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Abstract: This paper deals with a lower estimate for the error term in the
asymptotic expansion for the average order of the class number for negative
discriminants. Our analysis is based on a functional equation due to Shintani

and a technique introduced in a work of Tang on the sphere problem.

1. Introduction

For each positive integer n, we consider the set Qn of positive def-
inite, binary quadratic forms with integral coefficients of discriminant
-n, l.e.,

Qn = {aX?4+bXY +c¥?: b® —4dac=-n and a>0}.

Two forms AX24+BXY +CY?2, aX?4+bXY +cY? are called equivalent,
if and only if there is a matrix S € SLy(Z), such that
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AX? 4+ BXY +CY? = (X,Y)S! (572 b{f)s(‘;f).

For a given discriminant —n, the number N(n) of equivalence classes

is finite. To study the average order of this arithmetic function, we
consider the Dirichlet summatory function

(1.1) A(t) =) N(n)
n<t

where ¢ is a large real variable. In his masterwork Disquisitiones Arith-
meticae, C.F. Gauss stated an approximate formula for A(t). In this
century I. M. Vinogradov [12], [13] proved several upper bounds for the
error term
(1.2) B(t) = A(t) — —3/% 1 L

' ' 18 4
culminating in E(t) < t2/3%¢. Quite recently, Chamizo and Iwaniec [3]
improved this classical upper bound to
where 21/32 = 0.65625. (This was stated by Chamizo and Iwaniec at
the end of their paper.) The main object of the present paper is to

prove a two-sided Omega estimate for the error term FE(t).
Theorem. For realt — co we have

B(t) = Qu (v/2logt) -

Remark.1. The study of the average order of the class number A(t) is
closely related to a three dimensional lattice point problem. Indeed

A(t) = #{(a,b,c) € Z* : 4ac — b?> < t and either
—a<b<a<cor 0<b<a=c}.
(see e.g. Hlawka and Schoissengeier [7], Satz 3, p. 91.) It is therefore
interesting to compare the upper and lower bounds for E(¢) with the
corresponding estimates for the lattice rest of the three dimensional

sphere problem: Let r3(n) be the number of representations of n as a
sum of three squares, and let P(t) be defined by

(1.5) = r3(n) — ———t3/2
n<t

Then each upper bound of E(t) proved by Vinogradov [13,14] holds for
P(t), too. Heath-Brown [6] improved the upper bound for P(t) to



Binary quadratic forms 65

refining a previous result of Chamizo and Iwaniec [2]. Concerning lower
estimates Tsang [11] recently proved by an ingenious new method

P(t) =04 (\/tlogt) .

Comparing the lower estimates for E(t) and P(t), we see that the two-
sided Omega estimate for E(t) in (1.2) turns out as sharp as the lower
bounds for the error term P(t) in the classical lattice point problem for
the three dimensional sphere.

2. Instead of considering all positive definite, binary quadratic
forms, it is also customary to specialize on the set of primitive positive
quadratic forms. A binary quadratic form aX?2 4+ bXY + cY? is called
primitive, if there is no nontrivial common divisor of a, b and ¢. Prim-
itive positive definite quadratic forms of a given negative discriminant
—n fall into equivalence classes, too. Their class number is denoted by
h(—n). It is easily seen that

(1.3) N(n)= > h(-n/k?*).
kZ|n
By (1.3) and the Mdbius inversion formula, we get
n
(1.4) Sh(-n)= 3wk SN (ﬁ) .
n<t E<VE n<t/k?
By (1.2), we get an asymptotic formula for (1.4) with an error term
T 3
=Y h(-n) — — =t 4 —¢.
2
= 18¢(3) 27

In the paper cited above, Chamizo and Twaniec improved the classical
bounds of Chen [4] and Vinogradov [12] for E,(t) to

E* (t) < 2521/32—1—6 ]

Unfortunately, in view of the presence of the Mobius function in (1.4),
there is little hope to get omega estimates for E,(t) which are as sharp
as those for E(t). We remark that the same problem appears, when
counting primitive lattice points in a sphere. (A lattice point (a,b,c) €
€ 73 is called primitive if the greatest common divisor of a, b and ¢
equals one.) ’
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2. Some Lemmata

We start by introducing a new arithmetic function N*(n) which
is closely related to our function N(n) and whose generating Dirichlet
series satisfies a functional equation, established by Shintani [9].
Lemma 1. Let N*(n) be defined by

N*(n)=2 ) h(-n/kw’} .

k2 |n
and
4 if d=-4
wg=1+¢ 6 if d=-3
2  otherwise.
Then
(2.0) > N(n)=)» _ N*(n)+0(V?).

n<t n<t

Proof. We note that N*(n) equals N(n) except when n has a divisor
d with n = 3d? or n = 4d2. It follows that in these cases N*(n) — N(n)
equals —2/3 or —1/2, respectively. Therefore, the error is less than

Y1kt 0

2t

Lemma 2. For Re(s) > 3/2, each of the two Dirichlet series

a @ S g w50 LY

n=1 n=1

has an analytic continuation over the whole complex plane to a mero-
morphic function and they satisfy the following functional equation:

Gi(s) =
=—4n732725473 G (5)(2(3/2 — 5)— (2m) 2 (4n?)°T(—2s + 2)¢(2 — 25),
where {(s) denotes the Riemann zeta function and

G(s) = F(?)I‘/?s; )

Furthermore, the analytic continuations are holomorphic except for s =
= 3/2 and s = 1. The principal parts of their Laurent erpansion
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at s = 3/2, respectively at s = 1 are 127 n(s — 3/2)7, respectively
—4 s —1)"1,
Proof. After some elementary calculations, involving the duplication
and reflection formula for the gamma function, this is Th. 2 of Shintani
[9]. Note that ¢(_(s) = (1(s) and {_*(s) = (a2(s) with the notation used
there. ¢

In what follows we denote by § and e small positive quantities,
which need not be the same at each occurence. By C(\, u) (A, u real
numbers) we mean the oriented polygonal line which joins the points
A—100, A—1, p—1, b+ 1%, A+ 700, in that order.
Lemma 3. For each integer m > 2 and z > 0

1 T
E..(z) ::———/ r—u) ™ E(u) du
@)= g |, (&= 0"EW
satisfies
En(z) = B (z) + EY ()
where
N*( 4n
(1) — * 2
Ep'(z) = 7r3/2 Z (4n) 3/2 )" I (n"nz)

and

E®(z) = —(2n)? Z n~?(4n3n?)—™
n=1

C— [(—2s +2)s ™ H4n?nz) T ds .
271 —6—i00

with § > 0. The function I} (y) are defined, for each integer m > 0, by

I (y) = Z Res;—¢ (G(s) L(s) )ys+m> + I (v)

k=-1,...,—m F(S+m+ 1

where I, (y) is given by an absolutely convergent integral

1 I'(s)
)y

— §) ——————y+t™ ds,
21 Jo () M(s+m+1

In(y) =

Here A\, p are real numbers satisfying A > 3/4 and u < —m. The
function I, (y) possesses an asymptotic expansion
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(2.1) Im(y) =

3
= q1/2 Zy(1+m_7)/2 cos (2\/_ — g(2 +m — j)) +0 <y(m—3)/z> .
3=0

%’ro)of. A version of Perron’s formula yields for m > 2
2.2

1 * m—1 1 2ico F(S) s+m
Tm)/ (2 — u)™ L A(u) du = 2m/z_m GOy ey e

Now we shift the line of integration to the left hand side of zero, ob-
serving that

G0 +it) < (1+ [t]) 720+
in |t| > 1, 0 > —§ (this is a consequence of the Phragmén-Lindel6f prin-
ciple). For the gamma functions involved, we recall Stirling’s formula
in the weak form
(o +it)] < 1t~ exp(~ 5 |t])

uniformly in |t| > 1,01 < o < og(01,09 arbitrary ). From this it
immediately follows that the integrand in (2.2) is < [t|~™~*+2+¢ where
€ can be made arbitraryly small by the choice of 4. Thus we obtain

1 ~Oieo P(S) m-+s
Em(2) = “z’;r/_ RIS s o v

for the new integral is absolutely convergent, since m > %
Using the functional equation of (;(s) and inserting the Dirichlet
series we conclude that

— —m Kok (2)
En(z) = — W3/2Z 4n3/2 I**(nnz) + B2 (),

with

* ok 1 oo F(S) s+m
B0 =g [ SO

It is evident from Lemma 2 that all the singularities of G(s) are
on the positive real axis. Observig this, we can deform the line of
integration such that I*(y) = I, (y) as defined in Lemma 3, provided
that A > 0 and ¢ < —m. In order to get absolutely convergent integrals
I (y) for every m > 0 we choose X greater than 2. Therefore

—d—1io0
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;%umwmmwzfm@y

Notice that this is also valid for I, (y) since this differs from I, () only
by a finite sum of differentiable functions.

To complete the proof of Lemma 3, it remains to establish the
asymptotic expansion of

()
(s) :
I(s+m+1)
In what follows we write Ry (s) for expressions of the form

4
Ri(s) = Z C,j8 7
Jj=1

where ¢ ; are any complex coefficients. We use Stirling’s formula in
the form
1 1 '
logT(s+c¢)=(s+c— 5) logs — s+ 5 log 2 + Ry(s) + O(]s| ™)

with ¢ € C arbitrary, which holds uniformly for |arg(s + ¢)| < By < .
(The coefficients c¢; ; and the O-constant may depend on ¢.) Employing
this, we find that!

log <G(3)P( L(s)

oy ) = g ols) + Bals) + O(1s ).

where
Fo(s) = = /22™45T (=25 + 1 — m) cos (n(s + m + 1/2))..
Thus, on any set avoiding the poles of the terms involved,

G gy = Fo(e) (1 + Fale) + Os[)) =

= Fy(s) 1-I—Zc*jH(—23+1—m—l)+O((1+Is])_S) =

J=1 =1

= Fo(s) + Zc*ij(s) + A(s)

with

! Throughout the paper, log denotes the principal branch of the complex log-
arithm and = means congruence modulo 2r3.
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Fj(s) = n~Y22m451 (=25 +1 — m — j) cos (n(s +m + 1/2)) .
We estimate the remainder A(s) by
A(s) < [t7°| Fo(s)] < [¢]78™ (G (s)] < [t|07mHE/220

uniformly in |t| > 1, 01 < 0 < 03 (01,02 arbitrary). We can therefore
bound the contribution of A(s) to the integral I, (y),

/ A(s)y*t™ds « ytt™ 4 yAm « 1 4 y(m=3)/2
C(A,p)

by the choice of A = —(m+3)/2 ( notice that 4 is only restricted by u <
< —m and may therefore be assumed to be less than A). Consequently,

3
In(y) = Jo(y) + > _c*37;(y) + O(y™=3/2)

=1
where, for 0 < j < 3,
1
Jily) = — F;(s)y*t™ds.
2m Jeuw)
To evaluate the remaining integrals, we use the following identity

~1—. I'(—s1) cos (Esl +v)2%t dsy = cos (z — ),
2mi C(A1,u1) 2
where Ay, 1 are real numbers satisfying A\; > %,,ul < 0and z € Rt
+. Comparing the arguments of the different functions involved this
completes the proof of Lemma 3.

Our last task in this section is to establish an asymptotic expan-
sion of the Borel mean-value of B(t) of the error term F(t), i.e.,

1 ® ek
—_— “ du .
F(k+1)/; e “u"E(Xu)du

Proposition 1. For a large positive real number t we have

B(t) =

def 1 < ot
23 B fs /0 e 'u’“E(Xu) du=—5(0)+0(),
where
S(t) := Z N ?(14”) cos (2my/nt) exp (—°nX/2),
o<n<te VX :

with X = X(t), k = k(t) two parameters depending on t, such that
X = 0%, k — o0 and t°X Y2 — oo (for any fized € > 0), as t — oo.
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We choose in particular X = X (t) = t=2° for some § > 0 (sufficiently
small) and :

k=k(t)=t2X"1.

Proof. The proof is based on a classical method which has been devel-
oped in Szeg8 and Walsfisz [10], Berndt [1], Hafner [5] and Nowak [8].
We substitute h(u) = e “u* in B(t), integrate by parts twice,
apply Lemma 3 and conclude that
B(t) = B1(t) + Ba(t)
where

- (1)
m/() h'(u)Ey’ (Xu) du,

Bo(t) = _f()lf_Tl) /0 " B! (u) B (Xw) du .

To deal with B3(t) we invert our repeated integration by parts to get

o

Ba(t) 2 /00 e Uu” ! Z ! I(4n*n2 X u)
= — — I(4m°n
2 T(k+1) Jg omi £~ n? ’

n=1
where

—&4+1i00
I _ L I'(=2s+2)s y5d
(v) (=25 +2)s™ "y ds.

B 2mi —§—1io0
Since I'(—2s + 2)s™! = (4s — 2)['(—2s), this integral evaluates to

I(y) = e V(=g +1).
Since the series involved is absolutely convergent, we conclude by Stir-
ling’s formula that By(t) < v Xk = t, the last equality by the choice of
X and k. ’
For B;(t), we substitute the series representation for Eél)(m) of
Lemma 3, interchange the order of summation and integration and

e(xppl)y iterated integration by parts one more time. This leads to
2.4
(e e]

_ N*(4n) 1 °
t) = —4 3/2 / U,k * 2 X )
Bi(t) s nizl @) 2 T+ 1) Jy e “u"I"o(m*nXu) du

Now we substitute (2.1) for the integrals I*o(y) = Iy(y) and remark

that Nna(;? ) < n¢ for each € > 0. Therefore, the exponent of n arising
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from the O-term of the asymptotic expansion (2.1) is less than —1.
We conclude that the contribution of the O-term to the asymptotic
expansion of B (t) is bounded by
X312 e k—3/2 4 Xk)~3/2 = ¢=3/2
'I_‘—(k“—_l:—l—)/ e u U < ( = 3

in view of Stirling’s formula.

To deal with the main terms of (2.1), we make use of a result from
classical analysis dating back to Szegé and Walfisz [10].
Lemma 4. Let o be a real constant and ¢, ¢’ positive quantities. Then
for k — oo,

J(k,T) = 1 ) /00 e UuFt exp (iTv/u) du =

Lk+1) Jo
1 1
= k% exp (—gTZ) exp (iTVE) + O(k>~2+¢)
if ck™¢ < T < k. Furthermore, if T > c'k¢,
J(k,T) < T~¢
for every real constant C.

Applying this lemma to the mtegrals which arise if we substitute
the asymptotic expansion (2.1) of Ip(y), we conclude that for 0 < j < 3,

1 00 —u *
m A e ’Z,LkIO (TFZ’RX’U,) du =

T(k+1)
. / e~ 4Pt =912 cos (2nvnXu — w(2 — 5)/2) du =
0

H; +O(k) ifck™ < cy(nX)Y2 < ke
B { O((nX)~2) if c1(nX)V/2 > 'k,

where
H; = 77 2(x?n X k)32 cos (2nvnXk — m(2 — 5)/2).

The final step is to estimate the different contributions to (2.4). The

terms corresponding to n which satisfy c;(nX )1/ 2 < ¢'k€ contribute for
1<j<3

N*(4n) .
N D e L
n<eg X —1k2e

whereas the terms corresponding to ¢1(nX)Y/? > ¢'k¢ contribute only



Binary quadratic forms 73

O(1). Clearly the term j = 0 yields the main term, which completes
the proof of Prop. 1. ¢

3. The Omega estimate

In this section we use a new technique introduced by Tsang [11],
on the lattice rest of the sphere problem, to establish two sided omega
estimates for the error term F(t).

Lemma 5. For M — oo, we have

Z W»logM.

n<M

Proof. Since
D N*(4n)=Ct3* + 0(t),
n<t -
we conclude by summation by parts that
N*(4 30
> (n) _ og M +0(1).

3/2 2
n
n<M

Therefore, applying Cauchy’s inequality, we have
2

N*(4n) N*(4n)? 1
2
(log M)* <« E 372 < E s E - <

niM n<M n<M

< Z logM
n<M

which completes the proof of Lemma 5. ¢

To establish our Theorem we need Lemma 1 of Tsang [11]. Since
this paper is not yet published, we state this Lemma and the proof for
completeness. _
Lemma 6 (Tsang [11], Lemma 1). Let h be a real-valued integrable
function defined on an interval I. If

3/2
fefso(or )
I I

1=

for some 6 < 1, then
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1_p\ /3
sup(+h) > (—2—) (|I|_1/h2)1/2.
I I

Proof. Let h™ and h~ denote the positive and negative parts of A

respectively, that is, At = 1(|h| £ h). Then (h+)® = Z(|h|*> = h) and
hence
1 1
() 17 [y =g [ne e i we.
1 2 I 2 1

On the other hand, by Cauchy-Schwarz’s inequality, we have

1 ez (i [ h2>3/2 -
Thus, by (+) |

SI}p(th)e’ > III_I/I(W) %( - )(IIl'l/Ifﬂ)S/z :

and Lemma 6 follows.

Proposition 2. For sufficiently large U and L < U8+ <« U (pro-
vided that € and § are sufficiently small), we have

U+L

(i) % /U (B(t))?dt > U?log U,
U+L
(ii) %/U (B(t))?dt < U3.

First we show how our Theorem follows from this proposi-
tion. From Lemma 6 we immediately get

(3.1) sup (£B(t)) > U+/logU .
U<t<U+L

We now suppose that

(3.2) E(t) < K+/tlogt,

and show that K cannot be arbitrarily small. In fact, the definition of
B(¢) and (3.2) imply that
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1/2 0
B(t) < EE—/ e k2, flog (Xu) du + ¢ <
L'k+1) Jg

< cK(Xk)l/zx/log (Xk) = cKt+/logt

where we have used Hafner’s Lemma 2.3.6 from [5], p. 51, to evaluate
the integral. Together with (3.1), this yields a positive lower bound for
K which establishes our Theorem. ¢

It remains to prove the Prop. 2. To this end we follow the proof
of Tsang [11].

Proof of (i). We start with the asymptotic expansion for the Borel
mean-value of the error term, established in Prop. 1. Since U + L < U,
equation (2.3) implies (B(¢))? =< t2(5(¢))% < U%(S(t))?. Therefore,

1 [U+L , , 1 (UL ,
- t = - t .
A CORE O
Squaring out (S(t))? and using the elementary formula
(3.3) cos Acos B = %(cos (A - B) +cos(A+ B))
we can write
1 [U+L 1 [U+E
Ba) [ SO [ (S0 + 60+ 00 ar
L/, oL J,
where
* 2
So(t) — Z (N (4:7’&)) e—7r2Xn,
0<n<k n

i)=Y DOV o oty — e Xemanrz

mn

0<m,n<K
m#En

Sa(t) = E V" (4m) N (4n) cos (2mt(+/m + \/ﬁ))e‘ﬂzx(ﬂwn)/?,
mn
0<m,n<k
with & = ¢4 throughout.

We will show that the main term on the left-hand side of (3.4)
comes from Sg. Indeed, the contribution of Sy (t) is
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1 N*(4m)N*(4n) 1
< —= E — K
L 0<m<n<</'-r,2 mn \/— v
N*(4m) &3
<< = — K =K1
m L
n<n2 m<n

since

1 [U+L
Z/U cos(2wt(\/ﬁ—\/ﬁ))dt<< L\/— \/_

The contribution of S2(t) is clearly not more than this. Finally consider
the contribution of Sp(%):

U+L ,
—1—/ So(t) dt > ZM—)——>>1ogt>>logU
L U n
n<<t25

by Lemma 5 and the fact that ¢ =< U. This completes the proof of part
(i) of Prop. 2.
Proof of (ii). For simplicity put
N*(4k) N*(4m) N*(4n)

k m n
Taking the third power of both sides of (2.3) and using formula (3.3)
repeatedly yields (B(t))3 < U3(S(¢))® and

(S)° = 7 (So(t) + 5:(8) + S3(0))

r=r(k,m,n) =

where
So(t) =3 Y. remXm
VE+v/m=vn
Si(t) =3 Y rcos@nt(VE+/m— y/n))e T Xlktmin)/2
VE+ym#n

Sa(t) == Z r COS <2m‘ (\/E—i— Jm+ \/ﬁ))e—ﬂzx(k+m+n)/2

where all the sums are taken over 0 < k, m,n < k, with the appropriate
restriction specified by each sum. We integrate term by term and note
that the main term of part (ii) of Prop. 2 comes from Sy(¢), since the
contribution of S;(¢) can be analogously estimated as the corresponding
sum in part (i), noting that

WVk++vm—+/n|> (max(k,m,n))"%?  for  Vk+/m—+/n#0.
Therefore,
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3/U+L(S(t))3<< 3 N*](€4k)N*(4m)N*(4n)_

m n

0<k<m<nr2
VE+vm=vn

For positive integers k, m,n the condition vk + /m = v/n holds if and
only if k, m and n all have the same maximal square-free divisor ¢, say,
le.,

k=a%qg, m=>b%, n= c’q,

with a, b, ¢ € N satisfying a+b = c. Since \/(3”) < nf, we can estimate
the contribution of this sum as in Tsang [11], b
N*( 4a q) N*(4b%q) N ( (a +b)%q)
< Z Z b2q (a+ b)2q
q<x? a+b<”7

SO DY (GZQ)E (02)° ((a + b)%q)°

b a-+b
g<x? a-+b< fr ( )
& Z q—3/2+3¢—: Z —3/2+eb—3/2+5 < 1.

g<r? a+b< 52

ﬂ!

This completes the proof of part (i ( i) of Prop. 2 and therefore the proof
of our Theorem.
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