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1. Introduction and preliminaries

A space means a topological Hausdorff space, and a continuum
means a compact, connected space. The symbol N stands for the set of
all positive integers.

Let a point p of a space S be given. The component of p in S means
the maximal connected subset of S containing p. The quasicomponent
of p in S means the intersection of all simultaneously closed and open
subsets of S containing p. The arc component of p in S means the
maximal arcwise connected subset of S containing p. Thus, if K (p, S),
Q(p,S) and A(p,S) denote the component, quasicomponent and arc
component of a point p in a space S, then

A(p,S) C K(p,S) C Q(p, 5).
A space S is said to be:

— locally connected at a point p € S, written LC at p, provided
that for each open subset A of S such that p € A there is a connected
open subset B of S such that p € B C A, [14, p. 89]; equivalently,
provided that S has a local base at p composed of connected open sets,
[9, p. 105]; in other words, provided that each neighborhood of p con-
tains a connected neighborhood of p which is open in S, [15, 5.22, p.
83];

— weakly locally connected (often called connected im kleinen) at
a point p € S, written WLC at p, provided that for each open set A
of S such that p € A there exists an open subset B of S such that
p € B and B is contained in a component of A, [14, p. 89] (i.e., if for
each open neighborhood A of p the point p is an interior point of the
component K (p, A)); in other words, provided that for each open set A
of S containing p there exists an open subset B of S containing p and
lying in A such that for each point ¢ € B there is a connected set of
A containing both p and g, [9, p. 113]; equivalently, provided that each
neighborhood of p contains a connected neighborhood of p, [15, 5.10,
p- 75};

— locally arcwise connected at a point p € S, written LAC at
p, provided that each neighborhood of p contains an arcwise connected
neighborhood of p, [15, 8.24, p. 131] (observe that the arcwise connected
neighborhood of p need not be open); equivalently, provided that for
each neighborhood U of p the point p is an interior point of the arc
component A(p,U);
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— strongly locally arcwise connected at a point p € S, written
SLAC at p, provided that each neighborhood of p contains an arc-
wise connected neighborhood of p which is open in S, [15, 8.43, p.
136];

— quasilocally connected at a point p € S, written QLC at p, pro-
vided that for each neighborhood U of p the quasicomponent Q(p, U)
is a neighborhood of p, [17, p. 40]; i.e., provided that the point p is an
interior point of the quasicomponent Q(p, U);

— semi-locally connected (also called padded) at a point p €
€ S, written SLC at p, provided that for each neighborhood U of
p there exist open sets Wi and Wy such that p € Wy C cdd W; C
C Wy C U and W5 \ cl W; has only finitely many components, [16, p.
19], where connectedness of S is additionally assumed; see also [6, p.
355].

A space is said to have any of the properties defined above pro-

vided that it has that property at each of its points.
1.1. Remark. Note that some authors (e.g. K. Kuratowski [12, p.
227] and G. T. Whyburn [16, p. 18]) use the name “locally connected
at a point” in the sense of “connected im kleinen at a point”. Our term
“weakly locally connected” is copied from [18].

The relations between the above recalled concepts are widely
known. They can be summarized in the next two theorems. The former
is a consequence of the definitions.

1.2. Theorem. The following implications between the above defined
concepts are known for any space S and a pointp € S.

SisLCatp
4
SisSLACatp = SisLACatp = SisWLCatp = SisQLCatp

1.3. Theorem. For any connected space S and a point p € S the
following implication holds, and it cannot be reversed.

(1.3.1) S s SLC atp= S isLC atp

Proof. See [6, Prop. 2.3, p. 355, and Ex. 5.1, p. 361]. ¢

It will be shown in the next section (Cor. 2.5) that none of the
implications of Th. 1.2 can be reversed.
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2. Structural results

First we present some examples showing that none of the implica-
tions of Th. 1.2 can be reversed in general. Next we will discuss some
conditions which are sufficient to prove the inverse implications.

A continuum X is said to be hereditarily arcwise connected pro-
vided that each subcontinuum of X is arcwise connected. A dendroid
means an arcwise connected and hereditarily unicoherent (metric) con-
tinuum, see e.g. [15, 10.58, p. 192]. Since each subcontinuum of a
dendroid is a dendroid, [15, 10.58 (a), p. 192], each dendroid is heredi-
tarily arcwise connected. By the harmonic fan we mean the cone over
the closure of the harmonic sequence {1/n : n € N}.

The following example is well known. We recall its description for
further purposes.

2.1. Example. There ezists a dendroid X containing a point p such
that it is LAC at p (thus WLC at p) while not LC at p.

Proof. In the Euclidean plane put p = (0,0) and, for each n € N, let
H, be the cone with the vertex v, = (1, 0) over the set E,, = {vp41}U
U{(=%5,1):ie{n+1,n+2,...}}. Then each H, is homeomorphic

n+1? 12
to the harmonic fan. The union
(2.1.1) X ={p}U| J{Hn:n e N}
is the needed dendroid. It is pictured in [9, Fig. 3-9, p. 113] or [15, Fig.
5.22, p. 84]. O

Other continuum which is WLC at a point p but not LC at p is
shown in [10, Ex. 1, p. 137].
2.2. Example. There is an arcwise connected not hereditarily arcwise
connected plane continuum X containing a point p € X such that X s
LC at p (thus WLC at p), while not LAC at p.
Proof. The continuum is a slight modification of the one in [5, Ex. 3.19,
p. 215]. We recall its construction here for the reader’s convenience. In
the plane put A° = {(0,v) : y € [-1,1]}, and for each positive integer
nlet A™ = {(5,y) 1y € [-1,1]}, and

Bn { {(z,-1):z € [Z3, 2]} for nodd,

{(z,1): z € [, 11} for n even.

Thus the union Xo = A° U J{A" UB" : n € N} is a continuum
homeomorphic to the sin(1/z)-curve.
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Between every two consecutive vertical segments A™ and A™*+! of
Xg insert n disjoint copies X,1, Xn2,..., Xnn Properly diminished in
such a way that for each i € {1,2,...,n} the limit segment A2, of X,;
is contained in A"*!, while the first vertical segment A}, of the other
arc-component of X,,; is contained in A™. We assume also that for
each fixed n all segments A%, and Al. as well as n + 1 components of
AN J{AL, :i € {1,2,...,n}} and of A"\ U{AL, : i€ {1,2,...,n}}
have equal lengths. This assumption implies that the inserted copies
Xni of Xo are disjoint with B™ for each n and that the limit segment
A® of X, is contained in the closure of the union of all limit segments

A8, for alli € {1,2,...,n} and all n € N. Put
X' = XU J{U{Xni si € {1,2,...,n}} ine N}

The continuum X' is pictured in [5, p. 216]. Let L be an arc in the
plane such that LNX' = {(0,1),(1,1)}. Then X = X'UL is an arcwise
connected (but not hereditarily arcwise connected) continuum which is
LC (thus WLC) at each point of A%\ {(0,1)}, while it is not LAC at
any of these points. ¢
2.3. Example. There is a dendroid X containing a point p such that
X is LC at p (thus WLC at p and LAC at p), while not SLAC at p.
Proof. In the 3-space put p = (0,0,0) and, for each positive integer
n, let HY be the cone with the vertex v, = (1,0, 0) over the set E, =
= {Upy1} U {(n—}rl, 2,00 :i€ {n+1,n+2,...}}. Then each H? is
homeomorphic to the harmonic fan. Thus the union
X°={p}u( J{H: neN}
(lying in the plane z = 0) is just the dendroid of Ex. 2.1 (defined by
2.1.1)).
( %‘z)r each n € N let m, be the midpoint of the limit segment
UnUnt1 of HY, and let L,, be the straight line segment in the half-space
z > 0 erected at m,, perpendicularly to the plane z = 0 and of length —71;
Further, for each n € N, choose a decreasing and tending to 0 sequence
of numbers {z% : k € N} C (0, ] in such a way that
(2.3.1) {(zF keN}n{zE, ke N} =0

For k,n € N define Hf = {(z,y,2%) : (z,9,0) € H2}. Thus HF is
an isometric copy of H? located above it on the level 2¥, and we have
Lim g, coHEF = H? for each n € N. Condition (2.3.1) guarantees that
the copies HF are mutually disjoint for k,n € N. The union
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X=X (U{Ln:nEN}) U (U{H,’; : k,neN})

is a dendroid. Observe that, for each n € N, the component of X \ {vn}
containing the point p is an open connected neighborhood of p. Since
these neighborhoods form an open local base at p, the continuum X is
LC at p. Thus X is LAC at p (compare Cor. 2.14 below). But neither
the elements of the open local base nor other (small) open neighbor-
hoods of p are arcwise connected just by the construction. Thus X is
not SLAC at p. ¢

2.4. Example. There is a connected space X containing a point p
such that X is QLC at p while not WLC at p.

Proof. For each n € Nlet C,, = {1+ n_—1§-—1} x[0,2] and D, = [0,1] x {1+
+ n—JlFi} Let Ay = [J{Cn : n € N} and By = [J{Dn : n € N}. Given
a subset Z of the plane and a real number o, put aZ = {az: z € Z}.
For each n € Nlet 4, = —Z%Al and B, = z—nl—_TBl. Finally, define
p = (0,0) and

X = {p} U (U{An ne N}) U <U{Bn ‘ne N}) U (L, 2] x {0}).

Since the set A; U ([1, 2] x {0}) is connected and its closure intersects
each component of By, the union 4; U ([1, 3] x {0}) U By is a connected
set whose closure intersects each component of A;. Thus A4; U ([1, %] X
x {0}) U B;1 U Aj is connected. Procceding in the way we conclude that
X is connected.

For each n € Nlet X,, = {p} U (U{Am :m > n})U(H{Bmn:m 2>
> n}). We claim that : ’

(2.4.1) Q(p, X»n) = Xn41 U By,

Clearly, Q(p, X,,) C Xpy1 U B,. Let G and H be two disjoint open
(and closed) subsets of X,, such that X,, = GU H. Fix a point q € B,
such that ¢ € cl A4,. Assume that ¢ € G. Since G is open, almost all
components of A, intersect G. This implies that each component of B,
intersects G. Thus B,, C G. Consequently, each component of A,
intersects G, whence it follows that A,,1 C G. Proceeding in this way
we conclude that X, 1 U B, C G C Q(p, X»). So (2.4.1) is proved.

We are ready to prove that X is QLC at p. Let U be an open
subset of X such that p € U. Then there exists n € N with X,, C U.
Therefore p € int (Xp41 U Byp) C Xpp1 U B, = Q(p, Xn) C Q(p, X)
according to (2.4.1). This shows that X is QLC at p.
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On the other hand, the set V = X \ A; is an open neighborhood
of p such that K(p,V) = {p}. Thus X is not WLC at p. {

Exs. 2.1-2.4 lead to the following corollary.

2.5. Corollary. None of the four implications of Th. 1.2 can be
reversed, even for metric connected spaces.

2.6. Proposition. Let S be a compact Hausdorff space and p € S.
Then S 1s QLC at p if and only if S is WLC at p.

Proof. We only need to show that if S is QLC at p then S is WLC
at p. Let U and V be open subsets of S such that p € V C clV C
C U. Then p € int Q(p,V) C int Q(p,cl V). Since cl V is a compact
Hausdorff space, Q(p,cl V) = K(p,cl V), see [7, Th. 6.1.23, p. 357)].
Thus p € int K (p,cl V) Cint K(p,U). Therefore S is WLC at p. ¢
2.7. Remark. Ex. 2.4 shows that compactness of the space is
essential in Prop. 2.6. On the other hand, according to Prop. 2.6, Ex.
2.4 cannot be strengthened to get a continuum with the considered
property.

2.8. Remark. In [13, Fig. 1] an example is presented of a plane
arcwise connected continuum which is LC at a point p while is not
LAC at p. However, this example is not a dendroid.

2.9. Remark. Connectedness of S is an essential assumption in Th.
1.3. In fact, if § = {0} U{% : n € N} with the topology inherited from
the real line, then S is SLC at 0 while is not LC at this point.

The implications in Ths. 1.2 and 1.3 can be reversed under some
additional assumptions. For sake of completeness and to begin with,
recall a known result (see [14, Th. 10, p. 90]).

2.10. Theorem. If a space is WLC at each point of some open set
that contains a point p, then it is LC at p.

As a consequence of Th. 2.10 one obtains the following (see [9,
Th. 3-11, p. 114] or {15, 5.22 (b), p. 84]).

2.11. Corollary. If a space is WLC (at each of its points), then it is
LC.

We will show the following result.

2.12. Theorem. If a hereditarily arcwise connected continuum is
WLC at a point, then it is LAC at this point.

Proof. Let a hereditarily arcwise connected continuum X be WLC at
a point p € X, and let U be an arbitrary neighborhood of p. Since
X is a regular space, there is a neighborhood V of p such that cl V C
C U. By connectedness im kleinen of X at p there is a connected
neighborhood W of p with W C V. The closure C = cl W is closed
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and connected subset of X, so it is a subcontinuum of X, thus it is
arcwise connected. Since p € W C V, the set C is a neighborhood of p,
and since C C ¢l V C U, we see that W contains an arcwise connected
neighborhood of p, as needed. ¢

2.13. Corollary. For hereditarily arcwise connected continua weak
local connectedness (i.e., connectedness im kleinen) at a point is equiv-
alent to local arcwise connectedness at this point.

2.14. Corollary. If a hereditarily arcwise connected continuum is LC
at a point, then it is LAC at this point.

2.15. Remarks (a) The converse implication to that of Cor. 2.14 does
not hold by Ex. 2.1.

(b) Ex. 2.2 shows that the assumption of hereditary arcwise con-
nectedness of X is essential in Th. 2.12 and it cannot be weakened to
arcwise connectedness of X.

(c) Ex. 2.3 shows that Th. 2.12 cannot be strengthened so that
strong local arcwise connectedness is obtained in the conclusion under
the same assumptions.

3. Mapping results

Let LC(X), WLC(X), LAC(X), SLAC(X), QLC(X), SLC(X)
denote the sets of points of a space X at which X is locally connected,
weakly locally connected, locally arcwise connected, strongly locally
arcwise connected, quasilocally connected and semi-locally connected,
respectively.

In [8, (2) and (3), p. 28] the following is shown.

3.1. Proposition. Let a space X be compact. If f : X - Y = f(X)
15 a surjective mapping, then

(3.1.1) f~Hy)CWLC(X) = yeWLC(f(X)) for each y € f(X),
(3.1.2) F(X)\ WLC(f(X)) C f(X\ WLC(X)).

Implication (3.1.1) and inclusion (3.1.2) have many applications,
in particular to study invariant mapping properties of compact spaces.
Some of them were shown already in the same paper [8, Th., p. 28,
and Cor., p. 29]. Thus it is worth to consider similar results for other
concepts of local connectedness. ,

It is shown in [8, p. 28] that (3.1.1) implies (3.1.2). In fact, they are
equivalent, and the equivalence holds in a much more general setting.
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Namely we have the following easy assertion.
3.2. Assertion. For every sets X and Y, their subsets P1(X) C X

and Py(Y) C Y and a function f : X — Y = f(X) the following two
conditions are equivalent.

(3.2.1)  fTH(y)CP1(X) = yeP2(f(X)) for eachy € f(X),

(3.2.2) FXO\P(F(X)) C FI(X\Pr(X)).

Proof. Assume (3.2.1). Note that inclusion (3.2.2) is equivalent to the
inclusion f(X)\ f(X \ P1(X)) C P2(f(X)). So, let y € f(X)\ f(X\
\P1(X)). Then

FHWCFHFCONFXN\PLX))=F T (F O HF (X \P1(X)))C
C X\ (X \P1(X)) =P1(X),

and applying (3.2.1) we get y € Po(f(X)), as needed.

Assume (3.2.2), and suppose that y ¢ P(f(X)). Theny € f(X)\
\ P2(f(X)), whence y € f(X \ P1(X)) by (3.2.2). Therefore there is a
point £ € X \ P1(X) such that f(z) =y. Thus z € f~(y) \ P1(X), so
the proof is complete. ¢

In the light of the above mentioned results of [8] and of many
other applications of Prop. 3.1 the following problem is of a special
importance.

3.3. Problem. Determine conditions (concerning the domain space
X, or the mapping f: X — Y = f(X), or both) under which for some
Py, P, € {LC, WLC, LAC, SLAC, QLC, SLC}

one of the following two implications holds:
(3.3.1) z€P1(X) = f(z)ePs(f (X)) for each z € X,

(3.21)  fHy)CP1(X) = yePa(f(X)) for each yef(X).

Note that (3.3.1) is a stronger condition than (3.2.1).

A particular case of a special importance of Problem 3.3 is when
P; = Py. So we have the following problem.
3.4. Problem. Determine conditions (concerning the domain space
X, or the mapping f: X — Y = f(X), or both) under which for

(3.4.0) P € {LC, WLC, LAC, SLAC, QLC, SLC}
one of the following two implications holds:
(34.1) zeP(X) = f(z) eP(f(X)) foreach z¢€ X,
(34.2) f 1 (y) CP(X) = y € P(f(X)) foreach ye f(X).
To formulate a result that concerns Problem 3.3 we need an aux-
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iliary concept. A metric space X is said to be uniformly arcwise con-
nected provided that it is arcwise connected and for each positive num-
ber € there is a positive integer n such that any arc in X contains n
points that cut the arc into subarcs of diameter less than €. The cone
over the standard Cantor ternary set is called the Cantor fan. Recall
the following result (see [11, Th. 3.5 and Cor. 3.6, p. 322]).

3.5. Statement. A dendroid is uniformly arcwise connected if and
only if it is a continuous image of the Cantor fan.

3.6. Example. There are uniformly arcwise connected dendroids X
andY such that there are mappings from X onto Y and for no mapping
f: X =Y = f(X), for no point z € X and no two Py, Py with

P, € {LC, WLC, LAC, SLAC, QLC}
and P, € {LC, WLC, LAC, SLAC, QLC, SLC}

the implications (3.3.1) and (3.2.1) hold.
Proof. Let C stand for the standard Cantor ternary set of numbers in
[0,1]. In the Euclidean plane let X be the cone with the vertex v =
= (0, 1) over the set {(c,0) : ¢ € C}. Thus X is the Cantor fan. Denote
by X’ the image of X under the central symmetry with respect to the
point (0, 7). In other words, X' is the cone with the vertex v’ = (0,0)
over the set {(—¢,1) : ¢ € C}. So again X' is the Cantor fan, and the
common part of the two fans is the segment vv’. Hence the union ¥ =
= X UX'is a dendroid. Note that each arc in Y is the union of at most
three straight line segments, whence it follows by the construction that
the length of any arc in Y is bounded by 14-2+/2 < 4. Consequently, the
dendroid Y is uniformly arcwise connected, see [1, C2, p. 193]. Thus,
according to Statement 3.5, there is a mapping from X onto Y.

Observe that if P;e{LC, WLC, LAC, SLAC, QLC} then P (X)=

{v}, and if P € {LC, WLC, LAC, SLAC, QLC, SLC} then P5(Y) =
= (). Hence for any mapping f : X — Y = f(X) implications (3.3.1)
nd (3.2.1) cannot be satisfied. ¢

3.7. Remarks (a) It follows from Ex. 3.6 that in Prop. 3.1 the inclusion
f~Y(y) € WLC(X) in (3.1.1) is essential and it cannot be reduced to
r € WLC(X) to obtain the conclusion f(z) € WLC(f(X)). In other
words, (3.4.1) does not hold for P = WLC (equivalently, for P = QLC,
see Prop. 2.6). ‘

(b) Ex. 3.6 shows also that to get implication (3.3.1) some extra
conditions on either X or f (or both) are necessary.

A mapping f: X — Y is said to be:

I
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: — interior at a point p € X provided that for each open neighbor-
hood U of p in X the point f(p) is in the interior of f(U);

— open if it maps open subsets of X to open subsets of Y;
thus f is open if and only if it is interior at each point of the do-
main.

The following is known (see [2, Prop. 5 and Cor. 6, p. 271]).

3.8. Proposition. Let X be any space, and let a mapping f defined
on X be interior at a point x € X. Then

(3.8.1) z € WLC(X) = f(z) € WLC(F(X)).

3.9. Corollary. Let X be any space, and let a mapping f defined on
X be interior at a point x € X. If P € {LC, LAC, SLAC}, then

(3.9.1) z € P(X) = f(z) € WLC(f(X))

(and thus ¢ € P(X) = f(z) € QLC(f(X))).

3.10. Corollary. Let X be any space, and let a mapping [ defined on
X be open. IfP € {LC, LAC, SLAC}, then implication (3.9.1) holds.

Conclusion of Cor. 3.9 cannot be strengthened to get f(z) €
€ LC(f(X)) in (3.9.1). An example showing this is presented in [2,
Ex. 7, p. 271]. We redo its construction here not only for the reader
convenience, but also to obtain a stronger conclusion and to use it in
another example.

Recall that an arc ab contained in a space S is said to be free
provided that ab \ {a,b} is an open subset of S. A mapping with
connected point-inverses is said to be monotone.

3.11. Example. There exist plane dendroids X andY, a point p € X
and a mapping f: X - Y = f(X) such that

(3.11.1) f is monotone and interior at p,

(311.2) F71((p)) = {p},

(3.11.3) p € LC(X) N SLAC(X) N SLC(X) (and thus p € LAC(X) N
NWLC(X

));
(3.11.4) f(p) ¢ LC(f(X)) (and thus f(p) ¢ SLC(f(X))).

Proof. In the plane put p = (0,0) and, for each n € N, let v, = (%, 0).
Further, let m, be the midpoint of the segment v,y1v,, and let my, ;
fori € {n+1,n+2,...}, be the harmonic sequence of points lying just
above m,, i.e., so that the first coordinate of each m, ; equals that of

m,, and the second coordinate is % Define G,, as the cone with the
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vertex v, over the set {m,} U {mn;: 1€ {n+1,n+2,...}}. Then
each G, is homeomorphic to the harmonic fan, and it has v,m, as its
limit segment.

The union X = pvl U (U{G» : n € N}) is a dendroid. Observe
that for each n the segment v, 11m,, is a free arc in X, and there are no
other maximal free arcs contained in the segment pv;. Thus (3.11.3) is
satisfied by the construction.

Shrink each of these free arcs (lying in the segment pv;) to a
point, and let f : X — f(X) = Y be the quotient mapping. Note
that conditions (3.11.1) and (3.11.2) hold by the definition of f. As
a monotone image of a dendroid, Y is a dendroid, see e.g. [15, Cor.
13.41, p. 297]. Observe that Y is homeomorphic to the dendroid of Ex.
2.1 (i.e., of [9, Fig. 3-9, p. 113] or [15, Fig. 5.22, p. 84]), whence f(p) ¢
¢ LC(Y) by construction; thus f(p) ¢ SLC(Y) according to (1.3.1).
Therefore (3.11.4) follows. ¢
3.12. Observation. It follows from (3.11.2) of Ex. 3.11 that neither
(3.4.1) nor (3.4.2) hold if P € {LC,SLC}. In other words, WLC in
Prop. 3.1 cannot be replaced by L.C or by SLC.

Let us come back to dendroids X and Y of Ex. 3.11. Observe that
the dendroid X can be obtained from the dendroid Y (that has been
previously described in Ex. 2.1 by (2.1.1)) by blowing each point vy,
(the vertex of H,) to a free arc such that the diameters of the inserted
arcs tend to zero when n tends to infinity. Do the same operation with
the dendroid X of Ex. 2.3, name the obtained dendroid again by X,
and define f : X — f(X) =Y to be (again) a monotone and interior
at p mapping that shrinks each added free arc back to a point. Thus
Y is homeomorphic to the dendroid X of Ex. 2.3. As a consequence we
get the following.

3.13. Example. There exist dendroids X and Y, a pointp € X and
a mapping f : X =Y = f(X) such that

(3.13.1) f is monotone and interior at p,
(3.13.2) F=(f(p)) = {p},

(3.13.3) p € SLAC(X),

(3.13.4) f(p) ¢ SLAC(f(X)).

3.14. Observation. It follows from (3.13.2) of Ex. 3.13 that neither
(3.4.1) nor (3.4.2) hold if P = SLAC. In other words, WLC in Prop.
3.1 cannot be replaced by SLAC.

Ex. 3.6 shows that implication (3.4.1) does not hold for P = LAC.
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However, the following questions remain open.

3.15. Question. Does (3.4.2) hold with P = LAC?

3.16. Questions. Does (3.4.2) hold with P = QLC? Note that, by

Props. 3.1 and 2.6, the space X in a possible counterexample (if any)
must not be compact.

' A mapping f : X — Y between spaces X and Y is said to be

locally open at a point p € X provided that there exists a closed neigh-

borhood U of p such that f(U) is a closed neighborhood of f(p) and the

partial mapping f|U : U — f(U) is open. It is known, [4, Statement 13,

p. 360], that if a mapping is locally open at a point of its domain, then

it is mterior at this point. Ex. 3.11 shows that the inverse implication

is not true. Obviously a mapping is open if and only if it is locally open

at each point of its domain.

Ex. 3.11 shows that the concepts of local connectedness at a point
and of semi-local connectedness at a point are not preserved under
mappings which are interior at the considered point. But if the mapping
is assumed to satisfy a stronger condition, namely to be locally open at
the point, then the invariance takes place, not only for LC and SLC,
but also for other considered concepts. Namely we have the following
proposition which generalizes [2, Prop. 10 and Cor. 11, p. 273]. Its easy
proof is left to the reader.

3.17. Proposition. Let a mapping f: X - Y = f(X) defined on a
space X be locally open at a point z € X, and let

(3.4.0) P € {LC, WLC, LAC, SLAC, QLC, SLC}.

Then implication (3.4.1) holds.

3.18. Corollary. If a mapping f : X — Y = f(X) is open, then
implication (3.4.1) holds for each P listed in (3.4.0).
Acknowledgement. The authors thank Adridn Soto for asking some
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