex polygons in the plane
in [12] by elementary geometric means. The classical four-vertex-the-
orem may be obtained from this version by approximation. It should
be pointed out here, that also other notions of curvature for polygons
have been studied and that four-vertex theorems have been shown for
these notions (see S. Bilinski [1] and A. Schatteman [6]).

The extension of the four-vertex-theorem to simply closed poly-
gons fails in the general case. Counterexamples have been constructed
in the master’s thesis of A. Walz [9] for both notions of curvature, that
in [1] and that in [12]. They all have the common property that their
side lengths vary very strongly. On the contrary, the approximation
of simply closed smooth curves by inscribed or circumscribed polygons
leads to an approximation of the evolutes of the smooth curves by the
corresponding polygonal evolutes. In the case of inscribed polygons
their side lengths have to be assumed almost constant for this purpose,
if the notion of curvature given in [12] is considered. This indicates
that simply closed polygons of constant side lengths will be good can-
didates to satisfy a four-vertex-theorem. Indeed, here it will be shown
that even the stronger version of this theorem given by Bose is valid for
these polygons.

2. Curvatures and symmetry sets

In this section we shall establish the tools for the proof of our
main theorem. The notion of curvature follows the lines of [11] resp.
[12].

Let P denote a polygon in the Euclidean plane E?, given by its

consecutive vertices p;, ¢ = 1,... , k, and its oriented sides p;p;31 resp.
unoriented sides s; := P;p;+1, where in the closed case the subscripts

are considered modk. The length of the side s; is given by A; :=
lpi — pit+1]|- The straight line generated by p; and p;y; is called
l; »== p; V pi+1, and the interior oriented angle between [;_; and I; at
p; is denoted by ; := Z(pipix1,Pibi—1)- 7: is defined to be between 0
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and 7, if the pair (p;piy1,pipi—1) is linearly independent and positively
oriented; ; is defined to be between n and 2, if this pair is negatively
oriented. If no confusion is possible P also will denote the subset of E?
defined by P. In the case that P is simply closed, it bounds a compact
domain D(P), the interior of P. Furthermore we assume in this case,
that the ordering of its vertices defines the counter-clockwise orienta-
tion of P, such that for interior angles v; with values between 0 and =
D(P) is locally convex at p;.

For the definition of the curvature of P we consider the so-called
symmetric normals n; of P which are defined at the vertices p; different
from the ends of P as the straight lines bisecting the interior angles
v;. In analogy to the differentiable case we call the intersection f;:=
n; V niy1 the focal point of P at s;. If n; and n;4q are parallel, we
define f; as the corresponding point at infinity in the sense of projective
geometry. The evolute of P is given by the "polygon” defined by the f;
in the given order. This polygon is allowed pass through infinity and
to have degenerated sides. If f; is not at infinity then the radius of
curvature p; of P at s; is given by

pi = d(fi,l;) = d(fi, li-1) = d(fi, lig1).
Hence the circle of radius p; around f; is simultaneously tangential to
l;,li—1, and [;41. It is called the circle of curvature if P at s;. Finally,
we define the curvature x; of P at s; by
0 fi at infinity
Ki = pi_l fi finite, and ];I—f—; points to the interior of P

—
—p; ' fi finite, and p; f; points to the exterior of P.

In order to distinguish it from the vertices of P we call a side of P
with locally extremal curvature a curvature-vertez of P. Here “locally”
refers to neighboring sides.

Symmetry sets of curves have been introduced by J.W. Bruce,
P.J. Giblin and C.G. Gibson [3] as collections of centers for a local re-
flectional symmetry of the curve. The proof of the version of Bose’s
vertex theorem in [10] is based on the study of the part of this set
which is contained in the interior of the curve. Symmetry sets have
been studied in another context by H. Stachel and H. Abdelmoez in
[7] and [8] for collections of simply closed polygons bounding some do-
main in the plane. There also a program for the computation of these
sets is established. A very effective algorithm has been developed for
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this purpose by S. Meyer [5]. These sets also are called medial axes,
skeletons or cyclographic sets in other work. Because the curve can
be reconstructed as the envelope of a suitable family of circles with
centers in that part of the symmetry set which will be of interest for
our subsequent considerations, we shall call this part the cyclographic

generator.

v I ‘ gon for all subsequent con-
siderations. A cyclographic
center z of P is character-
ized by the property that

Its precise definition 1is
given as follows: Let P
be a simply closed poly-

there is some radius » > 0
such that the closed disk
D.(z) of radius r around
The figure shows a simply closed poly- the center z is contained in
gon {thick lines) with its cyclogra- D(P) and its bounding cir-
phic generator (thin Iines'). It l.m,s heen cle Sr(z) has at least two.
computbed with the algorithm in [5]. . . .
- points in common with P.
Clearly, the sct S.(z) NP is finite. The points of this set are called the
basc points of the cyclographic center z and r is called its cyclographic
radius. If S.(z) is tangential to some side of P at the base point p,
then p will be called an s-base point. The remaining casc, that this
interscction is non-tangential, only can happen at vertices with interior
angle greater than 7. Then p will be called a v-basc point. Note that
a vertex of P can be base point for different cyclographic centers of P
and may be of different types with respect to these centers. The closure
of the set of cyclographic centers of P is obtained, if we add to this sct
the vertices of P, where D(P) is locally convex. Hence we we define
the cyclographic generator G(P) of P by
G(P):={z € E*| zis a cyclographic center of P} U {p; €P|v; €(0,7)}.
Obviously G(P) is a finite graph in E? composed from straight
line scginents and segments of parabolas. For the subscquent consider-
ations we have to describe this structure more precisely. A cyclographic
center z with at least three base points is a vertex of this graph. Con-
sidering two neighboring base points p and ¢ on S.(2), r denoting the
cyclographic radius of z, the intersection of G(P) with the sector of
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D,(z) bounded by zp, zG and the arc B on S,(z) between p and ¢,
which does not contain other base points, is given locally at z by

a) a segment of a straight line emanating from z, bisecting the angle
between [; and [}, if p and ¢ are s-base points located on s; resp.
sj, and s; resp. s; coincides locally with the one-sided tangential
ray to B emanating from p resp. g,

b) a segment of a parabola emanating from z, defined as the locus
of equal distance to the point p and the line [;, if p is an s-base
point not satisfying the requirements of part a) or a v-base point,
and ¢ is an s-base point satifying the requirements of part a) with
respect to s;,

c¢) asegment of a straight line emanating from z, defined as the locus
of equal distance to the points p and ¢, if both p and ¢ are s-base
points not satisfying the requirements of case a) or if p and ¢ are
v-base points.

Up to interchange of the roles of p and ¢, the description given above
represents all possible cases. This shows that the valency of z as a
vertex of the graph G(P) coincides with the number of base points
belonging to =.

Arguments of the same type show that if the number of base
points of the cyclographic center z is 2, then this remains unchanged
for all cyclographic centers in a small neighborhood of z. Then z will
be considered as a point on a chord of the graph of G(P), if the types of
the two base points remain unchanged in a suitable neighborhood of 2.
It it easy to see by the arguments presented above, that otherwise the
types of the base points must change at z, and that the cyclographic
centers of this kind are isolated. In the latter case z will be considered
as a vertex of the graph G(P) of valency 2. The only case which is not
covered by the preceding considerations of the points of G(P) is that
z € G(P)NP, ie. zis a vertex of P. But these points are end points
of the chords of the graph G(P), given by segments of the symmetric
normals at the vertices p; of P having interior angle v; € (0, 7). Hence
they have to be considered as end points of the graph G(P).
Proposition 1. The cyclographic generator of P is a deformation
retract of D(P). In particular G(P) is connected (see also [15] for this
statement in a more general context).

Proof. The idea for the construction of the retraction R: D(P) —
— G(P) is obtained as follows: Clearly the points of G(P) have to
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remain fixed. For z € D(P)\ (P UG(P)) we find a unique point on y €
€ P which is of minimal distance to z; if there were two such points on
‘P, then = would be a cyclographic center. Considering the circles with
centers on the ray emanating from y in direction of 42 which are passing
through y there will be a unique one which bounds a closed disk totally
contained in D(P), which contains z, and which has more than one
point in common with P. The center z of this circle is a cyclographic
center of P; z is located outside the segment Zy. The retraction R is
defined to move z to z. This can be used to show that G(P)\ P is a
deformation retract of D(P)\ P. To extend the retraction to the open
sides and ”convex” vertices of P is trivial. To cover also the vertices of
P with this construction where D(P) has an interior angle greater than
7, we have to modify the given map in a small neighborhood of these
points accordingly. But this is an easy topological exercise. Because
G(P) is the continuous image of the connected set D(P), it must be
connected itself.

Proposition 2. The graph G(P) is a tree.

Proof. By Prop. 1, G(P) is connected. Let z be a point on G(P)
which is not an end point. Then z is a cyclographic center with at
least two base points p and ¢. Removing zp N zZg from the closed set
D(P) disconnects the remaining set. But G(P) \ {z} is contained in
the remaining set. Hence the removal of z from G(P) disconnects the
cyclographic center, which shows that the graph G(P) does not contain
any cycle. {

The proof of Bose’s theorem in [12] uses the fact that the ends
of the cyclographic generator defined there coincide with centers of
curvature belonging to points with locally maximal curvature. Since
these ends are vertices of P in our case, this method will not work in
the case of polygons. Nevertheless the cyclographic generator can be
used for our purposes, if it is modified slightly as follows:

Reduction. To obtain the reduced cyclographic generator Grea(P) of
P we remove
a) all ends from G(P), i.e. we obtain G(P) \ P;
b) for such an end p; € G(P)NP we remove the open chord o; of the
graph G(P) ending at p; from this set (this chord is is an open
segment on the symmetric normal n;);

¢) if the other end point pj of o; is of valency 2, then we remove
pj’ and the other open chord Uj" of G(P) ending at p?L from the
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cyclographic generator of P.

This completes the reduction procedure.

In case c¢) pj, as a cyclographic center of P, has two base points

which obviously are s-base points. This is inherited from the cyclo-
graphic centers on ;. The type changes at p?— if we consider the cy-
clographic centers on o;". There one or both base points will be v-base
points. Hence o} is of type b) (segment of a parabola) or c) (straight
line segment) mentioned in the description of the combinatorial struc-
ture of G(P) given above.
Proposition 3. The reduced cyclographic generator Grea(P) is a tree.
Proof. This is obvious, because according to Prop. 2 and the reduc-
tion procedure we have removed from the tree G(P) only semi-open
arcs, containing ends of G(P) and possibly passing through vertices of
valency 2.

3. Curvature vertices of polygons

Lemma 1. Let P be a simply closed polygon with constant side lengths,
z an end point of Gred(P), such that for some i =1,... ,k the segments
zp; and Zp;41 are chords of G(P) ending on P. Then ki1 < k; and
Kiv1 < k. The equality is satisfied if and only if Zpi—1 resp. Zpiy1 are
chords of G(P).

Proof. Let r denote the cyclographic radius of P at z. According to
our assumptions S-(z) coincides with the circle of curvature of P at
si, and z is of valency > 3 in G(P) having s-base points on s;_1, s;,
and s;411. Hence we have p; = r > 0. Furthermore A;_, = A;; =
= A; implies that the symmetric normal n;_; does not meet Zp; in its
interior, because s;_o has empty intersection with the interior of S,(z).

Hence we get for the radii of curvature p;—; > p; in the case that x;_
is positive. This implies k;_1 < ;. Furthermore the equality is valid, if
and only if n;_; meets p; at z which is equivalent to s;_2 N S.(2) # 0.
The other inequality is obtained similarly. §

Remark 1. The same method of proof applies if P is assumed to
be convex instead of assuming constant side lengths. In this case the
convexity of P implies that [;_; has empty intersection with the interior
of S-(z), from which we again conclude p;—1 > p;.

Lemma 2. Let P be a simply closed polygon with constant side lengths,
z an end point of Gyea(P), which is obtained by removing a piece o; of a
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symmetric normal for some 1 =1,...  k, remomng the bounding vertez
pi of valency 2, and the other semi-open chord o} of the graph G(’P)
ending at pz from G(P) according to our reductwn procedure. Let zt
+ be the vertez next to z on Grea(P) and Q be the minimal polygonal
subarc of P containing two neighboring base points p and ¢ of z¥ and
pi- Then the curvature of P attains o local mazimum (with respect to
P) at a side of Q which is not at one of the ends of this polygonal arc,
if the corresponding base point is an s-base point.

Proof. Let r be the cyclographic radius of z. Then according to our
construction p;—; and p;y; must be v-base points of the cyclographic
center z, because P has constant side lengths. Since z is a vertex of the
graph G(P), there must be another base point of z. Otherwise S,(z)
could be enlarged by moving z on the line at equal distance to p;_; and
pi+1 and increasing r suitably without having points of P in its interior,
which would imply that z is in the interior of a chord of the graph G(P).
Considering from of these additional base points one which is nearest
to pi—1 or p;y1, we conclude from the assumption that z is an end point
of Grea(P) and that the side lengths of P are constant, that this point
must be p;—3 or p;y3. Extending this argument to possibly remaining
base points we get, that all base points of z can be described in the
form p;4o;-1 for j between some suitable integers m; < 0 and my > 1.

Let p be the base point of zT next to Dit2m,—1- I pis an s-
base point, then p is not contained in the segments s,, for all m =
=14+2m; —1,...,1 4+ 2my — 2. If p is a v-base point, then p =
= pm for some m < i+ 2m; — 1. Since ms — m; > 2 we have
Pit2my—1; Pit2my > Pit2mi+1, Pit2m,+2; Pit2am+3 € Sr(2). Furthermore
Aitom,—1 = Djtom, = Aitomi+1 = Ditam,+2 implies z € njpom, N
N Nitam,+2, and therefore fiyom, € ZPitam, or fitom,+1 € ZPifzmi+2
from which we conclude K421, > 0 or Ki42m,+1 > 0. Furthermore
the following conditions are equivalent: fiiom, = Z2 & Kijam, =
= Kitom+1 > 0 & fitom, 41 = 2.

Case 1: If fiyom, € ZDitam, and fiyam, # z, then this implies
Kitam, > 0 and Kigam, > Kigam, 41 I fivom, -1 & ZDitam, \ {2}, then
we have Kitom,; > Kit2m,—1 again, which shows that the curvature of
P attains a local maximum at S;19m,. U fitom,—1 € ZDitam, \ {2},
we have to consider fijom,—2. In this case £iya,m, —1 is guaranteed to
be positive. By assumption on zT and the minimality of i + 2m; — 1
Pitom,—3 must remain outside S.(z). Hence Ajpom;—3 = Aitam,—2 =
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= Ajyom,—1 implies that n;13,, 2 does not intersect ZDit2m, —1 and
therefore has no point in common with fi+2m, —1Pit2m;—1- This shows
that £;19m,—1 > Kitam,—2. Hence we conclude that the curvature of P
attains a local maximum at $;y9m, OF Sitam, 1.

Case 2: The remaining case is that Kit2m, = Kitam,+1 > 0 or
fi+2m, & ZDitam,. This implies that fiyom, 11 € ZPiram iz, and from
this we conclude k421, < Kitam,+1 and Kipom,+1 > 0. In the case
of equality the same argument as in case 1 will show the curvature
decreases again on s;yam,—1 or Si+2m,—2. Hence, if we assume that the
curvature of P attains no local maximum on s; for some [ = i + 2m; —
—1,...1 4 2my — 4, then fitom,~3 € ZPitam,—2 and Kitam,—3 > O.
Now we apply the same argument as in case 1, replacing Di+2m,+1 by
Pit2ms—3; Pit2m, DPY Pitamy—2, Pit2m,—1 DY Dit2mo—1, Ditam,—2 by
Pit+2m,, and p by ¢. Then we get that the curvature of P attains a local
maximum at $;j42m,—3 O Si4y2m,—2. Lhis proves our lemma. ¢
Special case. We want to consider the case that P has constant side
lenghts and that Greq(P) consists of one point z only. Then there are
two possibilities only:

i) All base points of z are s-base points and there is such a base point
on every side of P, i.e. P is circumscribed tangentially to the fixed
circle 5.(z), » denoting the cyclographic radius of z. In this case the
curvature of P has the constant value r=1.

ii) All base points of z are v-base points, and every second vertex of P is
such a base point. Hence we may assume without loss of generality that
pi € Sp(z)foralli =25, =1,... ,m,2m =k. Then z nyj—q for all
J=1,...,m. If we also have z € ny; for these j, then P has constant
cmvatule. Otherwise some ny; will meet one of the segments Zpz; 11
and Zpz;—7 in its interior and will have no point in common with the
other one. Then a refinement of the arguments in the preceding proof
will show, that the curvature of P attains at least two local maxima on
P and at least two local minima. We leave this to the reader because
no essentially new argumentation is needed.

Remark 2. The type of local maxima (resp. minima) we have found
are strict in the following sense: x; > k; for j =7+ 1,4 — 1 and there
are my < 4, mp > 4 such that x; = &, for j = mq,... ,my and &; >
> wj for j =my —1,my 4+ 1. This also refers to Lemma 1, if P is not
circumscribed to a fixed circle.

Theorem 1. Let P be a simply closed polygon with constant side
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lengths. Let E denote the number of ends of it reduced cyclographic
generator Grea(P). Then, with exception of the case that the curvature
of P is constant (i.e. that there ezists some circle such that all straight
lines belonging to sides of P are tangents to this circle), P has at least
2FE curvature vertices. For E =1 P has at least four curvature vertices.
Proof. According to the considerations made in the special case above,
we only have to consider the case when F > 2. In this case the curvature
cannot be constant. Lemma 1 and Lemma 2 imply that there belongs a
strict local maximum of curvature (in the sense of Remark 2) to every
end point z of Greq(P). This can be found on a polygonal arc of P
which is associated in a unique way with z and cannot be associated in
the same way with another end point of Grea(P). This shows that the
number of strict local maxima of the curvature of P is at least E. But
then we have the same estimate for the number of local minima, which
proves our theorem. ¢
Corollary (Four-Vertex-Theorem). Every simply closed polygon with
constant side lengths is circumscribed to a circle or has at least four
curvature vertices,

Because according to Prop. 3 Greda(P) is a tree, we have the fol-
lowing formula for the valencies Val(z;) of the vertices 21,... , z; of this
graph (in the non-trivial case), where F again denotes the number of

its ends:
1

E=2+ Y  (Val(z;)-2)

=1,Val(z;)>1

Hence we obtain as a lower estimate for the number of curvature vertices
according to Theorem 1 the number 2(2 + Zi‘:1,va.l(;i)>1 (Val(z;) — 2)).
Let Sr(z) be a circle which does not contain any point of P in its
interior and has at least two points in common with P. Then = € G(P).
We call the contact of Sgr(x) with P generic at the point of intersection
p, if
a) pis in the interior of some side s; of P and the neighboring sides
si—1 and s;4+q have empty intersection with P or
b) pis some vertex p; of P and the sides s;_5 and s;y; have empty
intersection with P.
Theorem 2 (Bose’s Theorem). Let P be a simply closed polygon with
comstant side lengths. Let Sgr;(x;), 7 = 1,... .. be distinet circles
which do not contain any point of P in their interior and have at least
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vj > 2 points in common with P. Assume that all intersections of these
circles with P are generic. Then P has at least 2(2 + Z;rf_:l(l/j —2))
curvature vertices.
Proof. According to our assumptions z; is a vertex of the graph G(P)
of valency v;. The genericity of the contact of Sg;(z;) with P at any
of the base points of z; implies that the reduction procedure could
not have removed the chords of G(P) emanating from z;. Hence the
valency of z; as a vertex of the graph Greq(P) also is v;. From this
we conclude with Theorem 1 and the considerations following to that
theorem for the number V of curvature vertices of P, using the notation
introduced there,
l m

Vo> o224+ ) (Val(z)=2) > 22+ (¥ —2). 0

1=1,Val(z;)>1 Jj=1 ‘
Remark 3. The genericity assumption can be removed, if the parts
are counted more carefully, where ; is the center of curvature for some
subarc of P. But then the corresponding formulation of Theorem 2 will
become very complicated.
Remark 4. In the case of a convex polygon, only Lemma 1 will be
needed for a proof of Theorems 1 and 2. Hence in view of Remark 1 we
have not to assume that the side lengths of P are constant. This shows
that Theorems 1 and 2 are valid for convex polygons in general, as has
been demonstrated in [13].
Remark 5. The assumption that the side lengths of P are constant,
relates the circles of curvature of P in a simple way with the interior
angles of P. Hence results can be derived from Theorems 1 and 2 for
local extrema of these angles or sums of neighboring angles. Results of
this type have been described in the convex case in [14].
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