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Abstract: In this note, we show that there are no amicable Pell numbers.

For any positive integer n let o(n) denote the divisor sum of n.
Two positive integers m and n are called amicable if o(m) = o(n) =
= m -+ n. A positive integer n which is amicable with itself is called
perfect.

Let (Pn)n_>_l be the Pell sequence given by Py =0, P; =1 and

Piyg=2P, 1+ P, for n > 0.

Various arithmetic properties of the Pell numbers have been intensively
studied. For example, Cohn (see [1]) has shown that the only perfect
powers in the Pell sequence are P; = 1 and P; = 169 = 132. In this
note, we prove the following:
Theorem. There are no amicable Pell pairs.
Proof. Assume that P, and P, are amicable for some m < n. We
distinguish three cases: '

CASE 1. P, # P,, (mod 2). In this case, the sum P, + P, is odd.
Let s be one of the two numbers m and n such that P, is odd. Since
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o(Ps) is odd, it follows that P; is a perfect square. Hence, s = 1 or
s = 7. The case s = 1 gives P; = 1, which is impossible because 1 is not
amicable with any other number. The case s = 7 gives P, = 169 = 132,
o(Ps) — Ps = 0(169) — 169 = 14 and 14 is not a member of the Pell
sequence.

CASE 2. Both P, and P, are even. Notice that both n and m are
even and that m > 2.

Assume first that m < n. In this case, n > m + 2. Since P, is
even, it follows that P, /2 is a divisor of F,. Hence,

P,
Pp+ Py =0(Py) > Py + —

2
or
(1) 2P, > P,.
But the inequality (1) is impossible because
(2) Py > Poyy = 2Py + P = 5P + 2Py > 2Pp.

Assume now that m = n. In this case, P, is an even perfect
number. Hence,

(3) P, =2P71(2F - 1),

where both p and 2P — 1 are primes. One can check that P,, is not of
this form for m = 2, 4, 6. Assume now that m > 8. In particular,
p > 4. It is easy to prove that for any k& > 1, 2% | P, if and only if 2% | ¢.
Indeed, since (P;, Ps) = P, 4), it follows that it suffices to show that the
order at which 2 divides P, is precisely k for any k£ > 1. This follows
easily by induction. The case k = 1 is obvious. For the induction step,
let (Qn)n be the companion sequence to (P,),. This sequence is given
by Q1 =1, Q2 =3 and

(4) Qnt2 =2Qn+1 +Q@n for n > 0.
It is well-known that the pairs (@, F,) give all the solutions of the
Pell equation
X?-2Y% =41
and that
(5) Qn — 2P = (-1)™.

In particular, @y is odd for all n > 1. The induction step follows now
from the formula
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(6) P2n - 2PnQn

for n = 2k-1.

The above arguments together with equation (3) imply 2771 | m.
Since

P, > 2t? forallt > 7,
it follows that
2°71(2P — 1) = P, > Pyper > 2(211—1)2 = 2%P71,

which is an obvious contradiction.

CASE 3. Both P, and P, are odd. In this case, both m and
n are odd. The sequence (P;); is periodic modulo 4 with period 4.
By analyzing the first 4 terms, one concludes easily that P, + P,
= 2 (mod 4), whenever both m and n are odd. In particular 2 || o(Py,).
Now it follows easily that both P, and P, are of the form p;z? for
some prime number p; such that p; =1 (mod 4). We analyze only P,
since the situation is symmetric in m and n.

We need to investigate the equation

(7) Pm :p1$2.

Assume first that m is not prime. Let g be the largest prime number
dividing m. Since ¢ | m, it follows that P, | P,,. Write equation (7) as

P

(8) | P, ? = prz2.
It is well-known that
P
(9) P, ) = (Py, m/q).
( P, ) e

We use formula (9) to show that the greatest common divisor appearing
in (9) is, in fact, 1. Indeed, it is well-known that if p is any prime, then
p | Py, where e =0 for p =2 and e = (%), where (%) denotes the
Jacobi symbol of a with respect to p. In particular, p | Pp2_; when
p is odd. Assume now that the greatest common divisor appearing in
formula (9) is not 1. Pick a prime divisor p of it. Notice that p is odd
because m is odd. On the one hand, it follows that p | P,. On the other
hand, by the previous remarks, it follows that p | P,>_;. Hence,

(10) D | (Pq’ Pp2~1) = P(q,pz—l)'

Since g was the largest prime divisor of m, it follows that ¢ > p. In
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particular, (g, p> — 1) = 1, which contradicts formula (10). Hence, P,
and P,,/P, are coprime. Equation (7) implies now that either

(11) P, =p1z? and P, = P,z3
or
(12) P, = 2? and P, = p1 Pz}

for some positive integers z; and x5 such that z1z9 = .
We treat first situation (11). Combining (11) with formula (5)
and with the fact that m is odd, we get the equation

(13) Q% — (2Pt = 1.
From the main result in [2], we know that the equation
X?—dy*t=-1

has at most one solution when d > 3. Taking d = 2qu, we get that the
equation

X? - (2P)Y*=-1

has two solutions, namely (X, Y) = (Qq, 1) and (Qm, z2), which is a
contradiction.

We now ‘analyze situation (12). The first equation (12) implies
g = 7. We now show that m/q is a prime. Indeed, assume that m/q is
not a prime and let ¢; be the largest prime dividing m/q. Rewrite the
second equation in (12) as

P Pag 2

(14) = p125.
PQQ1 Pq ?

One can employ the previous argument to show that the two factors
of the product appearing on the left side of (14) are coprimes. Hence,
equation (14) implies that one of the two numbers P, /P,q, and Pgq, /
/P, is a square. But this is again impossible by the main result in [2],
so m/q is prime. Since ¢ = 7 and ¢ is the largest prime dividing m, it
follows that m € {21, 35, 49}. One can check that none of the numbers
P, for these values of m is of the form (7).

Finally, assume now that both m and n are prime. Let m = p.
Since n > p, we get

o(Pp) =P, + P, > 2P,

or
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U(Pp).

1 2 <

Decompose P, in prime factors as
(16) Pp=qi...qq whereq < g2 <. < g

It is well-known that every prime ¢; is congruent to +1 modulo p. In
particular g; > 2p — 1. Since

P, < (1+V2)* fork>0,

we get

plog(1++/2) > log P, > ilog g; > tlog(2p — 1),
or =
(17) t < log(l+ \/E)lwog(Zz_———l)

On the other hand, by fomula (15), we get

(%) 2§U(}§p) S¢(Jj£p):1—[1(1+qz'1—1)g(1+2p12)t'

1=

%—Iere ¢ is the Euler function. Inequalities (17) and (18) force
19)

1
log2§tlog<1+2p_2) < < log(1+v?2) P

(2p— 2)log(2p - 1)
Inequality (19) implies p < 3. But for p = 3, one gets o(P,) = o(5) =
= 6 = 5 + 1, which leads to the pair (5, 1), which is certainly not
amicable.

The theorem is proved. ¢
Remark I.t is probably true that there are only finitely many Fi-
bonacci pairs, Lucas pairs or Fibonacci-Lucas pairs of amicable num-
bers. In [3], we showed that there are no perfect Fibonacci or Lucas
numbers and in [4] we showed that there are only finitely many multi-
ply perfect Fibonacci or Lucas numbers. Unfortunately, the methods
employed in the present paper or in [3] or [4] are not powerful enough
to deal with the amicability problem for such numbers.
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