DEVELOPABLE AND METRIZABLE SPACES AND PROBLEMS OF FLETCHER AND LINDGREN AND GITTINGS

Abdul M. Mohamad

Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, Muscat, Oman

Dedicated to Professor Hans Sachs on his 60th birthday

Received: April 2001

MSC 2000: 54 E 30, 54 E 35

Keywords: Quasi- $w\Delta$ -space, quasi-developable space, quasi- γ -space, β -space, quasi- G_{δ}^* -diagonal, semi-stratifiable, c-semi-stratifiable, wM-space, metrizable space.

Abstract: In this paper, we answers two questions of P. Fletcher and W. Lindgren [1] and R. Gittings [4], one of which is partially answered. We prove that a space X is developable if and only if it is $w\Delta$ -space with a quasi- G_{δ}^* -diagonal; a space X is developable if and only if it is quasi-developable, β -space; a space X is developable if and only if it is β , quasi- γ -space with a quasi- G_{δ}^* -diagonal; a space is metrizable if and only if it is wM-space with a quasi- G_{δ}^* -diagonal.

1. Introduction

In this brief note we present some conditions which imply develop-

E-mail address: mohamad@math.auckland.ac.nz

The author acknowledge the support of the Marsden Fund Award UOA 611, from the Royal Society of New Zealand.

ability and metrizability, and consequently we give a full positive answer to Fletcher and Lindgren's question [1] and a partial answer to R. Gittings's question [4] respectively: is every quasi-developable β -space developable? Is every wM-space with G_{δ} -diagonal metrizable?

In [13], the author makes it possible to factorize quasi-developability into two parts: a space X is quasi-developable if and only if it is a quasi- $w\Delta$ -space with a quasi- G^*_{δ} -diagonal. This result plays an important role in getting the results in this paper.

A COC-map (= countable open covering map) for a topological space X is a function from $N \times X$ into the topology of X such that for every $x \in X$ and $n \in \mathbb{N}, x \in g(n,x)$ and $g(n+1,x) \subseteq g(n,x)$. It is well known that many important classes of generalized metrizable spaces can be characterized in terms of a COC-map. In particular, X is developable [5] ($w\Delta$ -space) if and only if X has a COC-map g such that if $\{p, x_n\} \subseteq g(n, x_n)$ for all n, then $\langle x_n \rangle$ converges to p (then $\langle x_n \rangle$ has a cluster point).

A space X is called quasi- γ [10] if and only if X has a COC-map g such that if $x_n \in g(n, y_n)$ for each $n \in \mathbb{N}$, and the sequence $\langle y_n \rangle$ converges in X, then the sequence $\langle x_n \rangle$ has a cluster point; a space X is called semi-stratifiable [7] (β -space [6]) if and only if X has a COC-map g such that if for each $x \in g(n, x_n)$ for each $n \in \mathbb{N}$ then x is a cluster point of $\langle x_n \rangle$ ($\langle x_n \rangle$ has a cluster point).

Let $\mathcal{G} = \{\mathcal{G}_n\}_{n \in \mathbb{N}}$ be a sequence of open families of X. Define $c(x) = \{n : x \in \mathcal{G}^*_n = \bigcup \{G : G \in \mathcal{G}_n\}\}$. A space X has a quasi- G^*_{δ} -diagonal [13] (quasi- $G^*_{\delta}(2)$ -diagonal) if there is such a sequence \mathcal{G} such that for any distinct $x, y \in X$, there exists $n \in \mathbb{N}$ such that $x \in \overline{st(x, \mathcal{G}_n)} \subset X - \{y\}$ ($x \in \overline{st^2(x, \mathcal{G}_n)} \subset X - \{y\}$); a space X is called a quasi- $w\Delta$ -space [13] if X has such a sequence \mathcal{G} such that

- (1) for all x, c(x) is infinite,
- (2) if $\langle x_n \rangle$ is a sequence with $x_n \in st(x, \mathcal{G}_n)$ for all $n \in c(x)$ then $\langle x_n \rangle$ has a cluster point.

If we take \mathcal{G} as a sequence of open covers of X with the condition (2) $(\langle x_n \rangle)$ is a sequence with $x_n \in st^2(x, \mathcal{G}_n)$ for all $n \in \mathbb{N}$ then $\langle x_n \rangle$ has a cluster point), then X is a $w\Delta$ -space (wM-space).

A space X is called an c-semi-stratifiable [10] if there is a sequence $\langle g(n,x)\rangle$ of open neighborhoods of x such that for each compact set $K\subset X$, if $g(n,K)=\bigcup\{g(n,x):x\in K\}$, then $\bigcap\{g(n,K):n\geq 1\}=K$. The COC-map $g:\mathbb{N}\times X\to \tau$ is called a c-semi-stratification

of X.

A space X is quasi-developable if there exists a sequence $\langle \mathcal{G}_n \rangle$ of families of open subsets of X such that for each $x \in X$, $\{st(x, \mathcal{G}_n) : n \in \mathbb{N}\} - \{\emptyset\}$ is a base at x.

All spaces will be regular, unless we state otherwise.

2. Main results

Lemma 2.1. Let X be a space with a quasi- G_{δ}^* -diagonal sequence. Then X has a quasi- G_{δ}^* -diagonal sequence $\langle \mathcal{G}_n : n \in \mathbb{N} \rangle$ such that for each $x \in X$ there is an infinite subset $d(x) \subseteq c_{\mathcal{G}}(x)$ such that if $x_n \in st(x, \mathcal{G}_n)$ for each $n \in d(x)$ then $\langle x_n \rangle$ either clusters at x or it does not cluster at all.

Proof. Let $\langle \mathcal{H}_n : n \in \mathbb{N} \rangle$ be a quasi- G_{δ}^* -diagonal sequence of X. Without loss of generality we may assume that $c_{\mathcal{H}}(x)$ is infinite for each $x \in X$ and $\mathcal{H}_1 = \{X\}$. Let \mathcal{F} denote the non-empty finite subsets of \mathbb{N} . For each $F \in \mathcal{F}$ set

$$\mathcal{G}_F = \left\{ \bigcap_{i \in F} H_i : H_i \in \mathcal{H}_i \right\}.$$

For $n \in \mathbb{N}$ and $x \in X$, set $F_n(x) = c_{\mathcal{H}}(x) \cap \{1, 2, ..., n\}$. Put $d(x) = \{F_n(x) : n \in \mathbb{N}\}$. Note that $d(x) \subseteq c_{\mathcal{G}}(x)$. Since $c_{\mathcal{H}}(x)$ is infinite, d(x) is infinite. Because $F_n(x) \subseteq F_m(x)$ for $m \geq n$, $st(x, \mathcal{G}_{F_m(x)}) \subseteq st(x, \mathcal{G}_{F_n(x)})$ for $m \geq n$.

For each $n \in \mathbb{N}$ suppose that $x_n \in st(x, \mathcal{G}_{F_n(x)})$. Then for $m \geq n$ we have

$$x_m \in st(x, \mathcal{G}_{F_m(x)}) \subset st(x, \mathcal{G}_{F_n(x)}),$$

so

$$\overline{\{x_m \mid m \geq n\}} \subset \overline{st(x, \mathcal{G}_{F_n(x)})}.$$

Since $\bigcap_{n\in\mathbb{N}} \overline{st(x,\mathcal{G}_{F_n(x)})} = \{x\}$ it follows that either $\langle x_n \rangle$ clusters at x or does not cluster at all. \Diamond

Remark 2.2. Let X be a space and $\langle \mathcal{G}_n : n \in \mathbb{N} \rangle$ a countable family of collections of open subsets of a space X, such that for all x, $c(x) = \{n \in \mathbb{N} : x \in \mathcal{G}_n^*\}$ is infinite. Consider the following condition on $\langle \mathcal{G}_n : n \in \mathbb{N} \rangle$: if $\langle x_n : n \in \mathbb{N} \rangle$ is a sequence with $x_n \in st(x, \mathcal{G}_n)$ for all $n \in c(x)$ then x is a cluster point of $\langle x_n : n \in \mathbb{N} \rangle$. For all spaces, this condition is equivalent to the following condition: for each point $x \in X$ the set $st(x, \mathcal{G}_n)$ is nonempty for infinitely many n and the nonempty

sets of the form $st(x, \mathcal{G}_n)$ form a local base at x for all $x \in X$. Thus the condition above is a characterization of a quasi-developable space.

Theorem 2.3. Every quasi-developable space is a c-semi-stratifiable space.

Proof. Let $\langle \mathcal{G}_n : n \in \mathbb{N} \rangle$ be a quasi-development sequence in a space X. Define

$$g(n,x) = \begin{cases} st(x,\mathcal{G}_n) & \text{if } x \in \mathcal{G}^*_n. \\ X & \text{if } x \notin \mathcal{G}^*_n. \end{cases}$$

Let $h(n,x) = \bigcap_{i=1}^n g(i,x)$. We prove that h(n,x) is a c-semi-stratifiable-map. We claim that $C = \bigcap_{n \in \mathbb{N}} h(n,C)$ for any compact $C \subset X$, where $h(n,C) = \bigcup_{c \in C} h(n,c)$. As $\mathcal{G}_1 = \{X\}$ it follows readily that $C \subset \bigcap_{n \in \mathbb{N}} h(n,C)$ so it is appropriate concentrate on the reverse inclusion. To prove that, let $y \in \bigcap h(n,C)$, so $y \in h(n,c_n)$ for some $c_n \in C$. Then $y \in st(c_n,\mathcal{G}_n)$ for infinitely many $n \in \mathbb{N}$. It follows that $c_n \in st(y,\mathcal{G}_n)$ for infinitely many $n \in \mathbb{N}$. From Remark 2.2, $\langle c_n \rangle$ clusters at y. Hence, $y \in C$. \Diamond

Lemma 2.4. A space is semi-stratifiable if and only if it is a c-semi-stratifiable β -space.

Proof. Only if part is clear. If part: Let X be a regular c-semi-stratifiable β -space. Let f be a c-semi-stratifiable-map and g be a β -map. Define $h(n,x)=f(n,x)\cap g(n,x)$. It is clear that h is a c-semi-stratifiable, β -map. Since X is a regular and h is a c-semi-stratifiable, β -map, $\overline{h(n+1,x)}\subset h(n,x)$ for all $x\in X$ and all $n\in \mathbb{N}$ and such that if $x\in h(n,x_n)$ for $n\in \mathbb{N}$, then the sequence $\langle x_n\rangle$ has a cluster point. Now to prove that h is a semi-stratifiable-map, let $x\in h(n,x_n)$ for $n\in \mathbb{N}$, we must prove that the sequence $\langle x_n\rangle$ is convergent to x.

Now, the sequence $\langle x_n \rangle$ has at least one cluster point. Moreover, it is easy to show that every subsequence of $\langle x_n \rangle$ also has at least one cluster point. Suppose p is a cluster point of $\langle x_n \rangle$ and that $p \neq x$. Choose a subsequence of $\langle x_{n_i} \rangle$ of $\langle x_n \rangle$ such that $x_{n_i} \in g(i,p)$ for $i \in \mathbb{N}$ and $x \neq x_{n_i}$ for all i. Since every subsequence of $\langle x_{n_i} \rangle$ has a cluster point, it follows that $\langle x_{n_i} \rangle$ converges to p. Therefore $K = \{p\} \cup \{x_{n_i}\}$ is compact. There exists m such that $x \notin h(m,K)$. Choose k > m such that $x_k \in K$; then $x \notin h(m,x_k)$. But $h(k,x_k) \subset h(m,x_k)$, so $x \notin h(k,x_k)$, which is a contradiction. It follows that x is the only cluster point of $\langle x_n \rangle$. Since every subsequence of $\langle x_n \rangle$ has a cluster point, necessarily $\langle x_n \rangle$ converges to x. \Diamond

Theorem 2.5. A space is developable if and only if it is quasi-develop-

able β -space.

Proof. Only if part: clear. If part: follows from Lemma 2.4 and Th. $2.3. \diamondsuit$

Corollary 2.6. A space X is developable if and only if X is $w\Delta$ -space with a quasi- G_{δ}^* -diagonal

Proof. This follows from [13, Th. 3.1], Th. 2.7 and since every $w\Delta$ -space is β -space. \Diamond

Theorem 2.7. A space X is developable if and only if it is β , quasi- γ -space with a quasi- G_{δ}^* -diagonal.

Proof. The necessity of the conditions is obvious. To prove the sufficiency of the conditions, let f be a β -map and g a quasi- γ -map of X. Define $h(n,x)=f(n,x)\cap g(n,x)$. It is clear that h is a β and quasi- γ -map of X. We prove that h is a $w\Delta$ -map of X. Let $\{x,x_n\}\subset h(n,y_n)$. By the β -condition, $\langle y_n\rangle$ converges and so by the quasi- γ -condition $\langle x_n\rangle$ has a cluster point. Thus h is $w\Delta$ -map of X. From Cor. 2.6, X is a developable space. \Diamond

Corollary 2.8. A space is metrizable if and only if it is wM-space with a quasi- G_{κ}^* -diagonal.

Proof. Let X be a regular, wM-space with a quasi- G_{δ}^* -diagonal. Every wM-space is a $w\Delta$ -space so that (by Cor. 2.6) X is developable. Every developable, wM-space is metrizable, this completes the proof. \Diamond

Now, it is natural to ask:

Question 2.9. Is every quasi-w Δ -space (quasi-wM-space) with G_{δ}^* -diagonal developable (metrizable)?

We answer this question in negative manner.

Example 2.10. There is a p-adic analytic manifold which is separable, submetrizable, quasi-wM, quasi-developable, but not perfect ([12, Ex. 7.4.7]). This example also can serve as a quasi-semi-stratifiable space (see [8] for the definition) which has a G_{δ}^* -diagonal but which is not semi-stratifiable. \Diamond

Example 2.11. There is a quasi-developable manifold which has a G_{δ} -diagonal but not a G_{δ}^* -diagonal (see [3, Ex. 2.2]) This example also can serve as a quasi-w Δ manifold which is not w Δ . (It is not even a β -manifold). \Diamond

Relationships between some generalized metric spaces and quasi- G_{δ}^* -diagonal.

Acknowledgement. The author is grateful to Prof. David Gauld for his kind help and valuable comments and suggestions on this paper.

References

- [1] FLETCHER, P. and LINDGREN, W.: On $w\Delta$ -spaces, $w\sigma$ -spaces and Σ^{\sharp} -spaces, Pacific J. Math, 71 (1977), 419–428.
- [2] GARTSIDE, P. M. and MOHAMAD, A. M.: Cleavability of manifolds, to appear in Topology Proceedings.
- [3] GARTSIDE, P.M., GOOD, C., KNIGHT, R. and MOHAMAD, A.M.: Quasi-developable manifolds, *Topology Appl.* (to appear).
- [4] GITTINGS, R.: Strong quasi-complete spaces, *Topology Proc.* **1** (1976), 243–251.
- [5] HEATH, R. W.: Arc-wise connectedness in semi-metric spaces, Pacific J. Math. 12 (1962), 1301–1319.
- [6] HODEL, R.: Moore spaces and $w\Delta$ -spaces, Pacific J. Math. 38 (1971), 641–652.
- [7] LUTZER, D.: Semimetrizable and stratifiable spaces, General Topology and Appl. 1 (1971), 43-48.
- [8] LEE, I.: On quasi-semidevelopable spaces, J. Korean Math. Soc. 12 (1975), 71–77.
- [9] LEE, K. B.: Spaces in which compacts are uniformly regular G_{δ} , Pacific J. Math. **61** (1979), 435–446.
- [10] MARTIN, H. W.: Remarks on the Nagata-Smirnov metrization theorem, Topology, Proc. Conf. Memphis, Tennessee, 1975, Dekker, New York, 1976, 217–224.

- [11] MARTIN, H. W.: Metrizability of M-spaces, Canad. J. Math. 25 (1973), 840–841.
- [12] MOHAMAD, A. M.: Metrization and manifolds, Ph.D. thesis, 1999.
- [13] MOHAMAD, A. M.: Generalization of G_{δ}^* -diagonals and $w\Delta$ -spaces, Acta Math. Hung. 80 (1998), 285–291.
- [14] MOHAMAD, A. M.: Some Results on Quasi- σ and θ Spaces, Houston J. Math. **26**/3 (2000)