CHAIN OF DENDRITES WITHOUT RETRACT INFIMUM

Pavel **Podbrdský**

Department of Mathematical Analysis, Charles University, Sokolovská 83, CZ-186 75 Prague 8, Czech Republic

Pavel Pyrih

Department of Mathematical Analysis, Charles University, Sokolovská 83, CZ-186 75 Prague 8, Czech Republic

Dedicated to Professor Hans Sachs on his 60th birthday

Received: January 2002

MSC 2000: 54 C 10, 54 F 50

Keywords: Dendrite, retraction, chain.

Abstract: We consider an ordering with respect to retractions on the class of all dendrites and construct a bounded chain of dendrites which does not have an infimum answering a question of its existence. A simple example answers a similar question for a supremum.

An ordering

All spaces considered in this paper are assumed to be metric. A continuum means a nonempty compact connected space. A simple closed curve is any space which is homeomorphic to the unit circle.

E-mail addresses: podbrdsk@karlin.mff.cuni.cz, pyrih@karlin.mff.cuni.cz Joint research of the Open Problem Seminar, Charles University, Prague. Partially supported by grants GAUK 165/1999 and GAUK 252/2000 from the Grant Agency of Charles University and partially supported by grant number MSM 113200007 from the Czech Ministry of Education.

A dendrite means a locally connected continuum containing no simple closed curve.

A mapping means a continuous function. A surjective mapping $f: X \to Y \subset X$ is said to be a retraction provided $f = f^2$.

In [1, p. 7] J. J. Charatonik, W. J. Charatonik and J. R. Prajs introduced a quasiordering \leq_R on the class of all dendrites. We recall the definition. If X,Y are dendrites, then $Y\leq_R X$ if for some $Z\subset X$ homeomorphic to Y there is a retraction $f:X\to Z$. This quasiordering is not an ordering (i.e. $X\leq_R Y$ & $Y\leq_R X$ does not imply X is homeomorphic to Y). To guarantee this they said that X and Y are \mathbb{R} -equivalent if $X\leq_R Y$ and $Y\leq_R X$ and then considered the quotient of the class of all dendrites. The quasiordering \leq_R induces the ordering \leq_R on the quotient. We will use for short \leq instead of \leq_R in this paper.

J. J. Charatonik, W. J. Charatonik and J. R. Prajs posed a question if every chain bounded with respect to this ordering has an infimum or a supremum (see $[1, \S 7, Q4(b)\mathbb{R}, p. 51]$). In Theorem we give a negative answer to this question for an infimum by constructing a bounded sequence of dendrites with no retraction infimum. In Example we give a negative answer to this question for a supremum by constructing a bounded sequence of dendrites with no retraction supremum. We will use for short 'chain', 'supremum' etc. without explicitly noticing the respect to the ordering \leq in this paper.

We shall use the notion of order of a point in the sense of Menger-Urysohn (see e.g. [2, §51, I, p. 274], and we denote by $\operatorname{ord}(p, X)$ the order of the continuum X at a point $p \in X$ or just $\operatorname{ord}(p)$ if there is no risk of confusion. Points of order 1 in a continuum X are called end points of X. Points of order 2 are called ordinary points of X. Points of order at least 3 are called ramification points of X.

An arc is any space which is homeomorphic to I = [0,1]. We denote by pq an arc with end points p and q. An arc pq in a space X is said to be free if $pq \setminus \{p,q\}$ is an open subset of the space X. Denote by S_n the n-od, i.e. the dendrite where the only ramification point is of order $n \in \mathbb{N}$. Similarly denote by S_{ω} the star, i.e. the dendrite where the only ramification point is of order ω .

First we will prove an easy lemma, about the ordering \leq on dendrites.

Lemma. Let A, B be dendrites. Then $A \leq B$ if and only if A is homeomorphic to some subset of B.

Proof. Clearly by definition, if $A \leq B$, then A is homeomorphic to some subset of B. For the other implication we can assume that $A \subset C$. We have to find a retraction $f: B \to A$. We define $f \equiv Id$ on A. Let $x \in B \setminus A$. We take C that component of $B \setminus A$ which contains x. There is a unique point $y \in cl(C) \setminus C$; we define f(x) = y. It is easy to check that f is a retraction. \Diamond

An infimum free chain

K. Sieklucki in [3, §1, p. 331–333] constructed a decreasing sequence of dendrites $\{B_n\}$; in [3, §2, p. 333–334] he used the sequence $\{B_n\}$ to obtain a sequence $\{C_n\}$ of uncomparable dendrites; in [3, §3, p. 334–335] he created an uncountable family of uncomparable dendrites. We modify the figure of such a family (see [3, Fig. 4, p. 334] to obtain a sequence of dendrites without an infimum. We recall from [3, p. 334–335] an important information.

Proposition. There exists a sequence $\{C_n\}_{n=1}^{\infty}$ of dendrites such that the following conditions hold:

- (1) for each $n \in \mathbb{N}$ the dendrite C_n has only ramification points of finite order;
- (2) $C_n \leq C_m$ for some $m, n \in \mathbb{N}$ if and only if n = m.

Fix an end point e_n in C_n , $n \in \mathbb{N}$. Put a = (0,0), b = (2,0) and for each $n \in \mathbb{N}$ denote $a_n = (-1/n, 1/n^2)$, $b_n = (2 + 1/n, 1/n^2)$, $c_n = (2 - 1/n, 0)$, $d_n = (c_n + c_{n+1})/2$. For each $n \in \mathbb{N}$, attach a sufficiently small copy $\widehat{C_n}$ of C_n in the point c_n (identifying e_n and c_n) and a sufficiently small copy $\widehat{D_n}$ of an arc in the point d_n (identifying d_n and some ordinary point of an arc) such that

$$X_m = ab \cup \bigcup_{n=1}^{\infty} aa_n \cup \bigcup_{n=1}^{\infty} bb_n \cup \bigcup_{n=1}^{\infty} \widehat{C_n} \cup \bigcup_{n=m}^{\infty} \widehat{D_n}$$

is a dendrite for each $m \in \mathbb{N}$. See Fig. 1.

Similarly we denote

$$C = ab \cup \bigcup_{n=1}^{\infty} aa_n \cup \bigcup_{n=1}^{\infty} bb_n \cup \bigcup_{n=1}^{\infty} \widehat{C}_n$$

and

Fig. 1 – dendrites X_1, X_2, X_3, \cdots

$$D = ab \cup \bigcup_{n=1}^{\infty} aa_n \cup \bigcup_{n=1}^{\infty} bb_n \cup \bigcup_{n=1}^{\infty} \widehat{D_n}.$$

Theorem. The chain $X_1 \geq X_2 \geq X_3 \geq \cdots \geq C$ is bounded and has no infimum.

Proof. Clearly, $\{X_n\}$ is a decreasing sequence. Suppose that Y is an infimum of the sequence $\{X_n\}$. We conclude a contradiction.

Observe that $X_m \geq C$ and $X_m \geq D$ for each $m \in \mathbb{N}$. We conclude that $Y \geq C$ and $Y \geq D$. We may assume $C \subset Y$.

Fix $m \in \mathbb{N}$. We have $X_m \geq Y$ and $Y \geq D$. By Lemma there are homomorphisms $f_m: Y \leftrightarrow Y_m \subset X_m$ and homomorphism $g: D \leftrightarrow Z \subset Y$.

Notice that the dendrites X_m , Y and D have exactly two points of order ω (the points a, b), only one of which (b) is an accumulating point of ramification points. We conclude $f_m(a) = a$, $f_m(b) = b$, $f_m(ab) = ab$, g(a) = a, g(b) = b and g(ab) = ab. For each point $c_k \in Y$ (with $k \in \mathbb{N}$), $f(c_k)$ is a ramification point of $ab \subset X_m$. Because the dendrites \widehat{C}_k , \widehat{C}_l are \leq -uncomparable for $k \neq l$ (with $k, l \in \mathbb{N}$, see Proposition (2)) and also \widehat{C}_k is not a retract of an arc (the 'v-sets' \widehat{D}_n) we conclude $f_m(c_k) = c_k$.

Finally we have $f_m(ac_m) = ac_m \subset X_m$ and we conclude that Y has no point of order larger than 3 on the arc ac_m for each $m \in \mathbb{N}$, and consequently Y has no point of order larger than 3 on the arc ab.

But we see that each point $g(d_k) \in ab \subset Y$ (with $k \in \mathbb{N}$) has order at least 4. This gives a contradiction. \Diamond

A supremum free chain

Example. The chain $S_3 \leq S_4 \leq S_5 \leq \cdots \leq S_{\omega}$ is bounded and has no supremum.

Proof. Let Y be a supremum of the sequence $\{S_n\}$. We conclude a contradiction.

- (i) Clearly $Y \leq S_{\omega}$. This gives that Y has at most one ramification point.
- (ii) Denote a=(0,0), b=(1,0) and for each $n \in \mathbb{N}$ put $s_n=(1/n,0)$. Let $L \supset ab$ be a dendrite where the only ramification points are the points s_n , $3 \le n \in \mathbb{N}$, and the order of s_n is n for each $3 \le n \in \mathbb{N}$. See Fig. 2.

Fig. 2 - a dendrite L

Obviously, $S_n \leq L$ for each $n \in \mathbb{N}$. This gives $Y \leq L$. We conclude that Y has ramification points of finite order only.

(iii) From (i) and (ii) we see that Y is a n-od for some $n \in \mathbb{N}$, which gives a contradiction. \Diamond

Question. Are infinite decreasing chains of dendrites only of K. Sieklucki ([3]) type?

References

- [1] CHARATONIK, J. J., CHARATONIK, W. J. and PRAJS, J. R.: Mapping hierarchy for dendrites, *Dissertationes Math.* (Rozprawy Mat.) **333** (1994), 1–52.
- [2] KURATOWSKI, K.: Topology, Vol. II, Academic Press, New York, 1968
- [3] SIEKLUCKI, K.: On a family of power c consisting of \Re -uncomparable dendrites, Fund. Math. 46 (1959), 331–335