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Abstract: In this paper we investigate a Finsler space, where the (hv)-Ricci
tensor Gy; vanishes, but the (hv)-curvature tensor ijk is not necessarily
equal to zero. The aim of this paper to give an example for the so-called
weakly Berwald Finsler space (WBFS), and a sufficient condition for the
existence of a WBFS of Kropina type is determined also.

1. Introduction

Let F™*(M™, L) be a Finsler space of dimension n, where M" is
a connected n-dimensional differentiable manifold and the domain of
the metric fundamental function L(z,y) is the set T'AM\0 of the non
zero tangent vectors. We will assumed that L is positive and the met-
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“ . . o .
ric fundamental tensor g;;(z,y) = %L%i)(j) (where (i) := 5) is not
necessarily positive definite. '

The equation of the (canonically parametrized) geodetics of F™ is

given by
dZwi i d.’IZz i
where
1 BL%T) OL2
1.1 = —g" .
(1.1) ¢ 29 (y Ozs 8.1”)

The Berwald connection of the space is defined 'by its connection
coeflicients Gj. (Z,y) which can be computed from G* according to the
following formulae:

(1.2) Gj(z,y) = Gy Gixlz,y) = Gipy.-

Definition 1.1. [3] A metric L(z,y) = a?(z,y)/B(x,y) and the corre-
sponding Finsler space will be called a Kropina metric and a Kropina
space, respectively, where a®(z,y) = a;;(z)y'y’ is a Riemannian metric
and S(z,y) = b;(z)y* is a one-form.
Definition 1.2. [4] A spray is called a weakly affine spray if the (hv)-
Ricci curvature tensor Gy = 0 where Gy = G7,,;, and the (hv)-
curvature tensor is given by G%,, = G;. k(1)-
Definition 1.3. A Finsler space is called a weakly Berwald space if the
(hv)-Ricci curvature tensor Gy = 0.

We will use the following notations
) Bij = (Vb + Vibs) /2,
) Fi; = (V'bi — Vib;)/2,
) F} =a"F.;; F,=0b.F; F'=d"F,
) b =a'"b,; b2 =b"b,,
) EO‘ = rzy ) EOO = Ersyrys7
1.8) Fo=F"y.; Fi=Fiy",

T
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where V denotes the covariant derivation of the Levi-Civita connec-
tion of a(z,y), and (a *J) is the inverse matrix of matrix a;; and the
transvection by y* is denoted by subscript 0.

Z. Shen has studied the weakly affine spray in Randers space [4],
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in this paper we investigate weakly Berwald Finsler space of Kropina
type. Finally we construct an example for this space.

2. Weakly Berwald Finsler spaces of Kropina type

It is well-known that in a Kropina space the functions G*(z, y) are
given by

bi
b2

,BEoo)y_i _ CEZFg + <O[2F0

(2.1) 2G* = go(x)—2<F0+—a—2— 3 3 3 +EOO)

where I‘; «(z) denotes the Christoffel symbols of the Riemannian metric
a(z,y) [5], [3].
Using of (1.2) we obtain

2GE =oTi — 2[Fj 1 bafo + 268y 2E°°aj°} 7

a? ot b2
: . o?Flb,;
(2.2) — (2Faj0 + o®F})B + 55 I+
a’Fyb. bt
-+ [(ZF()CL]'O + a2F])IB —_— IBZO J -+ ZEJO:l b_2

After contracting (2.2) by the indices 7, j and differentiating this equa-
tion by y*,y' we get the (hv)-Ricci tensor in the following form

Gt = — 2(”2+21) [_ (bkalo + bla2k0 + Baw 4ﬂak2alo>Eoo+
o?b o o
(2.3)
b — 2Ba by — 2f3a
+ *k—af—kﬂElo + L#Eko = 5Ekl}

If we differentiate the connection coeffitients Gj-k by 3' we have the
(hv)-curvature tensor of Kropina type:
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Gy =U'Ejx + U} B + ULEy; + Vi Ejo + Vi Exot

, . bt
+VJ'Z]CEZO+Z;‘MEOO+Ajk( Fl + F b2)

(2.4) o Sy
b Au(=Fi 4 ) + Ay ( - Bt Bog)t
. bt

Consequently G, of (2.4) is written as

. , , 1 . bt
2.5) Glix =Ui Eji + Vi Ejo + 3 ZjaEoo + Aje(— F + F b2)
2.5
1 bt .
-+ gBjkl( Fg + Fobz) (4, k,1)
where (4, k,1) denotes the cyclic permutation of the indices (j, k,!) and
Kj=—b; +2'8“7°
Ui = 2 (Kyy - 286"
3 = g Ky~ 2605),
Vi 4 b b 9 4ajoaro\ ;
ik = Tops (bjaro + brajo + Bajk)a” — A )Y +
K8+ Kkéj.},
i 2 4 8Bajoaroa
ij:l = W{[bjakl — a;(bjako -+ ﬂajk)alo -+ ___%4’09__}_(1_{_

. i 4Baj0a )
+ (.7) k, l)]y + [2(bjak:0bk:a'j0 + ﬂajk - _%M)dl ( ’ka l)] }’

2 ajobr + akob; Oz2bjbk
Ajk = —ﬂ— ’:ajk - ,3 -+ ﬁ2 )
2 2a 'Obkbl ozzb'bkbl .
B.’fkl = Bé_(_jT" - ajkbl - # + (]7k7l) .

Therefore from the structure of the equations (2.3) and (2.5) we have
the following two theorems:

Theorem 1. In a n-dimensional Kropina space if Ex = 0 then G =
=0 holds good.

Theorem 2. In a n-dimensional Kropina space if Fg; s not equal
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to zero, then the (hv)-curvature tensor G;kl is not necessarily equal to
zero.

3. An example for the weakly-Berwald space

We give a covariant vector field (b;(z)) in an odd-dimensional
Euclidean space so that Ex; = 0 and Fj; # 0 hold good.

Let €;; be an n X n type quadratic skew symmetric matrix, and
z* denote coordinates of a point.

We consider the following vector field b; = Qijmj + ¢;, where ¢;
are constants. Easy to see, that in this special case V;b; + V;b; =
= 0, and V;b; — V;b; # 0. So a Kropina space, which is generated by
b; = 2y z7 +c;, is a weakly-Berwald space, and it is not Berwald space.
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