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Abstract: In this paper, we answers two questions of P. Fletcher and W.
Lindgren [1] and R. Gittings [4], one of which is partially answered. We prove
that a space X is developable if and only if it is wA-space with a quasi-
Gj-diagonal; a space X is developable if and only if it is quasi-developable,
B-space; a space X is developable if and only if it is 3, quasi-y-space with a
quasi-G-diagonal; a space is metrizable if and only if it is wM-space with a

quasi-Gj-diagonal.

1. Introduction

In this brief note we present some conditions which imply develop-
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ability and metrizability, and consequently we give a full positive an-
swer to Fletcher and Lindgren’s question [1] and a partial answer to R.
Gittings's question [4] respectively: is every quasi-developable 3-space
developable? Is every wM-space with Gs-diagonal metrizable?

In [13], the author makes it possible to factorize quasi-develop-
ability into two parts: a space X is quasi developable if and only if
it is a quasi-wA-space with a quasi-G%-diagonal. This result plays an
important role in getting the results in this paper.

A COC-map (= countable open covering map) for a topological
space X is a function from N x X into the topology of X such that
for every z € X and n € N,z € g(n,z) and g(n +1,z) C g(n,z). It
is well known that many important classes of generalized metrizable
spaces can be characterized in terms of a COC-map. In particular, X
is developable [5] (wA-space) if and only if X has a COC-map g such
that if {p, z,} C g(n,z,) for all n, then (zy) converges to p (then (zn)
has a cluster point).

A space X is called quasi-y [10] if and only if X has a COC-map
g such that if =, € g(n,yn) for each n € N, and the sequence {yn)
converges in X, then the sequence (x,) has a cluster point; a space X
is called semi-stratifiable [7] (B-space [6]) if and only if X has a COC-
map g such that if for each z € g(n,z,) for each n € N then z is a
cluster point of (z,) ({z,) has a cluster point).

Let G = {Gn}nen be a sequence of open families of X. Define
e(z) ={n:z€G%=IU{G:G € Gn}} Aspace X hasa quasi-
G%-diagonal [13] (quasi-G(2)-diagonal) if there is such a sequence G
such that for any distinct z,y € X, there exists n € N such that z €
€ st(z,Gn) C X — {y} (z € st?(z,Gn) C X — {y}); a space X is called
a quasi-wA-space [13] if X has such a sequence G such that

(1) for all z, c(x) is infinite,
(2) if (z,) is a sequence with z, € st(z,Gn) for all n € c(z) then
(z,) has a cluster point.

If we take G as a sequence of open covers of X with the condition
(2) ({zr) is a sequence with z, € st*(z,Gy) for all n € N then (zn) has
a cluster point), then X is a wA-space (wM-space).

A space X is called an c-semi-stratifiable [10] if there is a sequence
(g(n,z)) of open neighborhoods of  such that for each compact set
K C X, if g(n, K) = U{g(n,z) : = € K}, then N{g(n,K) : n > 1} =
— K. The COC-map ¢ : N x X — 7 is called a c-semi-stratification
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of X.

A space X is quasi-developable if there exists a sequence (Gn) of
families of open subsets of X such that for each = € X, {st(z,G,) :n €
€ N} — {0} is a base at .

All spaces will be regular, unless we state otherwise.

2. Main results

Lemma 2.1. Let X be a space with a quasi-G's-diagonal sequence.
Then X has a quasi-G-diagonal sequence (G, : n € N) such that for
each z € X there is an infinite subset d(z) C cg(x) such that if z,, €
€ st(z,Gn) for each n € d(z) then (z,) either clusters at x or it does
not cluster at all.

Proof. Let (H, : n € N) be a quasi-G}-diagonal sequence of X. With-
out loss of generality we may assume that cy(z) is infinite for each
z € X and H; = {X}. Let F denote the non-empty finite subsets of
N. For each F' € F set

Gr = {ﬂiEFHi H; € i}

Forn € Nand z € X, set Fr,(z) = cy(z)N{L,2,...,n}. Putd(z) =
= {Fn(z) : n € N}. Note that d(z) C cg(z). Smce cH(x) is infinite,
d(z) is infinite. Because Fy(z) C Fp,(x) for m > n, st(z,Gr, (z)) C
C st(z, Gr, (z)) for m > n.

For each n € N suppose that z, € st(z, an(z)). Then for m > n
we have

Tm € St(x?gFm(w)) - St(IL’, an(w))v

S0

1&m / m > n} Cst(z,Gp, ()

Since Nnenst(z, Gr,(s)) = {} it follows that either (&,) clusters at z
or does not cluster at all.

Remark 2.2. Let X be a space and (G, : n € N) a countable family
of collections of open subsets of a space X, such that for all z, c¢(z) =
= {n € N:z € G} is infinite. Consider the following condition on
(Gn :n € N): if (z, : n € N) is a sequence with z,, € st(z,G,) for all
n € c(z) then x is a cluster point of (z, : n € N). For all spaces, this
condition is equivalent to the following condition: for each point z € X
the set st(z,G,) is nonempty for infinitely many n and the nonempty
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sets of the form st(z,G,) form a local base at « for all z € X. Thus the
condition above is a characterization of a quasi-developable space.
Theorem 2.3. FEvery quasi-developable space is a c-semi-stratifiable
space.

Proof. Let (G, : n € N) be a quasi-development sequence in a space
X. Define

(n, ) = { st(z,Gn) ifz € G*p.
T = x if 2 ¢ G*n.

Let h(n,z) = (Ni=,9(i,z). We prove that h(n,z) is a c-semi-
stratifiable-map. We claim that C = Nuenh(n,C) for any compact
C C X, where h(n,C) = U cch(n, c). As Gi = {X} it follows readily
that C C Npenh(n,C) so it is appropriate concentrate on the reverse
inclusion. To prove that, let y € Nh(n,C), so y € h(n,c,) for some
¢n € C. Then y € st(cn,Gy) for infinitely many n € N. It follows
that ¢, € st(y,Gn) for infinitely many n € N. From Remark 2.2, (c,)
clusters at y. Hence, y € C. §

Lemma 2.4. A space is semi-stratifiable if and only if it is a c-semi-
stratifiable B-space.

Proof. Only if part is clear. If part: Let X be a regular c-semi-stratifi-
able (B-space. Let f be a c-semi-stratifiable-map and ‘g be a S-map.
Define h(n,z) = f(n,z) Ng(n,z). It is clear that h is a c-semi-stratifi-
able, f-map. Since X is a regular and h is a c-semi-stratifiable, S-map,
h(n+1,z) C h(n,z) for all z € X and all n € N and such that if z €
€ h(n,z,) for n € N, then the sequence (z,) has a cluster point. Now
to prove that h is a semi-stratifiable-map, let z € h(n,z,) for n € N,
we must prove that the sequence (z,) is convergent to .

Now, the sequence (z,) has at least one cluster point. Moreover,
it is easy to show that every subsequence of (z,) also has at least one
cluster point. Suppose p is a cluster point of (z,) and that p # =.
Choose a s subsequence of (z,,,) of (z,) such that z,, € g(i,p) for i €
€ Nand & # z,, for all i. Since every subsequence of (z,,) has a cluster
point, it follows that (z,,) converges to p. Therefore K = {p} U {zn,}
is compact. There exists m such that z ¢ h(m,K). Choose k > m
such that z; € K; then = ¢ h(m,zx). But h(k,zx) C h(m,zg), so
z ¢ h(k,zy), which is a contradiction. It follows that z is the only
cluster point of (z,). Since every subsequence of (z,) has a cluster
point, necessarily (z,) converges to z. ¢
Theorem 2.5. A space is developable if and only if it is quasi-develop-
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able B-space.

Proof. Only if part: clear. If part: follows from Lemma 2.4 and Th.
2.3. O

Corollary 2.6. A space X is developable if and only if X is wA-space
with a quasi-G-diagonal

Proof. This follows from [13, Th. 3.1], Th. 2.7 and since every wA-
space is [-space.

Theorem 2.7. A space X is developable if and only if it is B, quasi-
v-space with a quasi-G-diagonal.

Proof. The necessity of the conditions is obvious. To prove the suffi-
ciency of the conditions, let f be a B-map and ¢ a quasi-y-map of X.
Define h(n,z) = f(n,z) Ng(n,z). It is clear that h is a B and quasi-7-
map of X. We prove that h is a wA-map of X. Let {z,z,} C h(n,yn).
By the S-condition, (y,) converges and so by the quasi-y-condition (z,,)
has a cluster point. Thus A is wA-map of X. From Cor. 2.6, X is a
developable space. ¢

Corollary 2.8. A space is metrizable if and only if it is wM -space
with a quasi-G}-diagonal.

Proof. Let X be a regular, wM-space with a quasi-G}-diagonal. Every
wM-space is a wA-space so that (by Cor. 2.6) X is developable. Every
developable, wM-space is metrizable, this completes the proof. ¢

Now, it is natural to ask:

Question 2.9. Is every quasi-wA-space (quasi-wM-space) with G-
diagonal developable (metrizable)?

We answer this question in negative manner.

Example 2.10.There is a p-adic analytic manifold which is separable,
submetrizable, quasi-wM, quasi-developable, but not perfect ([12, Ex.
7.4.7]). This example also can serve as a quasi-semi-stratifiable space
(see [8] for the definition) which has a G}-diagonal but which is not
semi-stratifiable.

Example 2.11.There is a quasi-developable manifold which has a G-
diagonal but not a Gj-diagonal (see [3, Ex. 2.2]) This example also
can serve as a quasi-wA manifold which is not wA. (It is not even a

B-manifold). O
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metrizable
developabl& stratifiable— q-G — Nagata

q first countable

Relationships between some generalized metric spaces and quasi-Gj-diagonal.
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