AN ARCWISE CONNECTED CONTINUUM WITHOUT NON-BOUNDARY PROPER ARCWISE CONNECTED SUBCONTINUA

Gerardo Acosta

Instituto de Matemáticas, UNAM, Circuito Exterior, Ciudad Universitaria, 04510 México, D. F., México

Gloria G. Andablo

Instituto de Matemáticas, UNAM, Circuito Exterior, Ciudad Universitaria, 04510 México, D. F., México

Paweł Krupski

 $Mathematical\ Institute,\ University\ of\ Wrocław,\ 50-384\ Wrocław,\ Poland$

Sergio Macías

Instituto de Matemáticas, UNAM, Circuito Exterior, Ciudad Universitaria, 04510 México, D. F., México

Pavel **Pyrih**

Department of Mathematical Analysis Charles University, Sokolovská 83 CZ-18675 Prague 8 Czech Republic

Dedicated to Professor Hans Sachs on his 60th birthday

Received: January 2002

MSC 2000: 54 F 15

E-mail addresses: gacosta@math.unam.mx, gloria@fismat.umich.mx, krupski@math.uni.wroc.pl, macias@servidor.unam.mx, pyrih@karlin.mff.cuni.cz

Keywords: Arcwise connected continuum.

Abstract: We construct an arcwise connected continuum such that each proper arcwise connected subcontinuum has the empty interior.

A continuum means a nonempty compact connected metric space.

In a private communication to the last named author in 1998, W. Makuchowski and J.R. Prajs posed a question of whether there exists a nondegenerate arcwise connected continuum such that each of its proper arcwise connected subcontinua has the empty interior.

A positive answer was found during the Continuum Theory Prague 2001, Open Problem Workshop.

A construction of the example is inspired by the example of J. B. Fugate and L. Mohler of a continuum with exactly two dense arc components (see [1, p. 397]).

Example. Denote by C the Cantor ternary set. Set $A = [0,3] \times C$. Choose a dense in C sequence $\{r_n\}_{n=1}^{\infty}$ of distinct points of C.

Denote

$$a_n = \frac{1}{n} - \frac{1}{77n^2},$$
 $b_n = \frac{1}{n},$ $c_n = \frac{1}{n} + \frac{1}{77n^2},$ $d_n = 3 - \frac{1}{n} - \frac{1}{77n^2},$ $e_n = 3 - \frac{1}{n},$ $f_n = 3 - \frac{1}{n} + \frac{1}{77n^2}$

and

$$L_n = [a_n, c_n] \times \left[r_n - \frac{1}{777n^3}, r_n + \frac{1}{777n^3} \right],$$
 $R_n = [d_n, f_n] \times \left[r_n - \frac{1}{777n^3}, r_n + \frac{1}{777n^3} \right]$

for $n \in \mathbb{N}$.

We modify A in such a way that, for each $n \in \mathbb{N}$, (1) we replace the arc $[a_n, c_n] \times \{r_n\}$ by the union

$$\mathcal{L}_{n} = \left\{ (x, y) \in L_{n} \colon x \in [a_{n}, b_{n}), y = r_{n} + \frac{1}{7777n^{4}} \sin\left(\frac{1}{x - b_{n}}\right) \right\} \cup \left\{ (b_{n}, y) \in L_{n} \colon y \in \left[r_{n} - \frac{1}{7777n^{4}}, r_{n} + \frac{1}{7777n^{4}}\right] \right\} \cup \left\{ (x, r_{n}) \in L_{n} \colon x \in (b_{n}, c_{n}] \right\}$$

and the arc $[d_n, f_n] \times \{r_n\}$ by the copy $\mathcal{R}_n \subset R_n$ of \mathcal{L}_n symmetric to

 \mathcal{L}_n with respect to point (e_n, r_n) .

(2) other arcs in $A \cap L_n$ and $A \cap R_n$ bend a little bit so that they approximate the inserted $\sin(\frac{1}{x})$ curves (in fact the whole \mathcal{L}_n or \mathcal{R}_n) but they remain mutually disjoint, disjoint with \mathcal{L}_n and \mathcal{R}_n , and must stay in L_n or R_n , respectively (see Fig. 1).

Fig. 1 - a replacement in L_n

Denote the modified compact space by B.

Next, we will do some identifications in B to get a continuum with exactly two dense arc components.

- (i) For each odd number $n \in \mathbb{N}$, identify points (e_n, r_n) and (e_n, r_{n+1}) .
- (ii) For each even number $n \in \mathbb{N}$, identify points (b_n, r_n) and (b_n, r_{n+1}) (see Fig. 2).
 - (iii) Identify all points in $\{0\} \times C$.
 - (iv) Identify all points in $\{3\} \times C$.

One can easily check that the decomposition of B described by (i)-(iv) is upper semi-continuous. Therefore, if $q: B \to X' = q(B)$ is the quotient map of the decomposition, then X' is compact and connected because it has exactly two dense arc components: the one containing points q(0,0), q(3,0) together with all $\sin(\frac{1}{x})$ curves, and the other that is uniquely arcwise connected and contains the dense in X' ray $W = \bigcup_{n=1}^{\infty} W_n$, where

Fig. 2 - an identification in B

$$W_1 = q(\{r_1\} \times [b_1, e_1])$$

and

$$W_n = \begin{cases} q(\{r_n\} \times [b_{n-1}, e_n]) & \text{if } n > 1 \text{ is odd,} \\ q(\{r_n\} \times [b_n, e_{n-1}]) & \text{if } n \text{ is even.} \end{cases}$$

Finally, we obtain our example X as the quotient of X' by identifying

two points q(0,0) and $q(b_1,r_1)$. Let $q':X'\to X$ be the quotient map.

Properties of X.

- (a) X is an arcwise connected continuum, since points q(0,0) and $q(b_1,r_1)$ belong to the only two different arc components of continuum X'.
- (b) Each arcwise connected proper subcontinuum $Y \subset X$ has the empty interior in X. Indeed, observe that, for each k, the ray $\bigcup_{n=k}^{\infty} W_n$ is dense in X' and q' maps W homeomorphically onto q'(W), hence the set $q'(\bigcup_{n=k}^{\infty} W_n)$ is a dense in X ray, for each k. If int $Y \neq \emptyset$, then Y contains a sequence of points $w_1, w_2, \ldots \in q'(W) \cap Y$ such that $w_n \in q'(W_{k_n})$ for some subsequence $1 \leq k_1 < k_2 < \ldots$ By definition of q' and the arcwise connectedness of Y, the ray $q'(\bigcup_{n=k_2}^{\infty} W_n)$ is contained in Y, so Y = X.
- (c) X is non-planar. In fact, suppose X is embedded in the plane. Choose numbers r_n and $s_1, s_2 \in C \setminus \{r_1, r_2, \ldots\}$ such that s_1 is between r_1 and r_n and r_n is between s_1 and s_2 . Then point $p = q'q(3/2, r_1)$ lies outside the simple closed curve $S = q'q(([0, 3] \times \{s_1\}) \cup ([0, 3] \times \{s_2\}))$ and point $p' = q'q(3/2, r_2)$ is inside S. By construction, the unique in X arc pp' is contained in the ray q'(W), so it is disjoint with S, a contradiction with the Jordan curve theorem.

Question. Does there exist an arcwise connected continuum Z in the plane such that each arcwise connected proper subcontinuum of Z is boundary?

Remarque. Joint research of the Open Problem Seminar, Charles University, Prague. Partially supported by grants GAUK 165/1999 and GAUK 252/2000 from the Grant Agency of Charles University and partially supported by grant number MSM 113200007 from the Czech Ministry of Education.

References

[1] FUGATE, J. B. and MOHLER, L.: The fixed point property for tree-like continua with finitely many arc components, *Pacific J. Math.* **57** (1975), 39–402