Mathematica Pannonica
15/1 (2004), 3-20

DIVISIBILITY ORDERS ON SEMI-
GROUPS 11

H. Mitsch

Institut fir Mathematik, Universitit Wien, A-1090 Wien, Strudl-
hofgasse 4, Osterreich

Received: September 2003

MSC 2000: 10 M 10; 06 I 05

Keywords: Semigroup, divisibility order, downwards directed or total, E-
inversive.

Abstract: In continuation of [10], Green’s L-preorder: a<,b < a = zb
for some z € S', and a particular case of it: a<gb < a = eb for some
e € Eé, are studied with respect to the question when these relations are
downwards directed partial orders on a semigroup S. The special classes
of: (cancellative) monoids or finite or (E-unitary) E-inversive semigroups are
considered. In particular, the case when <, is a total order (with greatest
element) is studied. Characterizations of such semigroups in different classes,
as left or right simple, respectively right archimedean and right cancellative

(or not), are given. ’

1. Introduction

Let (5,-) be a semigroup. Then Green's L-preorder on S is defined

by:
a<rb < a = zb for some z € S* (see [4]).
The right dual of <, is Green’s R-preorder <. As a particular case,
the relation
a<gb< a =eb for some e € Eé

(Es the set of idempotents of §) appears as a generalization of the
natural partial order of inverse semigroups (see [2]). These two, in
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general not antisymmetric divisibility relations were studied in [10]:
< is a partial order iff S is L-trivial (see [9]); if Es is a band then
<g Is a partial order iff Eg is a rightregular band. In the following we
will go a step further investigating those semigroups S which have the
property that <, resp. <p are directed downwards, that is,

for any a,b € S there exists ¢ € S such that ¢<,a,b resp. c<ga, b.

In Section 2 this problem is dealt with concerning <,. Charac-
terizations are given for monoids, left-right duo semigroups, and can-
cellative monoids, which are directed downwards. For semigroups is
which every left ideal is left principal, under these conditions the par-
ticular case of a lattice order is obtained. In Section 3, the relation
<g is studied on (necessarily) E-inversive semigroups S whose idem-
potents commute (see [11]). If the idempotents of S are central then a
necessary and sufficient condition is given in order that < is directed
downwards. If S is E-unitary than this occurs iff S is a semilattice.
Also, the particular cases that S is inverse or finite is dealt with. In
Section 4, we investigate semigroups S, for which <, is a total order.
If S is left- or right simple a description is provided. The main re-
sults concern semigroups S for which <, is a total order with greatest
element. The two cases, when S is right cancellative or not, are inves-
tigated under the hypothesis that S is right archimedean. In the first
case, S is isomorphic with (N, +, <;), where <, is the dual of the usual
total order on N. In the second, S is either a finite cylic nil-semigroup
or an infinite nil-semigroup with right O-cancellation, which is dense
except possibly at 0. In the finite case this yields a characterization.

Throughout the paper, only non-trivial semigroup S are consid-
ered. The natural partial order on S is defined by

a<gb < a = zb=by,za = a(= ay), for some z,y € S (see [7]).

In general, <g is not right compatible with multiplication ([8]), whereas
both <, and <g above satisfy: a<;b (a<gb) = ac< bc (ac<gbc)
for any ¢ € S. Generally, a semigroup S, which is partially ordered
by a relation <, is called right partially ordered if < is compatible with
multiplication on the right. If < is also compatible on the left then
(S,+, <) is called a partially ordered semigroup. In case that S has an
identity, which is the greatest or least element of (S, <), then S is called
integrally (right) partially ordered.
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2. Green’s L-preorder Sc

In this Section we deal with the problem when for a semigroup

(S, ) the relation: : ‘ ,

a<,b < a = zb for some z € S,

is a downwards directed partial order on S, that is, when for any a,b €
€ S there exists ¢ € S such that ¢<,a,b. Evidently, this is the case if S
contains a left zero z (then z<,z for any = € S). For the general case
we have the following characterization. Recall that a semigroup S is
right reversible (see [2]) if for any a,b € S, Sa N Sb # &; furthermore S
is L-trivial if Green’s equivalence £ is the identity relation on S. Using
[10], Th. 2.7, we immediately obtain

Lemma 2.1. Let S be a semigroup. Then the relation <, is a down-
wards directed partial order on S iff S is L-trivial and right reversible.

In case that S is a left-right duo semigroup, that is, every principal
left ideal of S is twosided, we have
Corollary 2.2. Let S be a semigroup such that aS C Sa for any a €
€ 8. Then S is a downwards directed partially ordered semigroup with
respect to <, iff S is L-trivial.

Proof. Necessity holds by [10], Th. 2.7.

Sufficiency. By [10], Th. 2.7, the relation <, is a right compatible
partial oder on S. It is also left compatible by the proof of [10], Cor.
2.10. S is right reversible since for any a,b € S, ab = za for some z € S.
It follows by Lemma 2.1 that (S, <) is directed downwards. ¢

If S is a monoid then Cor. 2.2 and [10], Cor. 2.10, yield
Corollary 2.3. Let S be a monoid. Then with respect to the relation
<r, S is a downwards directed partially ordered semigroup (with lg as
greatest element) iff S is L-trivial and aS C Sa for any a € S.

For cancellative monoids we have the following characterization.
Recall that the negative cone of a (right) partially ordered group
(G,,=<) is the set {z € G|z < 1¢}.

Theorem 2.4. Let S be a semigroup. Then S is a cancellative monoid,
for which <, is a downwards directed partial order, iff S is isomorphic
with the negative cone of a downwards directed right partially ordered
group. .

Proof. Necessity. This holds by Lemma 2.1 and Satz 8 of [6].

Sufficiency. Let S be (isomorphic with) the negative cone of the
right partially ordered group (G, -, <). Then by Satz 8 in [6], S is a
cancellative right reversible monoid. Since (S, -, %) is right partially
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ordered with 1g = 1g as greatest element, S is L-trivial (see [9], Sec-
tion 2). Hence by Lemma 2.1, (S, <) is a downwards directed partially
ordered set. ¢

Examples. Right reversible semigroups:

1. Every commutative semigroup S. Note that ab<,a,b for all
a,bes.

2. Any semigroup S with left-zeros. If <, is a partial order on S
then there exists only one left zero and this is the zero of S{z<,z for
any ¢ € S and az<,z for any a € S imply that az = 2).

3. Every E-dense semigroup S, that is, an E-inversive semigroup
in which the idempotents commute (see [11]). Indeed, let a,b € S; then
by [11], za,yb € Es for some z,y € S, whence za-yb = yb-za € SanSh.
Note that ef<,a,b for e = za, f = yb € Eg.

4. Any right archimedean semigroup S, that is, for all a,b € S
there exist n > 0, z€ 8!, such that ¢ =zb. Note that for any a,be s,
there exist m,n > 0 such that a™<,a,b and b"<a,b.

5. Every archimedean semigroup S, that is, S is commutative and
right archimedean (see 4). If Eg = @& then by [10], Cor. 2.5(3), <. is
a partial order on S.

6. Any periodic (in particular, finite) semigroup S such that Eg

forms a left zero semigroup. Indeed, S is right archimedean (see 4): let
a,b € S; then a'a = e € Eg for some o/ € S (a™ € Eg for some m > 0)
and 0" = f € Eg for some n > 0; hence f-a'a = fe = f = b", ie,
b™ = za for z = fa’ € S. The relation <, is a partial order on S iff S
is a nil-semigroup (by [10], Prop. 2.16).
Remarks. 1. It follows from Lemma 2.1, that for every L-trivial
semigroup S in the above list, the relation <, is a downwards directed
partial order. If in particular, S is cancellative then S is embeddable in a
group (by [2], Th. 1.23). For the case that S has also an identity, see Th.
2.4, above. Note also that every right cancellative semigroup without
right identity and every right cancellative monoid without proper units
is L-trivial (see [9], Prop. 2.1 and 2.2).

2. Every partially ordered monoid (S, , <) with 1g as greatest
element is directed downwards. Indeed, if a,b € S then a,b < lg
implies ab < a,b. If S is an integrally right partially ordered monoid
then by [10], Th. 2.9, S is L-trivial. Supposing that Fg is finite we
have the following

Proposition 2.5. Let S be an L-trivial semigroup such that Eg is
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finite and commutative. Then (S,-) has a zero (hence (S,<.) is a
downwards directed partially ordered set) iff S is E-inversive (i.e., for
any a € S there exists x € S such that ax € Eg).
Proof. Necessity is evident since a0 =0 € Eg for any a € S.

Sufficiency. Let Eg = {e1, -+ ,e,} and put e = e;---e,. Then
with respect to the usual (natural) partial oder of idempotents, e € S
is the least idempotent of S: e = (e -+ -e;—1€,41 - - €p)e; implies e<ge;
and e € Eg. Since S is E-inversive it follows by [9], Cor. 4.10, that
e € Eg is the zero of (S,-). Because of |S| > 1 it follows by [10], Th.
2.7, that <, is a nontrivial partial order on S with 0 as least element.
Thus (5, <) is directed downwards. ¢
Remark. In particular, every finite integrally right partially ordered
monoid with commuting idempotents has a zero. Note that by [10],
Th. 2.9, every L-trivial monoid is an integrally right partially ordered
semigroup.
Examples. 1. Let S = (Np, -, <) be the multiplicative monoid of natu-
ral numbers including zero, where < denotes the dual of the divisibility
order: a < b & a = zb for some z € Ny (note that < is equal to <.).
Then n < 1 for every n € Ng, Es = {0,1} is finite and commutative,
and 0 € S is the zero of (S,:). Note that 0 € S is the least element of
(S, <), hence (S, <) is directed downwards (< is even a lattice order).

2. Let S = (N, +, <) be the additive semigroup of natural num-
bers (without 0), where < denotes the dual of the usual (total) order:
a<b< a=>bora=z+bfor some z € N (note that < is equal to
<¢). Then n <1 for every n € N, Eg = @ and S has no zero element.
Nevertheless, (S, <) is directed downwards since (N, <) is a chain. This
case will be investigated in Section 4.

3. Let (Y,) be a finite semilattice and let S = U T, be an (in-

finite) inflation of Y (see [2]). Since Y is L-trivial, so is S (see [9]).
Since Eg = Y, the set of idempotents of S is finite and commutative.
Furthermore, S is E-inversive: ab € Y = Eg for any a,b € S. Finally,
S has a zero—namely the least element of the finite semilattice. Hence
(S,<.) is directed downwards, even an inf-semilattice: inf{a, b} = ab
for all a,b € S (see Ex. 3 at the end of Section 3).

We conclude this Section with a particular case of a downwards
directed partially ordered set (X, <), a lattice, ie., for all a,b € X,
inf{a, b} and sup{a, b} exists in (X, <). Denoting by (a)r, the principal
left ideal of S generated by a € S we have:
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Proposition 3.8. Let S be a finite monoid with commuting idempo-
tents. Then the following are equivalent:
(i) (S,< g) is a downwards directed partially ordered set.
(ii) (S,< g) has a least element.
(ili) (S,-) admits a (unique) left zero element.
Proof. (i) = (ii): This is evident.

(ii) = (iii): Let m € S denote the least element of (S, <fg). Then
m<glg implies that m = elg = e for some e € Fg. Let f € Eg; since
e<pf we have that e = gf for some g € Eg, thus ef = gf - f = e.
Let a € S; then e < ga implies that e = fa for some f € Eg. Hence
e=e-e=c¢e-fa=ea,thatis, e € Sisaleft zeroof S. If z € S is
an arbitrary left zero of (S,-) then z = za<g a for every a € S. Thus
z € S is the least element of (S, <g), hence z =m =e.

(iii) = (i): If z € S is the left zero of (S,-) then z = za < g a for
every a € S. Therefore, (S, <g) is directed downwards.

If the idempotents of a semigroup S are central then a left zero of
S is the zero of all of S. If S is also finite then by [7]:

a<pbs a=eb(e€ Es) < a=eb=be < algh,
i.e., < g is the natural partial order of S. Thus Prop. 3.8 yields
Corollary 3.9. Let S be a finite monoid with central idempotents.
Then the following are equivalent with respect to the matural partial
order of S:
(1) (S,<g) 18 a downwards directed partially ordered set.
(ii) (S,<g) has a least element.
(iii) (S,-) admits a zero element.
Example. Every residue class semigroup S = (Zy, ) modulo n > 2
satisfies all the conditions in Cor. 3.9. Note that for @,b € S there are
possibly lower bounds in (S, <g) different from 0 € S. For instance,
in S = (Zg,): 3<s1,5. In this case, (S,<g) is even an inf-semilattice,
but not a semilattice (note that S is not F-unitary: compare with Th.
3.7).

The existence of a (left) zero in a semigroup S evidently forces
(S, <g) to be directed downwards. Besides the cases encountered above
this happens also in the following situation (compare with Prop. 2.5):
Proposition 3.10. Let S be an L-trivial semigroup such that Eg is
finite and commutative. Then the following are equivalent:

(i) (S,<g) is a downwards directed partially ordered set.
(ii) S is E-inversive.
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(iii) (S,-) has a zero element.

Proof. (i) = (ii): This was proved at the beginning of this Section.

(ii) = (iii) = (i): This is shown as in the proof of sufficiency in
Prop. 2.5. ¢ ‘
Examples. 1. Let S = (Np,-,<) be the semigroup given in Ex. 1
at the end of Section 2. Then S is an L-trivial monoid (see [9]) with
commuting idempotents: 0,1. Since S has a zero, (S, <g) is directed
downwards (such that all elements of S\0 are incomparable). Note that
<Eg is equal to <g.

2. Let § = (N, +, <) be the semigroup given in Ex. 2 at the end
of Section 2. Then § is an L-trivial semigroup (see [9]). Since Eg = @,
<p Is the identity relation (and so is <g),hence (S, <g) is not directed
downwards.

3. Let S be the semigroup given in Ex. 3 at the end of Sec-
tion 2. Then S is an L-trivial (E-inversive) semigroup such that Eg
is finite and commutative. Since S has a zero, (S,<p) is directed
downwards—even an inf-semilattice: for a € T, b € T}, say, inf{a,b} =
= ab = ef (ef<ga,bsince ef = eb, ef = fe = fa; if c<ga,b then
¢ =ga = ge and ¢ = hb = hf for some g,h € E}, hence ¢ = hf =
=hf-f=cf=gef, ie., c<gef). Note that the relations <z, <. and
<g coincide on S.

4. Let (X, <) be an infinite well ordered set and let S = {f : X —
— X|z < yimplies f(z) < f(y)}, that is, the set of all strictly monotone
maps of X into itself. With respect to composition of functions * o ”
and pointwise ordering “x”, S is a partially (lattice) ordered monoid.
Every f € S satisfies f(z) > z for any z € X: assume that ¥ = {z
€ X|f(z) < 2} # @ and let y € Y be the least element of Y; then
f(y) <y, whence f[f(y)] < f(y), so that f(y) € Y contradicting the
minimality of y € Y. Let f € Egs and assume that there exists zg € X
such that f(zo) > zo; then f(z0) = f[f(z0)] > f(z0), a contradiction.
Therefore, f is the identity function and Eg = {id}. Thus <y is the
identity relation and (S, <g) is not directed downwards. Since id € S
is the least element of S with respect to <, S is integrally partially
ordered. It follows by [10], Th. 2.9, that S is L-trivial (see also [9],
Section 3). Observe that (S,0) has no zero since Eg = {id} and |S| >
> 1. Note that also <g is the identity relation on S: if f < gg then
f =gok = fok for some k € S\id; thus there exists zo € X such that
k(zo) > o, whence f(zo) = flk(zo)] > f(zo), a contradiction. But </
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is a non-trivial right partial order on S with id as greatest element (by
[10], Th. 2.7).
Omitting the finiteness condition on the idempotents, Prop. 3.10
can be generalized in the following way:
Proposition 3.11. Let S be an L-trivial semigroup with commuting
idempotents. Then (S,<g) is a downwards directed partially ordered
set iff S is E-inversive.
Proof. Necessity was shown at the beginning of this Section.
Sufficiency. First, by [10], Th. 3.1, <g is a partial order on S.
Since S is L-trivial and E-inversive, for any a,b € S there exist ¢, f €
€ Eg such that e = ea, f = fb (by [9], Cor. 4.9). Therefore e<ga and
[<gb. Since ef = fe<ge, f it follows that ef<ga,b; hence (S,<g) is
directed downwards. ¢
Example. Generalizing Ex. 3 above we obtain: Every inflation S of
an arbitrary semilattice Y is L-trivial and E-inversive with commuting
idempotents, thus (5,<pg) is a downwards directed partially ordered
set, in fact, it is an inf-semilattice (inf{a, b} = ab for all a,b € S). Note
that S not necessarily has a zero.

4. The totally ordered case

Evidently, any totally ordered set is directed downwards (and up-
wards). We will consider this particular case for semigroups S with
respect to the relation: a<,;b & a = zb for some z € S! (see Sec-
tion 2).

Lemma 4.1. Let S be a semigroup. Then (S,<.) is a totally ordered
set iff S is L-trivial and the set of principal left ideals of S forms a
(non-trivial) chain with respect to inclusion.

Proof. Necessity. Since <, is a partial order on S, S is L-trivial (by
[10], Th. 2.7). Let (a)z, (b)r be arbitrary principal left ideals. Since
<. is a total order we have either a<,/b or b<,a. Hence a = zb(z € S?)
or b = ya(y € S*t); therefore (a)r, C (b)r or (b)r C (a)r. If (a)r =
= (b)r, for all a,b € S then a = b (since S is L-trivial), hence |S| = 1:
contradiction.

Sufficiency. Since S is L-trivial, <, is a partial order on S (by
[10], Th. 2.7). Let a,b € S be such that a # b. Since (a)r € (b) or
(b)r, C (a)r, we have a = zb(z € S) or b =ya(y € S). Thus a < gbor
b < ra,ie., <, is a total order on S. This also shows that <, is not
the identity relation. ¢
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Remark. In [3], right simple semigroups S whose principal left ideals
are totally ordered by inclusion were studied. If Eg = @& then by [10],
Cor. 2.5(2), <. is a partial, hence a total order on S (by Lemma 4.1,
proof of sufficiency). If Fs # & then <, can not be an order relation
as the following result shows:

Theorem 4.2. Let S be a semigroup, for which <, is a total order.

(1) If S is left simple then |S| = 1.

(2) If S is right simple then either |S| = 1 (if Es # @) or S is
right cancellative without idempotents, hence embeddable into a
Baer-Levi semigroup.

Proof. (1) This holds by [10], Remark following Th. 2.7.

(2) First we show that S is right cancellative (following the proof
in [3]). Let ac = bec for some a,b,c € S. Assume that a # b; then
a < b, say. Thus a = xb for some = € S, so that zbc = be. Since S
is right simple there exists y € S such that b = bc-y. It follows that
a=zb==x bcy =zxbc-y =bc-y=b: contradiction.

Next suppose that Eg # @. Then for a € S,e € Eg, the equation
ae = aee implies that ae = e. Hence e € Fyg is a right identity of S.
Further, aa’ = e for some a’ € S; hence S is a group. Let a,b € S; then
a=ab ! b, b=>ba"' aimply that a< b, b<,a. By the antisymmetry
of <, it follows that a = b, i.e.,, |S| = 1. If Eg = @ then by [2], Th.
8.5, S is embeddable into a Baer—Levi semigroup of type (p,p) where
p=|5|.

|L!et us suppose now that S is a semigroup for which <, is a

total order with greatest element. We will consider the class of those
S which are right archimedean, whence right reversible (see Ex. 4 in
Section 2). If S is cancellative then S is embeddable in a group (by [2],
Th. 1.23). Here we will distinguish two cases: S is right cancellative
or not. In the first case we have the following generalization of [5]
on cancellative, (commutative) archimedean, naturally totally ordered
semigroups without identity and with least element.

Theorem 4.3. Let S be a right archimedean, right cancellative semi-
group, for which <, is a total order with greatest element. Then
(S,-, <) is semigroup- and order isomorphic with the additive semi-
group (N, +,<y) of natural numbers (without zero), where <z denotes
the dual of the usual total order of N.

Proof. We first show that Eg = @. Let a € S,e € Eg-, then ae = aee
implies that a = ae<,e. Since there exist k € N, £ € S* such that

e = e® = za<a, it follows that a = e, i.e., | S| = 1: contradiction.
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If m € S denotes the greatest element of (S, <), it follows that
m? < zm. Therefore by right compatibility of <., mi*?<,m¢ for every
i € N. If m**! = m? for some 4 > 1 then m? - m*~! = m - m*~! implies
that m? =m. Hencem > ;m2 > ;m3 > ,---.

Let a € S, a # m; we will show that a = m* for some k € N.
Since m"™ = za for some n € N, z € S, we have m"<,a. Note that
n # 1, since m<, a implies that a = m. Therefore, the set M =
= {n € N\1| m"<,a} is not empty and has a least element k, say
(with respect to the usual total order of N). Thus k # 1 and mF<,a <
< ¢mPF~l. Hence a = ymk~1! f01 some y € S. Since y<,m it follows
that a = ym’~c 1<, mm*~1 = m*, whence a = m*.

Thus we obtain that S = {m’”lk € N}, i.e, an infinite cyclic
semigroup. It is well-known that the mapping ¢ : (S,) — (N,+),
go(m ) = k is a semigroup isomorphism. It is also orderpreserving: Let
mt < /mF in S and assume that k<giinN (note that i # k); then
k = p+i for some p € N and mF = mP™ = mP.-mi<,m': contradiction.
Since (S, <) is a chain, it follows that also ¢! is orderpreserving. ¢
Remarks. 1. In Th. 4.3, the condition “S is right archimedean” can
be replaced by “there is no ¢ € S such that ¢ < ;m7 for any j € N”:

First we show that m? < ;m. If m? = m then m’ = m for any
J € N; since |S| > 1 there exists ¢ € S such that ¢ # m, that is, ¢ <
< m =mJ for every j € N: contradiction. Therefore we obtain again:
m > gm? > gm3 > ... The third paragraph in the proof of Th. 4.3
has to be replaced by the following:

Let a € S, a % m; then a < sm and a = zm for some z € S.
Since z<,m we have a = zm<y,mm = m?. If a = m? we are done. If
a < £m? then as before, a<,m? and so on. Since there is no ¢ € S such
that ¢ < zm7 for any j € N, we obtain that o = m? for some j € N.

2. With respect to Th. 2.4 above we make the following observa-
tion. Let S be a semigroup satisfying the conditions given in Th. 4.3.
Then (S,-,<.) is isomorphic with (N,+,<;). Adjoining an identity
(that is, 0) then (N°, +, <;) is the negative cone of the totally ordered
group of integers (Z, +, <g).

If the semigroup S in Th. 4.3 is not right cancellative then we have
the following version of [1] on (commutative) archimedean, naturally
totally ordered semigroups without cancellation. The first alternative
occurs if S that a greatest element, the second if there is no such el-
ement in (S, <.). Recall that a semigroup with zero is nil if for every
a € S there exists n > 0 such that a™ = 0. S is right O-cancellative if
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ac = bc # 0 (a,b,c € S) implies that a = b. A partially ordered set
(X, <) is dense if for any a < b in X there is some ¢ € X such that
a<c<hb.
Theorem 4.4. Let S be a right archimedean, not right cancellative
semigroup, for which < is a total order. Then S is either a finite cyclic
nil-semigroup or an infinite nil-semigroup with right 0-cancellation,
which is dense except possibly at 0.
Proof. By hypothesis, there exist a,b,c € S such that ac = be and
a < b, say. Then a = zb for some z € S; put p = bc. Then zp =
= zbc = ac = bc = p, thus z"p = p for every n € N. Since § is
right- archimedean there exist £ > 0, y € Sl such that z¥ = yp<,p.
Therefore, p =" p<,p-p<,p, hence p?> = p. Let a € S; then p =
= p' = za<pa for some (i > 0)z € S'. Thus p is the least element of
(S, <¢). Furthermore, a/ = up<,p for some j > 0, u € S*; hence o’ =
= p. It follows that p-a = @’ -a = a-a’ = ap<,p, so that ap = pa = p.
Hence p € S is the zero of (S,-): p =0, and S is a nil-semigroup. Note
that Eg = {0}: if e € Eg then e = e’“ = zp = 0 for some (k > 0)z € S*.
Next we show that S is right 0-cancellative: let z,y, z € S be such
that rz = yz # 0 and assume that  # y, z E y say; then as above,

¢ =yz € § is the zero element of (S,): contradiction.

We have to distinguish three cases:

Case 1. (S,<.) has a greatest element m and m? = m. Then since
Eg = {0}, it follows that m = 0 = p, hence |S| = 1: contradiction.
Case 2. (5, <) has a greatest element m and m? # m.

Then by the proof of Th. 4.3 (third paragraph), S is the cyclic
nil-semigroup generated by m € S. In particular, for m € S there is
a (least) & € N such that m® = 0 (above). Hence m*** = 0 for any
-1 € N, i.e., there are only finitely many distinct powers of m : S =
= {m,m?,--- ,mF"1 mF =0}

Case 3. (S, <) has no greatest element.

Then by the above, S is an infinite nil-semigroup. We show that
(S, <) is dense except possibly at 0. Let a,b € S be such that a < b;
then a = b for some z € §. By hypothesis on (S, <) there exists
y € S with z < £y; therefore a = 2b<,yb < £b. We have yb # b, since
yb = b implies that y™b = b for any n > 0; but 37 = 0 for some j > 0,
whence b = 0: contradiction. It follows that a = zb<,yb < b. If a # 0
then a = zb # yb - otherwise z = y, by right 0-cancellation. Thus for
0 # a < b there exists ¢ € S such that a < cc < £b. O
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