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Abstract: In this paper we classify all Euclidean motions in E4 such that
the trajectory of every point lies in a three-dimensional subspace of Ey. We
show that all trajectories of such a motion are affinely equivalent with respect
to the motion parameter. There exist two classes of such motions, the general
type and paratactic motions. In the general class these motions are products
of plane motions in orthogonal planes. Some special cases are discussed.

1. Introduction

G. Darboux made several fascinating discoveries in geometry and
kinematics about one hundred years ago. One of them was the discovery
of a space motion, which has all trajectories ellipses, which do not lie in
parallel planes. This motion is now called the Darboux motion (see for
instance [3] and [4] for more details about the history of this motions).
The Darboux motion has several interesting properties:

1) Al trajectories are planar curves.
2) All trajectories are affinely equivalent (with respect to the motion

parameter, see [5]).

3) The motion is cylindrical (it means that it is a product of a plane
motion with a translation in the direction perpendicular to the

plane, see [3], [4]).
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Because of its interesting properties it drew the attention of many
geometers, who tried to generalize some of its properties. W. Blaschke
in [1] gave an analytic description of the Darboux motion and from his
considerations it is obvious that this motion is the only space motion
which has plane trajectories (apart from trivial cases including rotation
composed with a translation along the axis of rotation). This means
that properties 2) and 3) are a consequence of the property listed as
1). Many authors generalized properties of the Darboux motion, [2]
gives a generalization of the property 1) to E,, H. Vogler in [4] and [5]
contributed to the problem by giving new points of view, specially by
the study of property 2).

In the present paper we shall study the problem of Darboux in
the Euclidean space of dimension higher by one.We shall suppose that
the Darboux motion in Ej3 is defined as the only motion in Ej3 (up
to trivial cases) such that the trajectory of any point lies in a two-
dimensional subspace. From this point of view it is natural to consider
as Darboux motions in E,, such one-parametric motions in F, which
have all trajectories contained in subspaces of codimension 1. The aim
of this paper is to classify all such motions in E4. We shall see that this
problem can be solved, but neverthless by adding one more dimension
the nature of the problem changes drastically. We shall use methods of
differential geometry and we shall see that the order of corresponding
differential equations is raised by one — instead of solving ordinary
differential equations of second order, we are faced with third order
equations, which brings a new quality to the problem.

Another new quality of the problem is the size of all equations —
we shall have to deal with large and complicated equations which can-
not be simplified. As a consequence the use of a computer is necessary
and a solution of the presented problem was quite impossible several
years ago. All computations were performed on a DEC 3100 work sta-
tion using Mathematica. The use of a computer has also an influence at
the final form of the result — it makes quite unnecessary to print large
formulas in the manuscript, we shall usually present only the algorithm
which generates necessary expressions and we shall suppose that any-
body interested can generate all expressions on his own computer. To
give an information about the size of our computations we shall use the
function Lenght[ ] in Mathematica, which gives the number of terms of
an expression, which are divided by + or — and which will be given in
square brackets.
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2. Definition of the Darboux motion

Let us consider a sufficiently differentiable Euclidean motion g(t),
t € I of the moving Euclidean space E4 in the fixed Euclidean space
E,, which by definition is a one-parametric system of congruences of E,
onto E4. By alift of the motion ¢(¢) we understand any pair (R(t), R(t))
of orthonormal frames R(t) and R(t) such that ‘

(1) gOR(t) = R(t)  forall tel,
where R(t) = {A(t),&1(t),... ,&(t)} is an orthonorinal frame in the
moving space Ey, R(t) = {A(t),e1(t),... ,eq(t)} is an orthonormal
frame in the fixed space Ejy.

Let (R(t), R(t)) be any lift of a motion g(t). Let us denote

(2) R'=Ry, R'=R¢, w=¢-tn=¢+19,
where ¢ and 1 are 5 x 5 matrices. If the lift of the motion g(t) is

changed, we obtain new matrices & and 7] instead of w and n by the
following rule

(3) & = h™lwh, fi=h"nh + 2R,

where h = h(t), is the matrix of the change of the lift (see for instance
[2]). Let Q2 be the matrix operator of the k-th derivative of the trajec-
tory of a point; let X € Ey, X(t) = g(t)X, X (t) = Qx(t)X(¢). Then
(see [2])

(4) Ql = W, Qk+1 :Qfﬂk—ﬂkl/)—i—ﬁlk

Definition. A Fuclidean motion ¢(t) in E4 is called a §D-Darbouz
motion iff the trajectory of every point of E, lies in a 3-dimensional
subspace of Ejy.

Remark. A Euclidean motion ¢(t) in Ej4 is a 3D-Darboux motions iff

(5) Q= 2:X,QX,0: X, Q0 X| =0 for all X € Ey,

where vertical lines denote the determinant of the 4 x 4 matrix of coor-
dinates of vectors from the first up to fourth derivative of the trajectory
of a point. This means that (5) yields an algebraic surface of degree
4 in E, which must disappear as a necessary and sufficient condition
for 3D-Darboux motions. Before solving equation (5) we shall try to
find such a lift of the motion, for which w and n will have the simplest
possible form. We shall do it by the usual way of defining the canonical
(Frenet) lift and invariants of the motion.
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3. Invariants of Euclidean motions in E;

Let us write

0 O 0 O
(6) W = (Ldo W1>, 77— (,’70 ,’71)7 .

where w,n are 5 x 5 matrices, w,, 17, are 4-columuns, wy, 71 are 4 x 4 skew-

symmetric matrices. Let w; be a regular matrix, let A(t) = (;7 3)

be the matrix of the change of the lift, where P € R* is a 4-dimensional
vector, v € SO(4). Then
(7) @o =7 (we + w1 P), o1 = vy wry.
We can choose « in such a way that &; takes the Jordan normal form
(as w; is skew-symmetric, the Jordan normal form can be obtained
by using orthogonal matrices only) and P can be choosen in such a
way that @, = 0. w and n are 5 X 5 matrices and it is inconvenient
to write them in full, specially because many of their entries yield no
information. It is convenient to write them in 2 x 2 block matrices.
Therefore, let us suppose that we already have a lift of the motion
which satisfies w, = 0 and w; is in the Jordan normal form and we
shall consider only lifts with this property.

Then

(8) w1='<“1(§)'] uz(?s)J>’ ’71:<vj4(ét))J zftit))f)

. _0_1.,_P1(t) . o 9
where J = <1 0 >, Mo = <Pg(t))’ where Py (t), P»(t) are 2-columns,

wi(t),ua(t),v1(t),v2(t) are functions, wi(t)ug(t) # 0 and A(t) =

_ <a(t) +b(t)  c(t) +d(t)

T \e(t) —d(t) a(t)—b(t)
We have to consider two cases. a) u? # 3. Let us denote r(a) =

_ [cosa —sina

- < sina cosa

(8) and w, = 0 are of the form

(up to some permutations of vectors in the basis, which are easy tc
describe). Let us change the lift of the motion by (9). Then A =

> is a 2 X 2 matrix.

. Then the remaining changes of lift which preserve
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= r(—B)Ar(a). Computation yields
d=acosp+dsing, b=bcosv+ csiny, p=a—p, v=a+p,
d= —asinp 4+ dcosp, &= —bsinv + ccosv.

This means that we can change the lift of the motion in such a way
that ¢ = d =0, if a- b 5 0, the lift is fixed up to a finite group. We can
change the parameter of the motion to have u;(¢) = 1 and this proves
the following theorem.

Theorem 1. Let g(t) be a Euclidean motion in E4 such that wy is
regular, a®+d* # 0, b%+c* # 0. Then there is a unique lift of the motion
such that ¢ = d = 0. If we choose the parameter of the motion in such
o way that ui(t) =1, functions ua(t),v1(t), va(2), a(t), b(t), Pi(t), Pa(t)
constitute a complete systems of invariants of the motion.

Remarks. 1) Unique means up to a finite group. Invariants of the mo-
tion define the motion uniquely up to a change of frame in the moving
and fixed spaces. 2) If we neglect the translational part, we obtain a
corresponding Theorem for spherical motions. We can formulate cor-
responding statement for the special cases a-b = 0 as well. We use the
remaining isotropy group to specialize P, and P;, we leave details out.

4. Conditions for 3D-Darboux motions in the gen-
eral case

Letu; =1,¢=d =0,let us denote a+b = f,a—b = m,us = u and
let us substitute into (5). At first we shall consider only terms of degree
4 in Q. Let us denote by G(i,;,%,1) the coefficient at z'y/zFw! in Q,
where z,y, z, w are coordinates in E4. Then G(4,0,0,0)+ G(0,4,0,0) —
- G(2,2,0,0) yields

(10) (f2 —m*)(u® — 1)*(vg + 3u) = 0.
Similarly G(0,0,4,0) + G(0,0,0,4) — G(0,0,2,2) yields
(11) (#2 = M2 (u® = 1)*(v; +3) = 0.

We consider two cases

al)f?—m? # 0. Then vy = —3u, v; = —3. G(1,3,0,0)—G(3,1,0,0)
yields
(12) (mf' = fm)(1 —u?) +2(f* —m?)' = 0.

As f* 4+ m?* # 0, we can interchange f with m by the isotropy group if
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necessary to have m # 0. We write f =m - L and (12) yields

(13) B =2u'(1 — h?)/(1 —u?).

We substitute into G(0,0,1,3) + uG(3,1,0,0) from (13) and obtain
u'{(hm3 + 2mu)(1 + u4) — 2mu2(h + 2mu)+

+2(m'u’ — mu")(u? — 1) +4m(uw')*(h +u)} = 0.

o # 0, we express u” from (14), m' from G(0,0,1,3). From

G(2,2,0,0) — 2G(4,0,0,0) and G(0,0,2,2) — 2G(4,0,0,0) we obtain

(14)

u?(u? — 1) = 0, which is impossible. Therefore we have v’ = 0. From
G(3,1,0,0) we obtain
(15) - m'(km? — 10u) = 0.

Similarly as above we show that m' = 0 is impossible. If hm? = 10u,
we see from (13) that h is constant and so m is also constant, which is
impossible.

a2)f? = m? # 0. We change the lift to have f = m. Let us denote
vy =748, vy =7 — 5. We express () from (5) and terms of degree 4

give 10 equations, denoted by Jy,.. J10, as follows:
J1 = G(4,0,0,0), J, = G(0,0,4,0), J3 = G(3,0,1,0), J, = G(3,0,0,1),
Js = G(1,0,0,3), JG G(0,1,0,3), J; = G(2,0,2,0), Js = G(2,0,0,2),

Jo = G(2,0,1,1), Jig = G(1,1,1,1)
We have to solve the system of 10 differential equations

(16) Ji=0,¢t=1,...,10

of order 3 in unknown functions wu, s, m (r has disappeared), which are
very long and complicated. We shall show that this system can be
brought to a contradiction in the following way. We shall try to elimi-
nate all derivatives from (16) to obtain 3 algebraic equations in u, s, m
which do not have a common factor. This follows that u, s, m must be
constant and it is easy to show that (16) has no solution by constants.
We proceed as follows. At first me make the following substitution:
(17) m? =h, m =n'/(2m),m" = (K" —2(m")?)/(2m).

As a result m will disappear and we obtain equations (16) of the fol-
lowing lenght (in succession): 60, 68, 70, 97, 115, 82, 86, 87, 61, 62.
From (4) we see that equations (16) are linear in highest derivatives,
which are s', h",u"". We can eliminate them by using linear operations
— we express 8 from J; = 0, h" from Ji; = 0, we denote K; =
= Jy + Jiu?, Ky = Js — Jyu?, we observe that Jg = J;. We eliminate

u"" using J; and obtain new expressions from Js, Jy, Js, J7, we denote
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them L3[407], L4[397), Ls[426], L7[362], we define Lg = Lg — Lau?. The
coefficient at u' in K is equal to 3(1 — u) + 4s.

a) Let 3(1 —u)+4s # 0. We compute u" from K, and substitute
into K3. We see that K, splits into two factors, the first of which is a
sum of squares and at least one of them is not equal to zero.Therefore
the second factor must be equal to zero, we express (u')? from this
factor and substitute into remaining equations. Remaining equations
are linear in ' and algebraic in u, s, h, i’. We obtain new equations by
taking the derivative of the expressions for (u')? and u". By substitution
we eliminate all derivatives except 1’ and v’, all equations are linear in
u'. Elimination of u' leads to equations, which are linear in (h')? and
elimination. of it yields equations in h,s,u only. Unfortunately they
have a common factor which is equal to

(18)  [9(1 —u)+8s] [3(1+u) —2s] [3(1+ u) +2s]- R =0,

where R is a quadratical equation for s in terms of u. The first three
factors lead to a contradiction, R = 0 yields

27+ 39u — 63u? — 3u® + 3(u — )W
B 4(—3 — 14u + u?) ’
where W? = 45 + 180u + 278u? + 4u® + 5u*. The derivative of (19)
and substitution leads to equations which contradict (u')* > 0 or yield
algebraic equations for u and s only, which follows v = const, s = const.
u and s constant contradicts A > 0.

f3) Let 3(1 —u) +4s = 0. We substitute into (16) and we obtain a
contradiction to A > 0. This finishes the most complicated part of the

classification procedure, the rest is relatively simple. Let us formulate
now the obtained results.

(19) 5

We have two classes of motions according to the character of the
instantaneous motion. We shall call a Euclidean motion in E; a mo-
tion of the general type if the instantaneous motion has exactly two
mutually orthogonal invariant two-dimensional planes passing through
the instantaneous pole of the motion (w; has only simple eigenvalues).
This means that the instantaneous motion is a composition of rotations
in mutually orthogonal two-dimensional planes with different angular
velocities. We shall call a Euclidean motion in E, paratactic, if each
instantaneous motion is a composition of two rotations in mutually
perpendicular two-dimensional planes with the same angular velocity
(w1 has double eigenvalues). Invariant two-dimensional planes are not
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uniquely determined, there are infinitely many. Cases where w; is sin-

gular lead to trivial cases of 3D-Darboux motions — motions in parallel

three- or two-dimensional spaces, we leave this case out.

Theorem 2. A spherical 3D-Darbouz motion in Ey of general type is

a composition of rotations in fized orthogonal two-dimensional planes,

where the ratio of angular velocities satisfies the differential equation

Suu'v" — du(u")? 4 u"[-3u(u')? + 5uP (v’ —1)]-
—15ub(u')? —ud(u? —1)* =0,

where u(t) is the angular velocity of the second rotation as a function

of the first angle of rotation t.

Theorem 3. $D-Darbouz motion in E, of general type is cylindrical -

it preserves two two-dimensional directions.

Theorem 4. 3D-Darbouz motion in Ey of general type is a composition

of two plane motions in orthogonal two-dimensional planes.

Proof of Theorems 2, 3, 4. For the corresponding spherical motion

we have
. J 0 " = "U1J 0
Y=o wi) T 0w )]

which shows that Frenet formulas (2) split into two parts which inte-
grate separately. 0

Theorem 5. Let g(t) be a Euclidean motion in Ey of geneml type
such that A — 0. Then there is o lift such that P = (p(¢),0)T, Py =
= (q(t),0)T. If p(t)g(t) # 0, such a lift is unique (up to o finite group),
invariants of such a motion are u(t),v1(t), va(t), p(t), ¢(t)

Proof. The group (9) remains. We use it to specialize 7o to the given
form. {

Theorem 6. The set of all $D-Darbouz motions of general type in Ey
depends on 8 arbitrary constants and it is obtained by the solution of
a system of ordinary differential equations for invariants u(t), vi(t),
va(t), p(t), ¢(t). All §-dimensional trajectories of such a motion are
affznely equivalent to a curve which lies on a cylinder of revolution.
Proof. We expand (5) and we obtain exactly one equation for each of

the highest derivatives u'',v},v},p",¢", which can be explicity solved
with respect to them. The general solutlon depends on 9 constants, one

constant is absorbed by the translation of the dependent variable. For
matrices Q1,... ,Q4 we obtain the following identity

(21) Q4+ Qo + k(2 +83) =0,

(20)
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where k£ = [u?(1 — u?) 4 3(u')? + 4uv"]/(3uw'). This means that the
trajectory X (t) of every point satisfies the following differential equation
E(X'4+ X"y + X" 4+ X() = 0, which has X(t) = ficost + fosint as

solutions, fi, f; are constant vectors. ¢

5. Paratactic 3D-Darboux motions

b) u; = up = 1. It remains to deal with the special case where
wy has double characteristic roots. This case is much simpler than the
general one and therefore we shall proceed more quickly.

At first we shall find invariants of paratactic motions: For any lift of

such a motion we have wy = g 3 . At first we have to describe the
. zJ —-KT . g
isotropy group of wy. Let ¥ = ( }( 6] ), where K = (-’Ez :c: ,

be an element of the Lie algebra of the Lie group S0(4). Y belongs
to the isotropy algebra of w; iff the commutator [wy,Y] = 0, which
yields z4 = —23, 23 = x5. This means that w; has a four-dimensional
isotropy group. We shall represent elements of this isotropy group by
the following procedure. Let as define matrices Y7,Y5, Y3 in such a way
that
Y] is equal to Y, where 1 = a1, zg = ag, other elements are equal to
Z€ero,
Y, is equal to Y with z3 = —24 = a3, other elements are equal to zero,
Y; is equal to Y with z3 = 23 = a4, other elements are zero.

Let us denote g; = exp(Y;). Elements of the isotropy group can
be locally represented as the product

glai,az, a3, ay) = g1(a1, az)ga(as)gs(as).

Let Z be an element of a complementary subspace to the isotropy al-
gebra in the Lie algebra of SO(4). Then 21 = 26 = 0, x5 = —5, 3 = 24
will be a natural choice and the action of the isotropy group on Z is
described by

&3 = 23 cos(ay + az) — zg sin(ay + az),

Ty = xg sin(ay + az) + @3 cos(ar + az),
g2, g3 act trivially. Therefore we can change the lift of the motion to

have r3 = 0 and a three-dimensional isotropy group remains. This
group is locally isomorphic to 0(3) and it acts in the four-dimensional




142 A. Karger

vector space R?* represented by (PT, P}, see (8). This action is transi-
tive on directions and therefore we may choose such a lift that P, = 0,
Py = (a(t),0)T. This proves the following theorem.

Theorem 7. For a paratactic motion in E, there ezists a lift such that

770 = (Cl(t), Oa 07 0)T7

_((r+s)d AT [ f+m  —v
771—< A (7*—5)J>’ where A—< v f—m>'

Functions a,v,s,v, f,m are invariants of the motion (in the general
case).

Theorem 8. The set of paratactic §D-Darbouz motions depends on §
arbitrary constants and one arbitrary function. All three-dimensional
trajectories are affinely equivalent to a fized space curve.

Proof. We expand (5) and we obtain

(22) 2(m')2r — mm"r + m*® + mm'r’ =0

together with equations for f,v', a”, s’ which can be solved with respect
to them. This means that we can chose m(t) arbitrarily and the state-
ment follows from existence theorem for systems of ordinary differential
equations. Computation shows that Q4 = w1 + wes + w3823, where
wy = —1—m?, w3 = (2m/r +mr')/(mr), w; = w3(l+m?)—3mm'. §
Remark. Paratactic 3D-Darboux motions are not cylindrical if A=£0.
Trajectories are in general not equivalent to cylindrical curves. To give
an example of 3D-Darboux motion, we shall consider motions with
constant invariants. Such 3D-Darboux motions can be explicitly given
as we shall see from the following theorem.

Theorem 9. 9D-Darbouz motions in E4 with constant invariants are

paratactic. Their invariants are as follows: r = =2, m =0, 2 + s> +
+vi=1lorm=f=v=0r+s=—-1lorv=r=20Ff=m,
s = —1. Trajectories of these motions are affinely equivalent to the

A oor z = M.

curve T = cost,y = sint,z = e ;
Example. For illustrations we shall present an example of a paratac-

tic 3D-Darboux motion (v = r = f = m,s = —1). We have ¢(¢) =

=\7 4 , Where

T = (at — sint),a(cost —1),0,0)T, v = (r(Ot) 7(015) ) .
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