SOME REMARKS ON ALMOST KENMOTSU MANIFOLDS

T. Q. Binh

Institute of Mathematics, University of Debrecen, H-4010 Debrecen, P.O. Box 12, Hungary

L. Tamássy

Institute of Mathematics, University of Debrecen, H-4010 Debrecen, P.O. Box 12, Hungary

U. C. **De**

Dept. of Mathematics, University of Kalyani, Kalyani-741235, W.B., India

M. Tarafdar

Department of Pure Mathathematics, Univ. of Calcutta, 35, Ballygunge Circular Road, Calcutta, 700019, India

Dedicated to Professor Hans Sachs on his 60th birthday

Received: October 2001

MSC 2000: 53 C 07, 53 C 25

Keywords: Almost Kenmotsu-, semi-symmetric-, locally symmetric-, semi-Ricci-symmetric-, Ricci-symetric-manifolds.

Abstract: An almost Kenmotsu manifold is an almost contact Riemannian manifold $M(\varphi, \xi, \eta, g)$ in which still $(\nabla_X \varphi)Y = -g(X, \varphi Y)\xi - \eta(X)\varphi X$ and $\nabla_X \xi = X - \eta(X)\xi$ hold. In this paper the semi-symmetry of almost Kenmotsu manifolds is investigated. It is proved that a) If an almost Kenmotsu manifold

is semi-symmetric $(R \circ R = 0)$ then it is locally symmetric $(\nabla R = 0)$; b) If an almost Kenmotsu manifold is semi-Ricci-symmetric $(R \circ S = 0)$ then it is locally-Ricci-symmetric $(\nabla S = 0)$; c) If an almost Kenmotsu manifold is semi-conformally-symmetric $(R \circ C = 0)$ then it is a conformally flat manifold (C = 0). Some other properties equivalent to the above are found.

1. Introduction

A Riemannian manifold (M,g) is called semi-symmetric if its curvature tensor R satisfies the condition $R \circ R = 0$. A complete instrinsic classification of these spaces was given by Z. I. Szabó [6]. However it is interesting to investigate the semi-symmetry of special Riemannian manifolds. K. Nomizu proved [4] that if M is a complete, connected semi-symmetric hypersurface of a euclidean space R^{n+1} n > 3, (i.e.: $R \circ R = 0$) then M is locally symmetric (i.e.: $\nabla R = 0$). For the case of a compact Kähler manifold M. Ogawa [5] proved that if it is semi-symmetric then it must be locally-symmetric. In the case of contact manifolds S. Tanno [7], showed that there exists no proper semi-symmetric (or semi-Ricci-symmetric) K-contact manifold.

Recently M. C. Chaki and M. Tarafdar [1] proved that if the curvature tensor R and the conformal curvature tensor C of a Sasakian manifold M^n (n > 3) satisfy the relation $R \circ C = 0$, then M^n is locally isometric with a unit sphere $S^n(1)$. Similar results were obtained by N. Guha and U. C. De [2] for the case of a K-contact manifold with characteristic vector field belonging to the K-nullity distribution.

In the present paper we consider an almost Kenmotsu manifold [3] satisfying one of the following conditions:

$$R \circ R = 0$$
, $R \circ S = 0$ or $R \circ C = 0$,

and among others we show that:

- i) If an almost Kenmotsu manifold is semi-symmetric $(R \circ R = 0)$ then it is locally symmetric $(\nabla R = 0)$;
- ii) If an almost Kenmotsu manifold is semi-Ricci-symmetric $(R \circ S = 0)$ then it is locally-Ricci-symmetric $(\nabla S = 0)$;
- iii) If an almost Kenmotsu manifold is semi-conformally-symmetric $(R \circ C = 0)$ then it is a conformally flat manifold (C = 0).

2. Preliminaries

Let $(M, \varphi, \xi, \eta, g)$ be an n dimensional almost contact Riemannian manifold, where φ is a (1,1) tensor field, ξ is the structure vector field, η is a 1-form and g is a Riemannian metric. It is well-known that φ , ξ , η , g satisfy

(2.1)
$$\eta(\xi) = 1, \quad \varphi \xi = 0, \quad \eta \circ \varphi = 0$$

(2.2)
$$\varphi^2 = -\operatorname{id} + \eta \otimes \xi, \quad \eta(X) = g(X, \xi)$$

(2.3)
$$g(\varphi x, \varphi Y) = g(X, Y) - \eta(X)\eta(Y)$$

for any vector fields X, Y on M.

If moreover

(2.4)
$$(\nabla_X \varphi)Y = -g(X, \varphi Y)\xi - \eta(X)\varphi X$$

$$(2.5) \nabla_X \xi = X - \eta(X)\xi$$

where ∇ denotes the Riemannian connection of g, then $(M, \varphi, \xi, \eta, g)$ is called an almost Kenmotsu manifold. An almost Kenmotsu manifold is a nice example of an almost contact manifold which is not a K-contact (and hence not a Sasakian) manifold (see Kenmotsu [3]).

Now let us recall some important curvature-properties of almost Kenmotsu manifolds. (For details see [3]). We have

(2.6)
$$R(X,Y)\xi = \eta(X)Y - \eta(Y)X$$

$$(2.7) S(X,\xi) = -2n\eta(X),$$

where S denotes the Ricci curvature tensor. From (2.6) it easily follows that

(2.8)
$$R(X,\xi)Y = \langle X,Y\rangle\xi - \eta(Y)X$$

$$(2.9) R(X,\xi)\xi = \eta(X)\xi - X.$$

3. Almost Kenmotsu manifolds with $R \circ R = 0$ or $R \circ S = 0$

In this section we show that in the case of almost Kenmotsu manifolds we also have Tanno-type results [7]. Namely we have the following **Theorem 1.** For an almost Kenmotsu manifold the following conditions are eqivalent:

- i) M is of constant curvature -1.
- ii) M is locally-symmetric, i.e.: $\nabla R = 0$.
- iii) M is semi symmetric, i.e.: $R \circ R = 0$.
- iv) $R(X,\xi) \circ R = 0$ for any $X \in \mathfrak{X}(M)$.

Proof. i) \implies ii) \implies iv) is clear.

We are going to prove iv) \implies i). Assume condition iv), which is equivalent to

(3.1)
$$R(X,\xi)R(U,V)W - R(R(X,\xi)U,V)W - R(U,R(X,\xi)V)W -$$
$$-R(U,V)R(X,\xi)W = 0 \quad \forall U,V,W \in \mathfrak{X}(M).$$

Put $U = \xi$ in (3.1). Using (2.8), (2.9) we get:

(3.2)

$$R(X,\xi)R(\xi,V)W = R(X,\xi)(\eta(W)V - \langle V,W\rangle\xi) = \eta(W)R(X,\xi)V - \eta(W)R(X,\xi)V$$

$$\begin{split} -\langle V,W\rangle R(X,\xi)\xi &= \eta(W)(\langle X,V\rangle\xi - \eta(V)X) - \langle V,W\rangle(\eta(X)\xi - X) = \\ &= \eta(W)\langle X,V\rangle\xi - \eta(V)\eta(W)X - \langle V,W\rangle\eta(X)\xi + \langle V,W\rangle X. \end{split}$$

$$(3.3) R(R(X,\xi)\xi,V)W = R(\eta(X)\xi - X,V)W =$$

$$= \eta(X)R(\xi, V)W - R(X, V)W = \eta(X)(\eta(W)V - \langle V, W \rangle \xi) - R(X, V)W =$$
$$= \eta(X)\eta(W)V - \eta(X)\langle V, W \rangle \xi - R(X, V)W.$$

$$(3.4) R(\xi, R(X, \xi)V)W = \eta(W)R(X, \xi)V - \langle R(X, \xi)V, W \rangle \xi =$$

$$= \eta(W)(\langle X, V \rangle \xi - \eta(V)X) \langle \langle X, V \rangle \xi - \eta(V)X, W \rangle \xi =$$

$$= \eta(W)\langle X, V \rangle \xi - \eta(V)\eta(W)X - \langle X, V \rangle \xi(W)\xi + \eta(V)\langle X, W \rangle \xi.$$

$$(3.5) \qquad R(\xi,V)R(X,\xi)W = \eta(R(X,\xi)W)V - \langle V,R(X,\xi)W\rangle \xi =$$

$$= \langle \langle X,W\rangle \xi - \eta(W)X,\xi \rangle V - \langle V,\langle X,W\rangle \xi - \eta(W)X\rangle \xi =$$

$$= \langle X,W\rangle V - \eta(X)\eta(W)V - \langle X,W\rangle \eta(V)\xi + \eta(W)\langle X,V\rangle \xi.$$
 Taking into account (3.2–5) and using (3.1) we obtain:

$$\langle V, W \rangle X + R(X, V)W - \langle X, W \rangle V = 0$$

or

$$R(X, V)W = \langle X, W \rangle V - (V, W)X,$$

that is M is of constant curvature -1. \Diamond

Theorem 2. In an almost Kenmotsu manifold the following conditions are equivalent:

- i) M is an Einstein space with S = -2ng
- ii) $\nabla S = 0$
- iii) $R(X,Y) \circ S = 0$ for any X, Y
- iv) $R(X,\xi) \circ S = 0$ for any X,

where S denotes the Ricci curvature tensor.

Proof. i) \implies ii) \implies iv) is clear.

Now we assume condition iv), which is equivalent to

(3.6)
$$S(R(X,\xi)U,V) + S(U,R(X,\xi)V) = 0,$$

and we conclude i).

From (2.8) and (2.7) it follows that

$$(3.7) S(R(X,\xi)U,V) = S(\langle X,U\rangle\xi - \eta(U)X,V) =$$

$$= \langle X, U \rangle S(\xi, V) - \eta(U)S(X, V) = -2n\langle X, U \rangle \eta(V) - \eta(U)S(X, V)$$

$$(3.8) S(U, R(X, \xi)V) = S(U, \langle X, V \rangle \xi - \eta(V)X) =$$

$$= \langle X, V \rangle S(U, \xi) - \eta(V) S(U, X) = -2n \langle X, V \rangle \eta(U) - \eta(V) S(U, X).$$

These yield

$$2n\langle X, U \rangle \eta(V) + \eta(U)S(X, V) + 2n\langle X, V \rangle \eta(U) + \eta(V)S(U, X) = 0.$$

Put $U = \xi$. Using (2.7) we get

$$S(X, V) + 2n\langle X, V \rangle = 0.$$

Therefore M is an Einstein space with S = -2ng. \Diamond

4. Almost Kenmotsu manifolds with $R \circ C = 0$

Sasakian manifolds with $R \circ C = 0$ (where C is the conformal curvature tensor) were investigated by M. Chaki and M. Tarafdar [1]. They showed that a Sasakian manifold satisfying $R \circ C = 0$ is of constant curvature 1, and hence it is locally isomorphic with $S^n(1)$.

Now we show

Theorem 3. For an almost Kenmotsu manifold M^{2n+1} the following conditions are equivalent:

- i) M is of constant curvature -1
- ii) M is conformally flat i.e.: C = 0
- iii) M is conformally symmetric i.e.: $\nabla C = 0$

iv) M is semi-conformally-symmetric i.e.: $R(X,Y) \circ C = 0$ for any X, Y.

v) $R(X,\xi) \circ C = 0$ for any X.

Proof. i) \iff ii) is proved by Kenmotsu ([3], Prop. 11).

i)
$$\implies$$
 ii) \implies iv) \implies v) is clear.

So it is enough to see that $v) \implies ii$).

By definition

(4.1)
$$C(X,Y)Z = R(X,Y)Z - \frac{1}{2n-1} \{g(Y,Z)QX - g(X,Z)QY + S(Y,Z)X - S(X,Z)Y\} + \frac{1}{2n-1} \{g(Y,Z)QX - g(X,Z)QY + S(Y,Z)Y - S(X,Z)Y\} + \frac{1}{2n-1} \{g(Y,Z)QX - g(X,Z)QY - S(X,Z)QY - S(X,Z)QY - S(X,Z)QY - S(X,Z)QY - S(X,Z)QY + S(X,$$

$$+rac{r}{2n(2n-1}\{g(Y,Z)X-g(X,Z)Y\},$$

where Q is the Ricci operator defined by S(X,Y) = g(QX,Y). Assume condition v), which is equivalent to

$$(4.2) (RX,\xi)C(U,V)W - C(R(X,\xi)U,V)W -$$

$$-C(U,R(X,\xi)V)W-C(U,V)R(X,\xi W)=0.$$

According to (4.1) we have

From (2.7) it follows that

$$\langle QX, \xi \rangle = S(X, \xi) = -2n\eta(X)$$
 for any X .

Thus

$$\langle C(X,Y)Z,\xi\rangle = -\langle R(X,Y)\xi,Z\rangle -$$

$$egin{aligned} rac{1}{2n-1} \{-2n\langle Y,Z
angle \eta(Y) + 2n\langle X,Z
angle \eta(Y) + S(Y,Z)\eta(X) - S(X,Z)\eta(Y)\} + \ &+ rac{r}{2n(2n-1)} ig\{\langle Y,Z
angle \eta(X) - \langle X,z
angle \eta(Y)ig\}, \end{aligned}$$

$$\langle C(X,Y)Z,\xi\rangle = \frac{1}{2n-1} \left[\left(\frac{r}{2n} + 1 \right) \left(\langle Y,Z \rangle \eta(X) - \langle X,Z \rangle \eta(Y) \right) - \left(S(Y,Z)\eta(X) - S(X,Y)\eta(Y) \right) \right].$$

Taking $X = \xi$ in (4.3), we get

$$egin{align} \langle C(\xi,Y)Z, \xi
angle &= rac{1}{2n-1}igg[ig(\langle Y,Z
angle - \eta(Z)\eta(Y)ig) \cdot ig(rac{r}{2n}+1ig) - \ &- (S(Y,Z) + 2n\eta(Z)\eta(Y)igg]. \end{gathered}$$

Now applying (4.3), (4.4) to (4.2) we get

$$\langle A(X,\xi)C(U,V)W,\xi\rangle = \langle C(U,V)W,X\rangle - \langle C(U,V)W,\xi\rangle =$$

$$= \langle C(U,V)W,X\rangle - \eta(X) - \eta(X)\frac{1}{2n-1}\left[\left(\frac{r}{2n} + 1\right)(\langle V,W\rangle\eta(U) - \langle U,W\rangle\eta(V)\right) - \langle U,W\rangle\eta(V)\right]$$

$$(4.6) \qquad \left\langle C(R(X,\xi)U,V)W,\xi\right\rangle = \left\langle C(\langle X,Y\rangle\xi - \eta(U)X,V)W,\xi\right\rangle =$$

$$= \langle X,U\rangle\langle C(\xi,V)W,\xi\rangle - \eta(U)\langle C(X,V)W,\xi\rangle = \langle X,Y\rangle\frac{1}{2n-1}\cdot$$

$$\cdot \left[\left(\frac{r}{2n} + 1\right)(\langle V,W\rangle - \eta(V)\eta(W)) - (S(V,W) + 2n\eta(V)\eta(W))\right] -$$

$$-\eta(U)\cdot \frac{1}{2n-1}\left[\left(\frac{1}{2n} + 1\right)(\langle V,W\rangle\eta(X) - \langle X,W\rangle\eta(V)) -$$

$$-(S(V,W)\eta(X) - S(X,W)\eta(V))\right]$$

(4.7)
$$\langle C(U, R(X\xi))W, \xi \rangle = -\langle C(R(X, \xi)V, U)W, \xi \rangle = -\langle X, V \rangle \frac{1}{2n-1}.$$

$$\begin{split} \cdot \left[\left(\frac{r}{2n} + 1 \right) \left(\langle U, W \rangle - \eta(U) \eta(W) \right) - \left(S(U, W) + 2n\eta(U) \eta(W) \right) \right] + \\ + \eta(V) \frac{1}{2n - 1} \left[\left(\frac{r}{2n} + 1 \right) \left(\langle U, W \rangle \eta(X) - \langle X, W \rangle \eta(U) \right) - \\ - \left(S(U, W) \eta(X) - S(X, W) \eta(U) \right] \end{split}$$

$$(4.8) \quad \langle C(U,V)R(X,\xi)W,\xi\rangle = \langle C(U,V)(\langle X,W\rangle\xi - \eta(W)X),\xi\rangle =$$

$$= \langle X,W\rangle\langle C(U,V)\xi,\xi\rangle - \eta(W)\langle C(U,V)X,\xi\rangle -$$

$$-\eta(W) \cdot \frac{1}{2n-1} \left[\left(\frac{r}{2n}\right) \left(\langle V,X\rangle\eta(U) - \langle U,X\rangle\eta(U)\right) -$$

$$-\left(S(V,X)\eta(U) - S(U,X)\eta(V)\right) \right].$$

Thus (4.5-8) yield

$$(4.9) \qquad \langle C(U,V)W,X\rangle - \eta(U)\frac{1}{2n-1}\left(\frac{r}{2n}+1\right)\langle X,W\rangle\eta(V) - \\ -\langle X,U\rangle\frac{1}{2n-1}\left[\left(\frac{r}{2n}+1\right)\langle V,W\rangle - S(V,W) - 2n\eta(V)\eta(W)\right] + \\ +\langle X,V\rangle\frac{1}{2n-1}\left[\left(\frac{r}{2n}+1\right)\langle U,W\rangle - S(U,W) - 2n\eta(U)\eta(W)\right] + \\ +\eta(V)\frac{1}{2n-1}\left[\left(\frac{r}{2n}+1\right)\langle X,W\rangle\eta(U)\right] - \\ -\eta(W)\cdot\frac{1}{2n-1}\left(S(V,X)\eta(U) - S(U,X)\eta(V)\right) = 0.$$

Let $\{e_i, i = 1, ..., 2n+1\}$ be an orthonormal basis of the tangent space at the points of M. Then from (4.1) it follows that

(4.10)
$$\sum_{i=1}^{2n+1} \left\langle C(e_i, Y) Z, e_i \right\rangle = 0.$$

Put $U = X = e_i$ in (4.9). Summarizing for $1 \le i \le 2n + 1$ and taking into account (4.10), we obtain

(4.11)
$$S(V, W) = \left(\frac{r}{2n} + 1\right) g(Y, Z) + \left(\frac{r}{2n} + 1\right) \eta(V) \eta(W).$$

Finally, using (4.11), (4.9) reduces to

$$\langle C(U,V)W,X\rangle=0$$

i.e.: C(U, V)W = 0. \Diamond

A comparision of Theorems 1 and 3 shows that in an almost Kenmotsu manifold $R \circ R = 0$ is equivalent to $R \circ C = 0$.

References

- [1] CHAKI, M. C. and TARAFDAR, M.: On a type of Sasakian manifold, Soochow J. of Math. 16 (1990), 23-28.
- [2] GUHA, N. and DE, U. C.: On K-contact manifolds, Serdica-Bulgaricae Math. Publ. 19 (1993), 267-272.
- [3] KENMOTSU, K.: A class of almost contact Riemannian manifolds, *Tohoku Math. J.* **24** (1972), 93-103.
- [4] NOMIZU, K.: On hypersurfaces satisfying a certain condition on the curvature tensor, *Tohoku Math. J.* **20** (1968), 46-69.
- [5] OGAWA, Y.: A condition for a compact Kaehlerian space to be locally symmetric, Nat. Sci. Rep. Ochanomizu Univ. 28 (1977), 21-23
- [6] SZABÓ, Z. I.: Structure theorem on Riemannian spaces satisfying $R(X,Y) \circ R = 0$ 1. The local version, J. Diff. Geom. 17 (1982), 531–582.
- [7] TANNO, S.: Isometric immersion of Sasakian manifolds in spheres, Kodai Math. Sem. Rep. 21 (1969), 448-458.