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Abstract: According to the planar version of Ivory’s theorem the net of
confocal conics has the property that in each quadrangle formed by two pairs
of conics the diagonals are of equal length. It turns out that this theorem is
closely related to self-adjoint affine transformations. And from this point of
view it is possible to prove the Minkowskian analogon of Ivory’s Theorem in

a more unified way for all six types of conics.

1. Introduction

According to the planar Euclidean version of Ivory’s Theorem the
net of confocal conics has the property that in each quadrangle formed
by two pairs of conics the two diagonals have the same length (see
Fig. 1). Another formulation of this theorem uses the fact that for any .
two confocal conics k, k' of the same type an affine transformation o
with k£ — &’ can be defined such that curves of the confocal net intersect
k and k' orthogonally at corresponding points X € k and X' = a(X) €
€ k'. Then Ivory’s Theorem states
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X1 a(X3) = a(X1) X, for all X1, X, €k.

This statement holds also for singular @ when k' = (k) degenerates
into a set of points located on an axis of symmetry.

; Fl : E}‘ FZ
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Fig. 1. Ivory’s Theorem in the Euclidean plane E2

Ivory proved 1809 in [3] the 3D-version of this theorem by straight
forward calculation using an appropriate parametrization (compare also
[1], [2], [4], [5], [7])- Actually, this theorem holds in the Euclidean n-
space for any n > 1 (see e.g. [6]). The aim of this paper is to demon-
strate that Ivory’s Theorem is also valid in the Minkowski plane M?
(pseudo-Euclidean plane). However, we avoid a straight forward com-
putation separately for each of the six types of conics. Based on a
lemma on self-adjoint affine transformations we give a more or less
general proof in Section 3 by checking the system (17) of nonlinear
equations.

The Minkowski plane M? can be identified with the real affine
plane where the underlying vector space R? is endowed with a non-
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degenerate indefinite symmetric bilinear form (‘scalar product’). The
distance of points X,Y with coordinate vectors x, y is defined as

XY =[x = yllm = V/(x = y)-(x = y)-

This distance is either a nonnegative number or the product of a positive
number and the imaginary unit . A line segment XY as well as the
spanned line [XY] are called lightlike (isotropic), spacelike or timelike
if the length XY is zero, positive or imaginary, respectively.

We call an affine coordinate system orthonormal in the Minkowski
sense when the ‘scalar product’ of two vectors x = (z1,z2), y = (y1,y2)
can be written as

(1) X'y = T1Y1 — TaY2.
Then the coordinate axes separate the two isotropic directions harmon-
ically. In the sequel we only use orthonormal coordinates.

The figures in this paper are based on the standard model of M? in
[E? where the coordinate system is at the same time orthonormal in the
Fuclidean sense. Lightlike lines make an angle of 45° with the z-axis,
spacelike lines have an inclination < 45°. In the case of ambiguities we
use the prefix m- or e- at geometric terms in order to indicate whether
they are meant in the Minkowskian or FEuclidean sense, respectively.

Two conics are confocal in M? if and only if their tangential
equations span a linear system which contains the set of isotropic lines
as a singular curve. This linear system usually contains also other
singular curves — line pencils or pairs of line pencils. They can’t be
uniquely defined as point sets. However, they can show up in different
ways as limiting curves of confocal conics.?

2. Types of conics in M?

Up to m-isometries and a commutation of the coordinate axes
there are six types of conics to distinguish in M2. We present their
equations in normal form:

A. Circles: They have the normal form

In [E? (see Fig. 1) the confocal ellipses with decreasing minor axes tend to the
line segment terminated by the focal points F1, F2. The limiting curve of confocal
hyperbolas with decreasing secondary axes consists of two half-lines terminated by
Fy, Fy, respectively.



14 H. Stachel

(2) k: 22 —z2 = o with o # 0.

We obtain the set of curves confocal to k£ by replacing the squared
m-radius o by a parameter t € R.

B. Conics with two axes of symmetry: Their equation in normal
form reads

2 2

(3) k: ﬂ—!—EZ:lwit}:la'r(a-}-T)5750.
T

o

e := /o + 7 denotes the excentricity of these conics. Their m-focal
points are

Fy = (—e,0), F; = (e,0), F5 = (0,—e), Fy = (0,¢€)
(see Fig. 2). The set of conics confocal with k can be written as

2 2

T €T

1 2
+

(4) =1fort e R\ {o,7}.

o—t T+

Fig. 2. Confocal conics with two axes of symmetry (type B) in M
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Fig. 3. Net of confocal conics (type B) in M?

Under o,7 > 0 we get ellipses for —7 < t < o, hyperbolas for
t < —7 ort > ¢. The limiting curves of the ellipses for ¢ — —7 or
t — o are the closed line segments F} Fy or F3Fjy, respectively. The
hyperbolas tend to pairs of aligned but disjoint half-lines terminated
either by the focal points Fi, Fy or by F3, Fy.

C. Hyperbolas with a spacelike and a timelike asympote: These
conics (see Fig. 4) have a center but no axis of symmetry. We use coor-
dinate axes corresponding under the involution spanned by the isotropic
directions and the asymptotes. Let —1 < o < 1 denote the e-slope of
the spacelike asymptote. Then we get the equation

(5) o(z2 —z2) + (1 — 0*)z1z2 = 7 with 7 #£ 0.
The corresponding set of confocal conics reads
6) [0+ (1 +0%)*)(25 — 1) + (1 - o)1z =
= 7[1+ 80t — 4(1 + 0%)*?], t € R.

In the Euclidean sense all these hyperbolas are orthogonal (see Fig. 4).
The pairwise conjugate complex m-focal points are located on the e-
isotropic lines xy = +iz;.
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Fig. 4. Confocal conics without any axis of symmetry (type C) in M2

D. Hyperbolas with one lightlike asymptote: We specify the non-
isotropic asymptote as x;-axis and obtain

(7) k: z129 — 25 = 0 with o # 0.

The confocal conics with equations

(8) —te? 4 gizg + (t— 1)zt = o(12t)% for t € R

share the focal points Fy = (v/20,v/20) and Fy = (—v/20, —/20).

E. Parabolas with non-isotropic axis: We choose the axis as x;-axis
and get the normal form

(9) k: z2 — 40z, = 0 with o # 0.
The confocal parabolas obeying
(10) 22 —4(t+o)(z, —t)=0forteR

share the focal point F = (—g,0).
F. Parabolas with a lightlike axis: Their equation in normal form
reads

(11) k: (21 + 22)% — 20(z1 — z2) = 0 with o # 0.
The confocal parabolas obey
(12) (21 + z2)? — 20(z1 — z3) + 2t(z1 + 22) + t?=0forteR
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3. Proof of Ivory’s Theorem in M?

We follow the ideas presented in [6], Lemma 2, and stress the
fact that Ivory’s Theorem deals with pairs (x;,x}) of affinely related

points? x; € k, x; € k' of two confocal conics k,k’. Are there curves
k,k' with the 'Ivory property’ ||x1 — Xb||lm = ||X] — X2|lm at any affine
transformation?
Let us start with two affine mappings:
aM? - M?, x5 ax) =a+I(x),

(13) ) 0
o M* - M,y a¥(y) =a* +1*(y)

with ,7*: R? — R? denoting the induced linear mappings.
Suppose there are curves of Ivory type, i.e., point sets X =
= {x1,%2,... and Y = {yq, ¥, ... } such that there are equal distances

%5 = &*(Ye)llm = lle(x;) = ygllm for all x; € X and y,, €Y.

This gives rise to the equation (x; — a*(y;))-(x; — a*(y)) = (a(x;) —
— V) - (a(x;) — y), or after substitution of (13) 4
K = 2y 0" + 1 ()] 37 + 1 ()P = [a-+10c5) )% — 20a -+ 105) ]y + 2
Now we specify that the linear mapping [* is adjoint to [,> obeying
(14) u-1*(v) = I(u)-v for all u,v € R?.

Then in the equation above we can cancel the ‘mixed’ terms x;-1*(y;) =
= [(x;)-y;, and separate the remaining terms such that those depending

from x; are placed on the left side, those depending from y, on the right
side:

x2—1(x;)? —2xja* —20(x;)}a+a"? =y, 2 1" (y;,)* — 2y-a — 23" 1" (y;) +a°.
As this equation shall hold for all j,k € {1,2,...}, both sides must
equal a constant ¢ € R. This results in two quadratic functions

f(x) :==xx —1(x)-1(x) — 2x-[a* + {"(a)] +a*-a" —c,
g(y) =y-y =" (y)-I"(y) — 2y-[a+1(@")] +aa—c

with f(x;) = g(y,) = 0 for all j,k € {1,2,...}. Hence X is the set of
zeros of f(x) and therefore a curve of second order. Conversely, for each

(15)

2From now on we identify points X with their coordinate vectors X.
31t is proved in [6] that this condition is necessary if there are at least three
non-collinear points X1,Xz2,Xs. Here we only need the sufficiency.
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constant ¢ € R all zeros x of f and y of g fulfil ||x — o*(y)|lm = ||a(x) —
= Y|lm-

In the Ivory case the zero set X coincides with Y, and o equals
a*. Thus we have achieved the following
Lemma 1. For each self-adjoint affine transformation o, i.e. with[* =
=1 and a* = a in (13), the second-order curve X: f(x) = 0 according to
(15) together with its image a(X) has the Ivory property ||x1—o(x2)||m =
= ||la(x1) — xa||lm for any two zeros xi,xz of f.*

In order to prove Ivory’s Theorem in M2, we associate to each
conic k a self-adjoint affine transformation o such that k& obeys the
corresponding equation f(x) = 0.

We use orthonormal coordinates and set up

!
T T a10 a a Z1 .
a=a": =)= 4 T 2 with ag; =—a1s.
T3 ) Q20 a1 Q22 To

The last equation is equivalent to the fact that [ is self-adjoint with re- -
spect to the indefinite scalar product (1). Then the quadratic functions
in (15) read explicitely

f(x) = g(x) = (1 - ai; + aly)zi — 2a12(an1+
+age)z1zy — (1 + a2y — a2y)z2 — 2[(1 + a11)aio + a12a00)z1+
+2[(1 + ags)ag0 — a1za10)T2 + a2y — a3y — c.
On the other hand, let a conic k£ be given by the equation
(16) Y1123 + 27122125 + Y2275 + 271071 + 2720%2 + Yoo = 0

which of course is unique up to a factor A € R\{0} only. The comparison
of coeflicients gives rise to the following system of equations for the
unknown a;g:

, 1-— a%l + a%Q = Ay11 —(1 + a11)a10 — a12a20 = AY10
(17) —1—a?, + a2 = Nypp  —@12010 + (1 + asz)az = Ayzo
—a12(a11 + az2) = A2 ajy — a5 — ¢ = Ayoo

After the equations in the first column are solved for a1, a12 and asgs,
there are linear equations remaining for a1g, aso and c. We deduce from
the first column

4Note that this holds for any symmetric bilinear 'scalar product’ in any di-
mension (cf. [6]).
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(18) a%z —a%1 = A711+722) and v1a(a22 —a11)+ (y11 +722)a12 = 0.

CASE 1: 413 = y11 + 722 = 0; k is a circle (type A):
There are two solutions for «, either

azy = aix = £4/1—Ay11, a1 =0 or

G20 = —Q11, G12 = i\//\’Yll +a}; —1 Va1 €R

In the normal form (2) of a circle k£ we have y1; = 1, 710 = 720 = 0
and ygo = —o. Then in the first solution « is a dilatation with scaling
factor v/1 — A, A < 1, and (k) is a concentric circle or a point (A = 1).
This is the Ivory case.

The second solution of a yields a bilinear mapping [: R? — R?
with the coordinate representation

<a11 ‘112>:,/1_)\( Cf)Sh(p Smh(p)under)\<1, or

a1 @99 —sinhyp —coshe

< @ a)under)\zl
—a —a

for any a € R. In the regular case « is the product of a dilatation and an
m-reflection in a diameter line; «(k) is again a circle concentric with k.
The singular case is the only one which has no Euclidean counterpart:
a(k) is an asymptote of k or (a = 0)-it degenerates again into the center
point of k.

CASE 2: v12 =0, 711 + 722 # 0; k is of type B or E:

We solve (17) and (18) and obtain

a2 =0, ai1=+1- A1z, agz = /1 + Myaz.

This gives the ‘classical’ cases with Euclidean analoga:
For the normal form (3) of type B (y11 = 1/0, va2 = 2/7) we
obtain the affine transformation

at (w1,22) = (2, 74) = (21v/1= Mo, 22T+ A/7)

under A\/o <1 and A\/7 > —1. This is displayed in Fig. 2. The pairs of
conics (k, a(k)) within the confocal net (see Fig. 2) are any two ellipses
or any two hyperbolas sharing their principal axis.

In the singular case A = —7 with a: X — X7 (see Fig. 2) Ivory's
Theorem reveals
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X+ XFh=X1"+X2"=X"1+X"2=12.
Together with the second singular case A = o, X — X", we obtain
e.g., that any ellipse k in M? can be defined as

k={X|XFi+XF=12=C} =
{X||XF; -~ XFy| =34 = Ci} for a constant C > 0.
In the parabolic case of type E (y11 =0, 722 = 1, 710 = —207) we get
a: (z1,z2) — (27, 7}) = (/\a—l—xl, :EQ\/I_—lj) for A > —1.

The parameters of corresponding parabolas k£ and a(k) have the same
sign.

CASE 3: 7411 +722 =0, 712 # 0; k is of type C:

We obtain

—-A
ajz = *’71—2—, azz = a1y and
aii + aaz
g(af;) =0 for q(z) := 4z - 4(1 — Ayin)z — A%y, =0.

The quadratic function ¢(z) has always a positive zero since the coeffi-
cient of z? is positive and ¢(0) < 0.

In the normal form (5) of type C we have v99 = 0 = —v11 and
Y12 = 3(1 — 0'2). This implies
A1 — o2 A2(1 — o%)?
algz-—(—g—) and a3 — (14 Xo) = (1=o%)

da1;
The affine transformation

’ Ai—o?)
- , m— _ 2
To !, A(ialclf ) a1 Ty

is the product of an e-rotation and a dilatation® and maps k& onto a
confocal conic obeying (6) with A = 4¢ (compare Fig. 4).

CASE 4: 711+ 22 #0 and v12 # 0; k is of type D or F:

We deduce from (18)

_ Y12(a11 — ag2)
Y11 + Y22

and substitute this in the first equation of (17). Replacing a2, from
(18) results in

5

aiz

a is an e-similarity. This can also be concluded from the fact that the
singular curves in the confocal net, the e-isotropic lines, intersect k and a(k) at
corresponding points. Hence these e-isotropic lines remain fixed under c.
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aze = :
(295 —vE1 — 2711722 — ¥E5)a?; — (11 4 v22) [(111 + v22) (A1 — 1) — Ay
27%2“11

Then (18) gives rise to a biquadratic equation for a;;. However, for the
types D with equation (7) (y11 = 0, y12 = %, Y22 = —1) and F with
equation (11) (y11 = 712 = 722 = 1, 710 = —7Y20 = —0,) this equation
is quadratic only, and it has always real solutions.

The affiné transformation « for type D reads

() o ()= s (50 ) () e
\72 zy)  F2/4—22\ —A 3A-4) \z,)’ ’

and the image (k) obeys (8) with A = 4¢.

For type F we get a;; = +(A — 2)/2. It turns out that the linear
equations for aip and agg in (18), right column, are solvable only with
the lower sign of a;;. We then obtain for type F the affine transforma-

tion
(@)~ G)=7E0) (0 ) ()

22 h) 4 \2-) 2 A 240 ) \ay)’
The equation of a(k) coincides with (12) under t = —2\o.

Thus we have proved
Theorem. 1. For any conic k in the Minkowski plane M? there is a
self-adjoint affine transformation o such that k obeys the corresponding
equation f(x) = 0 according to (15).

2. Ivory’s Theorem is true in M? for all siz types of conics.

It can be verified that in all cases the path a(xg) of any point
xo € k for variable ) is again located on a curve of the confocal net. A
general proof for this is left for a future publication — as well as a proof
for the fact that any regular self-adjoint o maps k: f(x) = 0 (given by
(15)) onto a confocal conic a(k).
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