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Abstract: In this paper, we present some criteria on the oscillation of solu-
tions of the differential equation with damping (p(z)v’)’ + a(z) f(z,v,v' )y’ +

+ g(z,y) = R(z,z,z'), ¢ € [z0, 00), under suitable assumptions.

Consider the second order nonlinear differential equation with
damping: '
1) (p(2)y) +a(z)f(z,y,9)y +g(z,y) = R(z,y,¥'), z € [0, 00),
where the functions involved are continuous and satisfying p : [zg, c0) —
— R, with 29 > 0; q : [zg,00) — [0,00); f : [zg,00) X R?2 = R; ¢ :
: [2g,00) x R — R and R : [z9,00) x R? -+ R. For all y # 0 and for

T € [zg,00) we assume that there exists continuous functions k£ : R — R
and 7, s : [2g,00) — R such that

(i) yk(y) >0, k'(y) > c¢>0; and
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9(z,y) R(z,y,y")
k(y) k(y)
A regular solution of (1) which is defined for all large z is called oscil-
latory, if it has no last zero, otherwise it is said to be nonoscillatory.
Thus a nonoscillatory solution is eventually positive or negative. The
equation (1) is oscillatory if all its solutions are oscillatory. We say
that (1) is sublinear if k(y) satisfies

> r(z), < s(z) for y # 0.

< dz —E dz
i) 0< [ —= <00, 0< [ —< <00, €>0.
0<% e
(1) is superlinear if k(y) satisfies
® dz > dz
(i) 0< [ <00, 0< [ —< <00, &>0.
e e
(1) is a mized type if k(y) satisfies
® dz X dz
iv) 0< [ —= <00, 0< —— < 00.
L) e
Yeh [24] considered equation (1) with p =1 and f =1, that is
(2) y' +q(z)y +r(z)y =0,

where g,7 € C([zo,00), (—00,00)), yg(y) > 0 and ¢'(y) > k > 0 for
y # 0 and proved that

Lim sup /(t — 5)" " lsq(s)ds = oo,

00
Zo

/ms [(t~ 5) (h(s) _ 1) tn— 1}2 (t — 8)"3ds < oo,

n

Lim
z—oo g1
To

for some integer n > 3 are sufficient conditions in the oscillation of (2).
In [23] Yan has discussed the oscillatory behaviour of regular so-
lutions of linear equation (py’)’ + ¢(z)y’ + r(z)y = 0, under initial

assumptions on p, ¢ and r, and considering that

+oo '

/z—f(l—zj:—i-oo.

‘Nagabuchi and Yamamoto (see [17]) extended and improves Yeh'’s
result to the equation
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(3) (p(2)y") + q(z)y' +r(z)g(y) = 0.

Recently, by exploiting more fully a simple “completing square” and
a differential inequality, Elabassy [5] has given sufficient conditions for
the oscillation of a broad class of second order nonlinear equations of
the type

(p(2)y")' + h(2)f W)y + U(z,y) = H(z,y,¢'),
under suitable conditions. It is clear that the above equation is a simple
case of equation (1). For the other related results, we refer the reader
to Butter [2], Elabassy.[4], Elbert [6], Elbert and Kusano [7], Grace and
Lalli [8], [9], Graef, Rankin and Spikes [10] and Napoles [18]. In this
paper, we present some criteria on the oscillation of solutions of the
differential equation (1) under suitable assumptions. As a consequence
we are able to extend and improve some well known oscillation results.
The accuracy of these results have been illustrated by some examples.
Theorem 1. Suppose that (1)—(ii) hold. In addition, assume that
(v) f is bounded from below, i.e. f > —c, ¢ > 0 for (z,y,y') € R3,
(vi) p is a bounded function for x > xg, i.e., 0 < p(z) <a,a>0,
(vil) there emists a continuously differentiable function u(z) on
[z0,00) such that u(z) > 0, u/'(z) > 0 and u"(z) < 0 on [z, o),
and y(z) = u'(z)p(z) + cu(z)q(z) > 0, ¥'(z) < 0 for z > zo,

(viif) Lim inf [ u(z)(r(2) - s())dz > —oo,

(ix) 301_1_1)%10 sup (f %)

il

f u(lz) fz u(v)(r(v) — s(v))dvdz = 0.

Then equation (1) is oscillatory.

Proof. Let y be a nonoscillatory solution of the differential equation (1).
Without loss of generality, this solution can be supposed to be such that
y(z) # 0 on [X,00) for some X > . Furthermore, we observe that
the substitution z = —y transforms (1) into the equation

(p2')' +qf*2' +¢" = R",
where f* = f(z,—z,—2'), g* = —g(z,—2), R* = R(z,—z,—2') are
subject to same conditions as f, g and R respectively. That remark

is valid for the function k. So, there is no loss of generality to assume
that y(z) > 0 for all z > X.

Let w(t) be defined by
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_ uelp(@)y(z) or all z
w(z) = ) for all z > X.

From (1) and the above expression we obtain that

' (z) < v(2)y' () | u() (s(z) — () — w*(@)k (y(z))

= Tk(y(x) u(z)p(z)
Consequently, integrating from X to z, we obtain
/ w(2)(r(2) — s(2))dz <
(4) ) (), [0k =)
wle) 4w 1@ (), [wRFG(E)
=T (X”X/ = e~

The integral [ %dz is bounded above. This can be seen by ap-
X

plying the Mean Value Theorem, for each > X there exists ( €
y(¢)

€ [X,z] such that f 7&;7(’ =) gz = (X)y({() k—%i—) < ki1, where k; =
o0
=v(X) [ k( %y Hence, we have from (4)
y(X)

xz T

(6) / w(2)(r(2) — s(2))dz < —w() + ks — ¢ / o
X X

Now, we consider the behaviour of z'.
CASE 1. ¢/ is oscillatory. Then, there exists an infinite sequence
{zn} such that z, — co as n — oo and y'(z,) = 0. Thus, (6) gives

Ly Tn

/u(z)(r(z) _ s(2))dz < ks — c/ marae

X X

From (viil), we get ul(”:);z()z) € LY[X,00). Thus, there exists a posi-
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Ty 2
tive constant N such that ){ u—z‘%f()?)dz < N for every z > X. From

Tn
this and using the Schwartz inequality we obtain that — "f:((zz)) dz <
X

Tn

< VN (x el > Furthermore, (6) gives [ u(z)(s(z) — 7(2))dz <
X
< —w(z) + k2, hence '

T . 2 T ’ T

(7) /%z)/u(v)(r(v)~s(v))dvdz§ —/1:((5))dz+k2/ut).

X X ' X X

Assumptions (vii) implies that u(z) < v + uz for all large z, where A
o0

and p are positive constants. This ensures that f ;dé—) = 00. This fact
o

and (7) implies that

< ([ots) v f s () [

Dividing by fﬂ% and take the upper limit as £ — co, we obtain a
contradictionXto (ix).

CASE 2. y'(z) > 0for z > X7 > zo. Then, it follows from (6) that
?f u(z)(r(z) — s(2))dz < kq and consequently the desired contradiction
to (ix )

CASE 3. ¢'(s ) <0forz> Xy > zo. If 1(‘;);"(1) € L'[X, 00), then

we can follow the procedure of Case 1 to arrive at a contradiction to
¢ L'[X,00). From (viii) and (5) we get

(ix). Suppose now that u(z p(z)
for some constant 8 > 0 that
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T

w2k (y(2))
(8) —w(z 2,3—!—/————dzforever x> Xo.
@ u(2)o() vz
2

Since ut‘;z);z(?z) ¢ L'[X,00), there exists X3 > X, such that M = 3 +

X3 5. .,
+ [ w_sz%);ﬁg(y?();_)ldz > 0. Thus (8) ensures w(z) is negative on [X3, co).

Xo

By using (8), we have from (5) that

@) [M /Mm} -

u(z)p(z)
Xo

This inequality yields

{ o ] wzizm];(y()z))

log

From here we obtain

T

20 )\1.! *
5 n / w (k)l" (y(z))dz Z M for every T _>— X3, with
u(z)p(z) k(y)

M* = Mk(y(X3)) > 0.

X

Hence, from (8) we derive that —w(z)k(y) > M™, and therefore

T T

dz M* dz
<yX3)—-M* | ——~ <y(M3) — — | —
y(m) = y( 3) /U(Z)p(Z) = y( 3) a _/U(Z),
.X.s X3
follows, that y(z) — —oo0 as £ — o0, a contradiction. This completes
the proof. ¢

Corollary 1. Egquation (1) s oscillatory if (ii), (vi) hold, vy(z) =
= azr®* p(z) + cz®q(z) > 0 and v'(z) < 0 for some a € [0,1],
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T

Lim inf/z“(r(z) — s(2))dz > —o0,

T—r 00

Lim / / (v))dvdz > 0o, ifa=1,
z—oo log x

Lim
z—o00 pl—o

/za/ s(v))dvdz > 00, fO0<a<l.

Remark 1. The existence of function k(y) is very closet to the oscilla-
tory nature of equation (1). So, if assumptions (i), (ii) and (vi) are not
fulfilled, we can exhibit equations that have nonoscillatory solutions.
For example, the equation

/ ;
<e(%+3w) y') +2(z% + 1)6(%3—4_3‘7:)3/ =0,

has the nonoscillatory solution y(z) = e=2® (see [19], [20], [21]).
Remark 2. The Th. 1 is consistent with Th. 1 of [19], referent to the
oscillatory behaviour of equation y” + a(z) f(y)h(y') = 0, with results
of [22] on qualitative nature of equation (3) with p = 1, with Atkinson’s
result (see [1]) on equation

(9) y" +r(@)ly|"sgny =0
and cover the Th. of Chen [3], refer to the equation (1) with p = 1,
=0 and g(z,y) — R(z,y,y') = yF(z,y?, y’2).

By the other hand, if we consider the equation with ¢(z) non-
negative and continuous on [0, co) and + is any real number satisfying
0 <7 <1, the Th. 1 completes the results of [11], [12] concerning with
nonoscﬂlatory solutions of equation (9) and [14], [15] and [16], refer to
the oscillatory behaviour of equation (9).

In the following result we do not assume that k(y) satisfies con-
dition (ii). So, it may be applicable for linear, sublinear or superlinear
differential equations.

Theorem 2. Suppose that (i) and (v) hold. Moreover, assume that
(x) there exists a differentiable function ¢ : [xg,00) — (0,00) and

continuous real functions h,H on D := {(z,z) : © > z > z¢}
and H has a continuous and nonpositive partial derivative on
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D with respect to the second variable such that H(z,z) =0 for
x> xg, H(z,2) >0 for x > z > zy, and

_BH(:c,z) = h(z, z)\/ H(z, z) for all (z,z) € D.

Then equation (1) is oscillatory if

T

() Limswp o | {¢<z>H<w, 2)(r(z) - 5(2))-

Zo

‘ZIE l:p(z)qb(z) [h(:c, z)—<cpi((§+q;((:))> H{(z, z)} 2} }dz:oo.

Proof. Let y(z) be a nonoscillatory solution of (1), say y(z) > 0 for

z > xg. Taking w = 91(1,2%5?—5’)—(2 we obtain from equation (1) that

W (@) < ¢()(r(e) - s(z)) + (Z,f’((f)) + f;((f)) ) wle) = pliwwﬁ())

(xi)

Hence, for all z > x(, we have

/qb z) — s(2))dz < — /H:cz w'(z)dz+

Zo

— H(z, 50)w(z0) — / <-%§> w(z)dz+

+/H(:E,z) (c‘J(z) + Mz)) w(z)dz — A/w %m -

e (S 4 £00)) i+ LA
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= H(z, zo)w(zg) — [ kH(m’z)wz—
= H(z, zo)u(zo) /[ ()

Zo

- p(f}g('z) (h(x, z) — /H(z, 2) <Z;J((Zz)) - (ZI((Zz)))) } 2d2+

1 cq(2) ¢’(z>) ] i

— |p(2)9(2) | h(x, 2 —(———i——-—— H(z, z dz <w(zgp),
4k[<>¢<>[( ) - (28 + £2) VAR (@0)
a contradiction with (xii). This completes the proof. ¢

Corollary 2. Suppose that condition (xii) in Th. 2 can be replaced by

T—ro0

. 1
Lim sup Hlo.20) / ¢(2)H(z,z)(r(z) — s(z2))dz = oo,

and
x

, 1
L sup oy | sI606)

Zo

2
cq(z) <75’(Z)>)
“\ h(z,z) — Ha:,z( + —F dz < oo.
(v6e - VA (55 + 565
Then the conclusion of Th. 2 holds.
Remark 3. Using the continuous functions H(z,z) = (z — 2)" %, z >

> z > xp, where n is an integer with n > 2, and h(z,2z) = (n — 1)
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(x — 2)(=3)/2 z > 2z > =z¢, the results in [13], [17], [22], [23] (the
Th. 1 on equation (3) with g(u) = u and Cor. 1 on equation (p(z)y')’ +
+7(z)y =0, z € [0,00)), and [24] can be obtained from Th. 2 as special
cases.
Remark 4. Th. 2 can be used to some cases for which some other
oscillation criteria can not be used. For, example, consider the Liénard
type equation

V' +1+y )+ +y =0
If we take H(z, z), h(z, z) as above and ¢ = 1, then all the hypotheses
of Th. 2 are satisfied, whereas to the best of our knowledge no criteria
can cover this result, taking into account the unboundedness of f (see,
[19] and [20] for further details).

Remark 5. The Ths. 1 and 2 contains, in the case f(z,y,vy") = f(¥),
the results obtained in [5] for a simple case of equation (1).
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