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is semi-symmetric (R o R = 0) then it is locally symmetric (VR = 0); b) If
an almost Kenmotsu manifold is semi-Ricci-symmetric (R o S = 0) then it
is locally-Ricci-symmetric (V.S = 0); ¢) If an almost Kenmotsu manifold is
semi-conformally-symmetric (Ro C = 0) then it is a conformally flat manifold

(C = 0). Some other properties equivalent to the above are found.

1. Introduction

A Riemannian manifold (M, g) is called semi-symmetric if its cur-
vature tensor R satisfies the condition Ro R = 0. A complete instrinsic
classification of these spaces was given by Z. I. Szabé [6]. However
it is interesting to investigate the semi-symmetry of special Riemann-
ian manifolds. K. Nomizu proved [4] that if M is a complete, con-
nected semi-symmetric hypersurface of a euclidean space R™"*! n > 3,
(i.e: Ro R = 0) then M is locally symmetric (i.e.:. VR = 0). For
the case of a compact Kahler manifold M. Ogawa [5] proved that if
it is semi-symmetric then it must be locally-symmetric. In the case
of contact manifolds S. Tanno [7], showed that there exists no proper
semi-symmetric (or semi-Ricci-symmetric) K-contact manifold.

Recently M. C. Chaki and M. Tarafdar [1] proved that if the cur-
vature tensor R and the conformal curvature tensor C' of a Sasakian
manifold M™ (n > 3) satisfy the relation RoC = 0, then M™ is locally
isometric with a unit sphere S™(1). Similar results were obtained by
N. Guha and U. C. De [2] for the case of a K-contact manifold with
characteristic vector field belonging to the K-nullity distribution.

In the present paper we consider an almost Kenmotsu manifold [3]
satisfying one of the following conditions:

RoR=0, RoS=0 or Ro(C=0,
and among others we show that:
i) If an almost Kenmotsu manifold is semi-symmetric (RoR =
= 0) then it is locally symmetric (VR = 0);
ii) If an almost Kenmotsu manifold is semi-Ricci-symmetric
(Ro S = 0) then it is locally-Ricci-symmetric (VS = 0);
iii) If an almost Kenmotsu manifold is semi-conformally-sym-

metric (R o C = 0) then it is a conformally flat manifold
(C=0).



Some remarks on almost Kenmotsu manifolds 33

2. Preliminaries

Let (M, ,&,n, g) be an n dimensional almost contact Riemannian
manifold, where ¢ is a (1, 1) tensor field, ¢ is the structure vector field,
7 is a 1-form and g is a Riemannian metric. It is well-known that ¢, &,
1, g satisfy

(2.1) n€)=1, w&=0, nop=0
(2.2) ' =—id+n®¢, n(X)=g(X,¢)
(2.3) 9(pz,pY) = g(X,Y) — n(X)n(Y)

for any vector fields X, Y on M.
If moreover ‘

(2.4) (Vxe)Y = —g(X, oY) — n(X)pX
(2.5) Vx€=X~n(X)¢

where V denotes the Riemannian connection of g, then (M, ¢, &, 7, g) is
called an almost Kenmotsu manifold. An almost Kenmotsu manifold is
a nice example of an almost contact manifold which is not a K-contact
(and hence not a Sasakian) manifold (see Kenmotsu [3]).

Now let us recall some important curvature-properties of almost
Kenmotsu manifolds. (For details see [3]). We have

(2.6) R(X,Y)¢ =n(X)Y —n(Y)X
(2.7) S(X, &) = —2nn(X),

where S denotes the Ricci curvature tensor. From (2.6) it easily follows
that
(2.8) R(X, Y = (X, Y){ —n(Y)X

(2.9) R(X,£)€=n(X){ - X.

,3. Almost Kenmotsu manifolds with RoR = 0 or
RoS=0

In this section we show that in the case of almost Kenmotsu mani-
folds we also have Tanno-type results [7]. Namely we have the following
Theorem 1. For an almost Kenmotsu manifold the following condi-
tions are eqivalent:
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i) M s of constant curvature —1.
ii) M is locally-symmetric, i.e.: VR = 0.
i) M is semi symmetric, i.e..: Ro R = 0.
iv) R(X,£)oR=0 for any X € X(M).
Proof. i) = ii) == iil) = iv) is clear.
We are going to prove iv) = 1). Assume condition iv), which
is equivalent to

(3.1) R(X,6R(U, V)W —R(R(X, &)U, V)W —R(U, R(X, £)V)W-—

~R(U,V)R(X, W =0 VYUV, W € X(M).

Put U = ¢ in (3.1). Using (2.8), (2.9) we get:
(3.2)

R(X, R, VIW=R(X,&)(n(W)V —(V,W)&) =n(W)R(X, §) V-
LV, W)R(X, )€ = n(W) (X, V)E—n(V) X) —(V, W) (n( X )~ X) =
= (W)X, V){—n(V)n(W)X —(V,W)n(X)¢ + (V, W) X.
(3.3) R(R(X,£)§, V)W = R(n(X)§-X, V)W =
= n(X)R(E, VIW=R(X, V)W = n(X)(n(W)V—V, W)E)-R(X, V)W =
= n(X)n(W)V —n(X )V, W)é~R(X, V)W.
(34)  R(§R(X, V)W = n(W)R(X,§)V—(R(X, )V, W){ =
= n(W)((X, V)E=n(V)X)((X,V)E-n(V)X, W )¢ =
= (W)X, V)E—n(V)n(W)X — (X, V)EW)E +n(V (X, W)E.
(3.5)  R(&VIR(X,OW = n(R(X, )W)V —(V, R(X, )W) =
= ((X, W)E=n(W)X, &)V —(V, (X, W)E—n(W)X )¢ =

= (X, W)V =n(X)n(W)V = (X, W)n(V){ +n(W)(X, V)¢,
Taking into account (3.2-5) and using (3.1) we obtain:
(VW)X +R(X, VW — (X, W)V =0
or
R(X, V)W = (X, W)V — (V, W)X,
that is M is of constant curvature —1. ¢
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Theorem 2. In an almost Kenmotsu manifold the following conditions
are equivalent:
i) M is an Einstein space with § = —2ng
i) VS =0
i) R(X,Y)oS=0 forany X, Y
iv) R(X,£)08 =0 for any X,
where S denotes the Ricci curvature tensor.
Proof. i) = ii) = iii) == iv) is clear.
Now we assume condition iv), which is equivalent to

(3.6) S(R(X, U, V) + 5(U, R(X,£)V) =0,
and we conclude i).

From (2.8) and (2.7) it follows that
(3.7) S(R(X, U, V) = S(X,U),—n(U)X,V) =

= (X, U)8(5, V) =n(U)S(X,V) = —2n(X, U)n(V) = n(U) S (X, V)
(3.8) S(U,R(X,£)V) = 5(U, (X, V)§ = n(V)X) =

= (X, V)8, &) —n(V)S(U, X) = —2n(X, V)n(U) — n(V)S(U, X).
These yield
2n(X, U)n(V) +n(U)S(X, V) + 2n(X, VIn(U) + n(V)S(U, X) = 0.
Put U = £. Using (2.7) we get |
S(X,V)+2n(X,V)=0.
Therefore M is an Einstein space with S = —2ng. ¢

4. Almost Kenmotsu manifolds with RocC =0

Sasakian manifolds with R o C = 0 (where C is the conformal
curvature tensor) were investigated by M. Chaki and M. Tarafdar [1].
They showed that a Sasakian manifold satisfying RoC = 0 is of constant
curvature 1, and hence it is locally isomorphic with S™(1).

Now we show
Theorem 3. For an almost Kenmotsu manifold M>"*1 the following
conditions are equivalent:

i) M is of constant curvature —1
i) M is conformally flat i.e.: C =0
iii) M is conformally symmetric i.e.: VC =0
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iv) M 1is semi-conformally-symmetric i.e.: R(X,Y)o C =0 for
any X, Y.
v) R(X,&)oC =0 for any X.
Proof. i) <=> ii) is proved by Kenmotsu ([3], Prop. 11).
i) = i) = iii) = iv) == v)is clear.
So it is enough to see that v) = ii).
By definition

(4.1) C(X,Y)Z =R(X,Y)Z—

519, 2)QX — (X, 2)QY + 5(Y, 2)X — S(X, 2)Y }+

+2n(;ﬁ{g<x 2)X - 9(X, 2)Y},

where @ is the Ricci operator defined by S(X,Y) = ¢(QX,Y).
Assume condition v), which is equivalent to

(4.2) (RX,£)C(U, V)W — C(R(X, &)U, V)W —
~C(U,R(X,6)VYW — C(U,V)R(X,6W) = 0.
According to (4.1) we have
(C(X,Y)Z,6) = (R(X,Y)Z,£)—
- {(%, 2)(@X,8) ~ (X, 2)(QV, )+
+5(Y, Z)(X,€) = S(X, Z)(Y, &) }+
Dy W A8 — (X, 21,6}
From (2.7) it follows that
(QX,8) = S(X,¢) = —2nn(X) for any X.

_.+_

Thus
(C(X,Y)Z,8) =<R(X,Y){, Z)—

—on 7 20, Z)n(Y) +2n(X, Z)n(Y) +S(Y, Z)n(X)=S(X, Z)n(Y)}+

r
+2n(2n—1)

{(v, Z)n(X) (X, 2)n(Y) },

or
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(4.3)
CE )26 = | (5 +1) (42900 - (X, 20())-

2n—1 2n

~(S(Y, Z)n(x) - S(X, Y)n(Y))} |
Taking X = £ in (4.3), we get

1

44 (CENIZ8 = (2 -9@nm) - (3 +1) -

—(S(Y, Z) + 2n77(Z)17(Y)] .
Now applying (4.3), (4.4) to (4.2) we get
(45) (R(X,6)CUVIW,€) = (CUVIW,X) - (C(U, V)W, ) =

1

= (CU, VW, X) = n(X) —n(X) 53—

(5 + 1) W)~
U, Wn(V)) — (S(V, Wn(U) — S(U, W)n(V))]

(46)  (C(R(X,OU,VIW,E) = (C((X, )6 —n(U)X, V)W, {) =

1

= (X, U)(C(&,VIW,&) = nU)C(X, VIW, ) = (X,Y) g

G+ )W) =y mw) = (579) + 200(V a(39) | -

1) o | (55 1) (VWm0 — (5, (V) -

—(S(V, W)n(X) - S(X, W>n<v>}

(4.7)

(C(U, REXENW, €) = —(C(R(X, )V, U)W, £) = —(X, V)=

2n—1.

37
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. [(—T,; + 1) (U, W) —n(U)n(W)) — (S(U, W) +2m7(U)77(W)] +

(& +1) (W00 - (X Whn(0) -
(S, W)n(X) - S(X, W>n<U>]

(4.8) (CUVIR(X, W, €)= (C(U,V)((X,W)§ —n(W)X),&) =

= (X, W)(C(U, V)¢, €) — n(W)NC(U, V)X, )~

—1W) - 57 | () (¥ X00(@) - (0, 0m()-

(S(V, X)n(U) - S(O, X)n(V))] .

Thus (4.5-8) yield
1
2n—1

(49)  (CUVIW,X) —n(U) (55 +1) (X, Wn(v)-

(X, Uy — [(-2%“) (V,W)—S(V,W)—Znn(V)n(W)}+

X, V) {(Ln + 1) (U, W) — S(U,W) — Znn(U)n(W)}jL

V)5 | (3 +1) G wm@)| -

1
—n(W)- 2n—1

Let {e;, i=1,..., 2n+1} be an orthonormal basis of the tangent
space at the points of M. Then from (4.1) it follows that
2n+1

(4.10) Z <C (e;, Y)Z, el

(S(V, X)n(U) ~ S(U, X)n(V)) = 0.

Put U =X =¢; in (4.9). Summarizing for 1 < 7 < 2n + 1 and
taking into account (4.10), we obtain
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(A1) SWW) = (5 +1) 9V, 2) + (5

o+ 1) n(V)n(W).

Finallly, using (4.11), (4.9) reduces to
(CU VW, X)=0
e. C(UVIW =0. ¢
A comparision of Theorems 1 and 3 shows that in an almost Ken-
motsu manifold R o R = 0 is equivalent to Ro C = 0.
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