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Abstract: Pliicker transformations of symplectic spaces with dimensions
other than three are induced by orthogonality-preserving collineations. For
three-dimensional symplectic spaces all Pliicker transformations can be ob-
tained — up to orthogonality preserving collineations — by replacing some
but not necessarily all non-isotropic lines by their absolute polar lines.

In this paper we discuss bijections of the set £ of lines of a sym-
plectic space, i.e. a (not necessarily finite-dimensional) projective space
with orthogonality based upon an absolute symplectic! quasipolarity.
Following [1], two lines are called related, if they are concurrent and
orthogonal, or if they are identical. A bijection of £ that preserves this
- relation in both directions is called a (symplectic?) Plicker transforma-
tion. We shall show that any bijection £ — L taking related lines to
related lines is already a Pliicker transformation. Moreover, a complete
description of all Pliicker transformations (cf. the abstract above) will
be given. '

nstead of ‘symplectic’ some authors are using the term ‘null’.

2We shall omit the word ‘symplectic’, since we do not discuss other types of
Pliicker transformations in this paper. Cf., however, [1], [2], [4], [5], [8, p. 80fT], [9],
[10] for results on other Pliicker transformations.
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1. Symplectic spaces

Let (P, L) be a projective space, 3 < dim(P, L) < co. Assume that
7 is a symplectic quasipolarity [11], [12]. Thus 7 assigns to each point
X of P a hyperplane X™ with X € X™; furthermore Y € X7 implies
X € Y™ for all X,Y € P. Cf. also [6] for an axiomatic description of
projective spaces endowed with a quasipolarity.

We define a mapping from the lattice of subspaces of (P, L) into
itself by setting

(1) T~ (YX™|X €T)for all subspaces 7 # ) and § — P.

This mapping is again written as m and is also called a quasipolarity.
If (P, L) is finite-dimensional, then it is well known that 7 is an anti-
automorphism of the lattice of subspaces of (P, L£). In case of infinite
dimension the mapping (1) still has the properties

(VL) =T"nT", (hNL)" DT"VI,x, TCT™
LT ChL,=1T"D>7TS

for all subspaces 7;,73,7 C P. Note that in the last formula strict
inclusions are not necessarily preserved, if 77 and 7, both have in-
finite dimension®. Moreover, it is an easy induction to show for all
finite-dimensional subspaces 7 C P that 7™ = 7 and that every
completment of 7™ has the same finite dimension as 7.

(P,L,m) is a symplectic space with absolute quasipolarity = [T, p.
384ff], [11]. In terms of an underlying vector space V of (P, L) the
symplectic quasipolarity 7= can be described by a non-degenerate al-
ternating bilinear form of V x V into the (necessarily commutative)
ground field of V. If (P, £) is finite-dimensional, then it is well known
that dim(P, £) is odd.

We are introducing two binary relations on £: Given a,b € L then
define a and b to be orthogonal (L), if aNbd™ # (). The lines a and b are
called related (~), if alband aNb +# @, or if a = b. Given orthogonal
lines a, b there exists a point R € a N b™. Therefore

R™ S (anb™)™ >a™Vb™ =a" Vb

3 There are, e.g., hyperplanes HCP with H#X™ for all XeP. For all such
hyperplanes H™=P"=§, although H#P.
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The line b has a point in common with a™, since R™ is a hyperplane
and a™ is a co-line. Consequently, | and ~ are symmetric relations.
Each line a € L either is contained in a™ or is a complement of a™,
since @ N @™ being a single point would imply that X™ = a V a™ for
all points X € a\ a”, in contradiction to 7 | P being injective. A line
a € L is isotropic (self-orthogonal) if and only if a is totally isotropic,
i.e., a C a™. We shall write J for the set of all isotropic lines.

If Q is a point, then L£[Q)] stands for the star of lines with centre Q
and J([Q] := L[Q] N T for the set of all isotropic lines through Q. In
the following Lemma 1 we state two simple properties of isotropic lines
that are well known in case of finite dimension [3, p. 181ff], [7, p. 384ff]
but hold as well for infinite dimension:

Lemma 1. If Q € P, then all isotropic lines through Q are given by

JQl={zeLl|QeczcQ}.

Let a € L\ J be non-isotropic. The set of isotropic lines intersecting
the line a equals the set of all lines intersecting both a and a™.
Proof. Let a line z with Q) € ¢ C Q™ be given. This implies Q™ D
D z™ so that « and z™ are in the same hyperplane Q™. Since z™ is a
co-line, z and z™ cannot be skew, i.e. z € J[Q]. On the other hand,
from z € J[Q)] follows immediately that z Cz™C Q™. Next let ac L\ J.
If b € J intersects a at a point (), say, then Q € b C b™ implies
b™ = b C Q7, whereas @@ € a tells us a™ C Q™. Thus, as before, b
and a™ are not skew. Conversely, given points Q € a and R € a™ then
Re A" CQ"and Q € a C R™, whence QVR C Q"NR™ = (QVR)". {

We apply this result to show
Lemma 2. Distinct lines a,b € L with aNb # 0 are related if and only
ifaeJ orbe J.
Proof. If one of the given lines is isotropic, then a ~ b. Conversely, if
a~bandadJ, say, then b € 7 by Lemma 1. {

As an immediate consequence we obtain
Lemma 3. Let M be a set of mutually related lines. Then at most one
line of M is non-isotropic. _

Given lines a,b € £ then there is always a finite sequence

a~ay ~...~ap~b.

This is trivial when a = b. If anN b =: @} is a point, then there exists
a line a; € J[Q] so that a ~ a3 ~ b by Lemma 2. If a and b are
skew then there exists a common transversal line of a and b, say c,
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whence repeating the previous construction for a,c¢ and then for c,b
gives the required sequence. Thus (£, ~) is a Plicker space* [1, p. 199].
A (symplectic) Plicker transformation is a bijective mapping ¢: L —
— L preserving the relation ~ in both directions. We say ‘that ¢ is
induced by a mapping k: P — P, if

(AV B)? = A"V B" for all A,B € P with A# B.

The group PI'Sp(P, 7) consists of all collineations P — P commut-
ing with 7 [7, p. 388ff], [8, p. 19]. Obviously, each « € PI'Sp(P, ) is
inducing a Pliicker transformation.

If dim(P,L) = 3, then for each duality 7 with J™ = J the re-
striction 7 | £: £ — L is a Pliicker transformation. Moreover, in the
three-dimensional case there are always Pliicker transformations not
arising from collineations or dualities: Let £1 be any subset of L\ J

such that LT = £;. Then define
z—z ifzel\L,
z—z™ ifzely.

2) §:L— L, {

Such a bijection § will be called partial w-transformation (with respect
to Ly); it is a Plicker transformation of (£, ~), since

a~bean~nb e a"~bea" ~b"forall a,be L, aFb.

The identity on £ and the restriction of 7 to £ are partial 7-transforma-
tions, as follows from setting £; := @ and £y := L\ J, respectively.
For every other choice of Li(e.g., £1 := {a,a™}) it is easily seen that
there exist two non-isotropic concurrent lines z € £\ L1,y € £1. Then
z% = z and y® = y™ are skew lines. Such a Pliicker transformation
cannot arise from a collineation or duality.

2. The three-dimensional case

Theorem 1. Let (P, L, n) be a §-dimensional symplectic space and let
B: L — L be a bijection such that

a ~ b implies a® ~ b° for all a,b € L.

4Alternat;ively, L may be seen as the set of vertices of a graph with two vertices
joined by an edge if and only if the corresponding lines are distinct and related. We
refrain, however, from using terminology of graph theory.
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Then there ezists a partial T-transformation §: L — L such that 68 is
induced by a collineation x € PI'Sp(P, ).

Th. 1is a consequence of the subsequent Propositions 1.1-1.4 in
which § and (P, L, r) are given as above.
Proposition 1.1. There ezists an injective mapping x: P — P such

that

(3) TR = TJ(Q"] for all Q € P.
Moreover, B is a Plicker transformation, since
(4) JP=7.

Proof. By the invariance of ~ under 8, the elements of J[Q]? are
mutually related. We infer from Lemma 3 that J[Q]? contains at most
one non-isotropic line. Thus J[Q]® N J has at least two distinct ele-
ments, whence it is a subset of a pencil of isotropic lines, say J[Q’]
with Q' € P.’

We show J[Q'] C J[Q]P: Assume, to the contrary, that there exists
aline z ¢ J[Q] with z# € J[Q']. Recall that at most one line of J[Q18
is non-isotropic. Therefore there is a point X' € z# that is not incident
with any line of J[Q]?. Thus we can draw a line b’ = 5% through X'
that is not related to any line of J[Q]#. Hence b is not related to any
line of J[Q]. By dim(P,L) = 3, b and the plane Q™ have a common
point lying on some line ¢ € J[Q)], so that ¢ ~ b, a contradiction.

Next J[Q]® C J[Q'] will be established: Suppose there is a line
a € J[Q] such that a? ¢ J[Q']. Then a? ~ J[Q'] forces that o” is a
non-isotropic line either through the point @' or in the plane Q'™. Let
d € L[Q] be non-isotropic, whence J[Q]? U {d?} is a set of mutually
related lines containing the non-isotropic line a?. Since d? ¢ JQ)P
and J[Q'] C J[Q]”, the line d? # o also has to be non-isotropic in
contradiction to Lemma 3.

To sum up, there is a mapping « satisfying formula (3). The injec-
tivity of « follows from the bijectivity of § together with (3).

Finally, we prove (4): J# C J is a consequence of (3). Conversely,
assume that e € £\ J. Choose a point R € e. Then J[R]? U {f} =
= J[R"*] U {€?} is a set of mutually related lines. Therefore ef is a
non-isotropic line either through R* or in R*". Lemma 2 and J? = 7
imply that § is a Pliicker transformation. ¢
Proposition 1.2. Let a € £L.Then

(5) af™ = q"P,
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(6) Q* € P Ua™ for all Q € a.
Ifae L\ J, then either

(7) Q cal foralQeca

or

(8) Q" € a™ for all Q € a.

" Proof. If a € 7, then a® € J, whence (5) follows from a = a™ and
af = aﬂ"’. Ifae L\J, then, by Lemma 1,
C={zecl]|z+#az~a}

is a hyperbolic linear congruence of lines with axes a and a™; moreover
C C J. We infer from B being a Pliicker transformation and (4), that
CP C J is also a hyperbolic linear congruence with a?,a™ being its
axes. Obviously, only af and a™ are meeting all lines of C. On the
other hand, by Lemma 1, the axes of C? are a® and a™. This completes
the proof of (5).

If a € J, then (6) holds true, since Q* € a? =a™. If a€ L\ J and
Q" ¢ a, then a® ~ J[Q)? = J[Q*], whence Q"™ D a” and therefore
Q¥ € o™ = o™, as required to establish (6).

Now let a € £\ J. Assume to the contrary that there exist points

Qo,Q1 € a such that Qf € o® and QF € a™. Then a € J implies
JQo]NT[Q1] = 0 whereas, by Lemma 1 and (3), Qf VQf € J[Qa]? N
N J[Q1])?. This is a contradiction to 8 being injective. ¢ :
Proposition 1.3. Write L1 for the set of all lines a € L\ T satisfying
(8). Then
T Zf Tec L \ ,Cl,
z—z™ ifz €Ly,
is a partial w-transformation. The Plicker transformation §3: L — L
takes intersecting lines to intersecting lines.
Proof. In order to show that éis a well-defined partial 7-transformation,
we just have to establish that a € £, implies a™ € Ly: Given Qg € a
and Q1 € a™ then Qp V @, and (Qo V @1)? = QF V QF are isotropic
lines. Therefore

(9) §: L — L, {

VT #£d"=a"¢J
so that QF ¢ a™. Now, by (8), a™ € £y. If distinct lines b and ¢
intersect at a point R, then 5% N ¢5# = R* follows from (7), (8) and
(9)- 0
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Proposition 1.4. The mapping £: P — P defined in (3) belongs to
PI'Sp(P, ). The Plicker transformation 80 is induced by this colline-
ation .

Proof. The bijection 64 is taking intersecting lines to intersecting lines.
Every star of lines is mapped under §4 either onto a star of lines or onto
a ruled plane [4], [10, Th. 1]. The latter possibility does not occur, since
6 is induced by «. Because of dim(P, £) being finite, the mapping & is
a collineation [10, Th. 3]. Finally, 7? = 7 implies « € PI'Sp(P, 7). {

3. The higher-dimensional case

Theorem 2. Let (P,L,7) be an n-dimensional symplectic space (5 <
<n < oo) and let B: L — L be a bijection such that

a ~ b implies a® ~ b° for alla,b c L.

Then B is induced by a collineation k € PT'Sp(P, ).

As before, Th. 2 will be split into several Propositions subject to
the assumptions stated above.
Proposition 2.1. The bijection § takes intersecting lines to intersect-
ing lines. There exists an injective mapping k: P — P inducing 5. This
Kk 18 preserving collinearity and non-collinearity of points. Moreover

(10) L1Q)? = L[Q"] for all Q € P.

Proof. Suppose that a,b € £ meet at a point Q. If a ~ b, then a? and
b? are intersecting. Otherwise, by Lemma 2, a ¢ J and b ¢ J. Then
JIQI U {a} and J[Q] U {b} are, respectively, sets of mutually related
lines. Fach line of £ is related to at least one line in J[Q], since QT is
a hyperplane covered by J[Q]. If J[Q]? were a set of coplanar lines,
then all lines in £ would meet a fixed plane in contradiction to n >
> 5. Thus J[Q)? is not contained in a plane, whence there exists a
point Q' with J[Q]? C L[Q']. Since the elements of J[Q]? U {a#} are
mutually related, Q' € a®. Repeating this for b yields Q' € b%. Now
the assertions on x follow from [10, Th. 1]. {

Proposition 2.2. The bijection § is o Plicker transformation, since

(11) JP=7.

Proof. Given a € J then choose a point ) € a. We observe that
a ~ L[Q], whence a® ~ L[Q*] by (10). Since L[Q*] contains more than
one non-isotropic line, a® € J follows from Lemma 2.
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Given b € £\ J then choose a point R € b. Assume to the contrary
that 5 € J. Then for each line

z € LIR]\ (J[R] U {b})
there exists a line T € J[R| such that b,z,T are three distinct lines
in one pencil. By the invariance of collinearity and non-collinearity

of points under &, as is stated in Prop. 2.1, 4%, 2# Z# are again three

distinct lines in one pencil. However, b% and Z” are isotropic, so that
zf € J[R").

Hence L[R])? C J[R"] which is impossible by (10).

Now (11) and Lemma 2 show that § is a Pliicker transformation. ¢

Proposition 2.3. The mapping k: P — P, described in Prop. 2.1, is
a collineation belonging to PI'Sp(P, ).
Proof. Since f is a Plicker transformation of (£,~), Prop. 2.1 can
be applied to ~!. Therefore 8 and #~! are preserving intersection of
lines. By [10, Th. 2], the mapping & is a collineation and, by formula
(11), k € PI'Sp(P, 7).

This completes the proof of Th. 2.
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