Mathematica Pannonica
15/1 (2004), 21-35

WEIGHTED (0,1,3)-INTERPOLATION
ON THE ROOTS OF THE CLASSI-
CAL ORTHOGONAL POLYNOMIALS

A. Krebsz

Department of Numerical Analysis, Lordnd Fétvés University,
Budapest, Pdzmdny Péter sétiny 1/C, H-1117, Hungary

Received: October 2003
MSC 2000: 41 A 05, 41 A 10

Keywords: Weighted interpolation, lacunary interpolation, Birkhoff interpo-

lation, classical orthogonal polynomials.

Abstract: The aim of this paper is to give the existence, uniqueness and
representations of the weighted (0, 1, 3)-interpolation polynomials on the roots
of all classical orthogonal polynomials.

1. Introduction and preliminaries

1.1. Recently the weighted Lagrange and Hermite—Fejér interpolation
are researched intensively (see e.g. [5], [12], [18], [16], [17] and the ref-
erences therein). In this paper we shall investigate a weighted lacunary
(or weighted Birkhoff type) interpolation process. As G.G. Lorentz
[6] has remarked the Birkhoff interpolation problem differs from the
more familiar Lagrange and Hermite interpolation in both its problems
and its methods. The Lagrange and Hermite interpolation problems
always uniquely solvable for every choice of nodes, but a given Birkhoff
interpolation problem may not give a (unique) solution. For example
the (0, 2)-interpolation problem can be unsolvable or can have infin-
itely many solutions for a suitable choice of the nodal points. Another
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difficulty is that they have no simple explicit form and therefore conver-
gence theorems on these polynomials are rather complicated (see [13,
Chapter VII]). In order to avoid these difficulties, in 1961 J. Baldzs [1]
introduced the investigation of the weighted (0, 2)-interpolation and he
showed that using a suitable weight function this problem has a unique
solution when the nodal points are the roots of the ultraspherical poly-
nomials. He also proved a convergence theorem. Further investigations
showed that similar results hold on the roots of the Hermite polynomi-
als (cf. [14], [2]), Jacobi polynomials (cf. [3]) and Laguerre polynomials
(cf. [4]).

The analogue problem with respect to the weighted (0, 1, 3)-inter-
polation on the roots of the Hermite polynomials was studied by K. K.
Mathur and R. B. Saxena in [8].

The aim of this paper is to show that similarly to the weighted
(0, 2)-interpolation (cf. [15]) the weighted (0, 1, 3)-interpolation problem
can be treated in a unified way on the roots of all classical orthogonal
polynomials with respect to its existence, uniqueness and representa-
tion. Convergence theorems will be proved in forthcoming papers.
1.2. Classical orthogonal polynomials. First we recall that classical
orthogonal polynomials can be derived in a unified way (see [9, Part I}).

Consider the following second order linear homogeneous differen-
tial equation

(1.1) oy’ + 7y + Ay =0,

where o (resp. 7) is a polynomial of degree not greater than 2 (resp. 1)
and A is a real parameter. Let o be a solution of the differential equation

(1.2) (co) = To.
The equation (1.1) can be written in the following self adjoint form
(1.3) (goy')' + Aoy = 0.

It can be shown (see [9]) that the equation (1.3) has a polynomial
solution if and only if

—1
_nn-1)

A=\, = —n1’ 5

(n € N),

and

k(k—1)
2

These polynomials have the following explicit forms

e = A+ k7' + o’ #0 (k=0,1,... ,n—1).
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B,
o(z)
where B,, are arbitrary real numbers. (This is the so called Rodrigues
formula.)

We want to find the solutions of (1.2). Denote I = (a,b) C R
the maximal interval in which the solution p of (1.2) can be defined,
and suppose that the function p is positive and integrable on I. It can
be shown (see [11, II.1]) that under these condition the equation (1.2)

has the following three different solutions only (disregarding a linear
variable transformation)

o@)=e  (zeR),
o(z) = z% ™" (z € (0,4+00), a > —1),
o(z) =(1-z)2(1+2)? (ze(-1,1), o, 3> —1).

From these it follows that the polynomial solutions of (1.2) under the
given conditions above are exactly the well known classical orthogonal
polynomials, that is the Jacobi polynomials pieP) (o, 0 > —=1), the
Laguerre polynomials L (a > —1) and Hermite polynomials H,. The
common explicit representation of these polynomials are given by (1.4)
(see also Table 1).

(1.4) Un(z) = = [o™(z)o(z)]™  (neN),

Dr () () (z) (a>-1,8>-1) ') (z) (a>-1) H,(z)
(CL, b) (_13 1) (07 +OO) (_OOFZOO)
o(z) (1—z)%(1+ )P z%e™® e ”
o(z) 1—2? T 1
7(x) B—a—(a+F+2)x l+a—z —2z

Table 1

1.3. Weighted (0, 1, 3)-interpolation. Let a system of the nodal
points {zgn | k =1,2,... ,n} (n € N) be given in the finite or infinite
interval (a,b) and let w € C3(a,b) be a weight function. Determine a
polynomial R,, of lowest possible degree satisfying the conditions

1
Rn(@in) = Yimy  Bp(@in) = ins (0 Ra)" (@in) = yiln

(1.5) (i=1,2,...,n),

where y; n,v; , andy!" (i =1,2,...,n) are arbitrarily given real num-

bers.
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K.K. Mathur and R. B. Saxena [8] investigated this problem when
Trn's (k = 1,2,...,n) are the roots of the n-th Hermite polynomial
H, and w(z) := e=® /2 (z € R). They proved that there does not
exist — in general — a polynomial R, of degree < 3n — 1 satisfying the
conditions (1.5). If n is even then under some additional condition for
R, (0) there exists a unique polynomial of degree < 3n. (If n is odd
then the uniqueness is not true.) They gave the explicit form of these
polynomials and also proved a convergence theorem.

In this note we shall study the above problem in those cases when
the nodal points are the roots of the classical orthogonal polynomials.

2. Results

In the sequel (p,, n € N) denotes a system of the classical orthog-
onal polynomials on the interval (a,b), and

(2.1) —00<a< Ty <Tp_1n < ' <Tpp <b< 400
the roots of p, (n € N). Let ¢, represent the Lagrange-fundamental
polynomials corresponding to the nodal points zy », i.e.

(22)  Lyn(z) = Pn(7) (k=1,2,...,n; n€N).

B p;z(mk,n)(m - xk,n)

Choose the weight of the weighted (0, 1, 3)-interpolation by

(2.3) w(z) = v/o(z)o(x) (z € (a,b)).

Now we formulate a negative result with respect to the existence.
Theorem 2.1. In general there is no polynomial R,, of degree < 3n—1
satisfying conditions (1.5).

Fortunately we can construct such polynomials of degree < 3n in
relatively simple form.

Lemma 2.2. The polynomials

| Chon(z) = Pi(®) - C b (t)dt
(2.4) en(2) 6w?(zh.n) [, (T5m)] /0 en(f)
(k=1,2,...,n; neN)

are of degree 3n satisfying the requirements
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Ckan(xj,n> =0, Cllc,n(mj,n) =0, (wzck,n>///($j7n) = 5};7‘7'
(1,k=1,2,...,n),

where 0y, ; denotes the Kronecker symbol.
Lemma 2.3. The polynomials

(2.5)

(2.6) Bin(z) = (T — 2p,0) 83 ()4
P B [ ol ol i) (),
[p/n (xk,n)} 2 0 t— Lrn

(k=1,2,...,n; neN)
are of degree 3n, where
w//(zk’n>
w(:ck,n)
satisfy the requirements

/
Bin(jn) =0, Bjn(zjn) =0k (w?Bgn)" (25) =0
(5, k=1,2,...,n).

1//

2
fyk"n’ = + l: ;C,n(xk;n)] - 5 k,n(xk,n)

(2.7)

Lemma 2.4. The polynomials

2
(28)  Apn(z) = € ,(5) — 36, , (0 Bun(2) + —22T_
[p;m(mk,n)]
x / 7 [t = 2un)? + Bin(t = Tin) + 4, (T5n) | Gin (8) — £, (2)
: = znn)?
(k=1,2,...,n; neN)

dt

are of degree 3n, where
2
/Bk,n — Egyn(xk,n) — [ﬁlk’n(xk,n)] y

1 wm($k n)

S Sl LT A— Y e

3 w(zk,n) k,n(m}», )
3 3

+3[ ;C,n(xk,n)] - —2— ;c,n(xk,n)gg,n(mk,n)
and they satisfy the requirements

Ak,n(mj,n) = 6k,j) A;g,n(xj,n) - O; (szk,n)/”(Cﬂj,n) =0
(7,k=1,2,...,n).

w//(xlﬂ,n)

(63 =
g w(ZTh )

(2.9)
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In the following statement we give the explicit form of all polyno-
mials of degree < 3n+ 1+ s (s > —1 is a fixed integer) satisfying the
requirements (1.5).

Theorem 2.5. Let s > —1 be a fized integer and Ak n, Bin, Crn (K=
= 1,2,...,n) are given by Lemma 2.4, Lemma 2.3 and Lemma 2.2.
Then for every h € Ps and ¢ € R the polynomial

= YknArn+ Y YinBra(z) + Z Yo Chion(
k=1 k=1
+pi(m){/ P (t)h(t)dt + c} (n € N)
0

has of degree < 3n-+1-+s satisfying (1.5). Conversely, if Ry € Pany1+s
obeys (1.5) then R, has the form (2.10) with suitable h € Ps and c € R.
For s = =1, h € P denotes h(z) =0 for all z € R.

From this result it follows that for the uniqueness of the weighted
(0,1, 3)-interpolation polynomials R,, € Ps, we have to make an addi-
tional condition beside of (1.5). In the following statement we choose a
Baldzs type additional condition.
Theorem 2.6. If p,(0) # 0 then there exists ezactly one polynomial
R,, of degree < 3n satisfying

— _I —
Rn(mi,n) = Yin, Rn(mi,n) = y;,n, (szn)m(wi,n) = y;l/n

(2.10)

1=1,2,...,n),
(2.11) . ( )
E71(0) = Z [yk,n + 3yk,nmk,”a\:,n(xk,n) - y;c,nmk,n] E%,n(())?
k=1
where Yin, Vi, ond yi, (i = 1,2,...,n) are arbitrarily given real

numbers. The explicit form of Ry, is

n n
(2.12) Rn(:c) = Z yk,nAk,,n + Z y;i,an n + Z yI// Ck n
k=1 k=1

where Ay n, Byn and Cyn are given by (2.8), (2.6) and (2.4).
Remarks. 1. If n is a such number for which p,,(0) = 0 then there are
infinitely many polynomials of degree < 3n satisfying (2.11). Indeed,
in these cases for every ¢ € R the polynomials R,(z) + cp?(z) satisfy
(2.11) (see (3.5)).

2. If (pn,n € N) is a system of the classical orthogonal polynomials
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then there is a subsequence (p,,,k € N) for which py, (0) # 0 for all

k € N. For the Laguerre polynomials Lgf‘ ) it is true for all n € N and
a > —1. It is known that H,(0) # 0 for all even n € N. Finally for the

Jacobi polynomials P{*?) we have pleP) (0) # 0 if n is an odd number
and a — 3 =41+ 2 (I € Z), or n is an even number and o — 8 = 4l
(1 € Z), or n € N is an arbitrary number for other o, 8 > —1 (see [3,
p. 45]). -

Corollary 2.7. Let n be a natural number satisfying the condition
pn(0) # 0. If S is an arbitrary polynomial of degree < 3n then for all

z € R we have
k13

S(@kn) Ak (@) + Y S (@kn) B (z)+
1 k=1

n

+ 5 (w2S)" (@hn) Cryn () + cnpl(2),

k=1
where
Cp = pn ( ; xk n + 3S<$A n)l'k nfk n(zk n)
_SI CCkn T n]gi’n )
3. Proofs

3.1. First we mention some relations which will be used later. For the
fundamental polynomials of Lagrange interpolation £y ,(z) (see (2.2))
we have

CRVACS pup—_ ) (G=1,2....,m j#k)
. kn\*~7,n prln(xlc,n)(l'j,n_mk,n) gy &y gy 3
P (Tre,n)
2 ’ . — _T_L_’_,
2 (o) = it
p”,(fﬂk n)
3.3 Y (T Zn A R
( ) k,n( k,l) 3pn($k,n)

If p,, denotes a classical orthogonal polynomial and w is given by
(2.3) then using (1.1) and (1.2) we get
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(wpn)(Tk,n) =0,

(wpn) (Tr,n) = wW(Tk,n )0 (Tkm),
) =0,
)

I

(34)  (upn)'(zn) =0
(wpn)" (@hm) = 3w (T n) [ (Th,m) ]+
+ 3w/(xk,n)pg(xk,n) + w(mk,n)pgl(mk,n)

and
(W?p2)(Tk,n) = 0,
(3.5) (w I?J (zem) =0,
(w5 (@) = 20°(we.n) [Ph(in)]
)=0

forall k=1,2,... ,nand n € N.

For the product of the fundamental polynomial of Lagrange in-
terpolation £y ,(z) and the weight w (see (2.3)) we have the following
relations: If j,k =1,2,... ,n then

(3.6) (wﬁi’,n)(mjm) = 5k,jw($j’n),2
() (5:0) = 2y ) [l (@50)]

k # j;

(wgi,n)”(mk,n) = w”(mk,n) + 4w/($k,n)£;c,n(xk,n)+

(3.7) +2w(@k n) [l (@0n)]” + 20 (@0 ) (Tn) =
= (o) (S8 - 2fty o] + 2 (o) )
(3.8) (W?83,)" (25n) = 6w (2j,0) [l n(z50)]° 3 b # 4
w" (zg,n)

(w?8)" (@rn) = 62 (wp0)

w'(zgn) , / 5 1,
" v t,n/) T 2 S e —E f/ - ).
w(xk,,n) l\,,n(xl\,, ) [ ]n,n(mk, )} -+ 5 k,n(mk,n)

3.2. Proof of Theorem 2.1. Let n € Nand j € {1,2,...,n} be

fixed numbers and choose y;, ., Yy, ., Yin (k=1,2,...,n)such that

(3.9) 3w(zk )

+2
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"

(3.10) Yen =0, Yen =0, Yirn =0k;.

Assume that there exists a polynomial R, of degree < 3n — 1
satisfying the requirements (1.5). Then R,, has the following form

Ru(z) = p721 (2)Qn-1(z),

where @Q,_1(z) is a polynomial of degree < n — 1. Using (3.5) and
(3.10) we obtain that

Ve = (W' Rn)" (21,n) = 3(w?ppQn-1)" (Tk,n) =
(3.11) = (w2pi)//(mk,n)Qn—1(mk,n) =
2
= Gwz(xk,n)[ ;(mkn)] Q‘/n——l(xk,n) = 0, ;-

Since w(zk,n) # 0 and pl,(xgn) 0 for all k =1,2,... ,n thus

Q;l_l(:ck,n)zo (k=1,2,...,7—1,7+1,...,n);
from which it follows that Q],_,(z) = 0 for all z € R, contradicting
(3.11). This completes the proof of Th. 2.1. ¢
3.3. Proof of Lemma 2.2. Fix the index Kk = 1,2,...,n. The

polynomials Cj ,, are of degree 3n, indeed, and it is clear that they
satisfy the first and second condition of (2. 5) Let

Qk n / Ek n dt

By (3.5) we get

1
W2 )" (z5.0) = (W22 Q) (Tn) =
(" Clen) (25 6w?(zh,0) [Pa(Th,n)] ’
3

2,2\ !
= 5 (w P) (mj,n>Qk,n(mj,n) = fk,n(mj,n) =0,
6w (k,n) [P (Tk,n)]

Thus the third conditions of (2.5) also hold and this completes the proof
of Lemma 2.2. {
3.4. Proof of Lemma 2.3. Fix the number £k =1,2,... ,n and let
/'T' [V (t = Tin) + G (@rn) [ () = £, 0 (2)

0

[ Tk,n

Qrn(z) = dt.

It is clear that Q) is a polynomial and deg Qk,n = n. Therefore the
polynomial By, is of degree 3n, indeed. It is easy to see that By,
satisfies the first and second condition of (2.7). Applying (3.4), (3.5)
we get
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(w2Bk,n)m(CBj,n> —
1 1
= ———(w’pnly )" (Tjn) + ————5 (W PLQkn)" (z)0) =

 Ph(Thn) [P} (2m)]

= () (250) (8 ) () + 3B (5,0 (LR ) (40 +

P (Tk,n)
3 2,2\ (. / .
- [0, (zk n)]? ()" (2,0) Qe (@5,m)-

For the proof of the third condition of (2.7) first we suppose that k # j
(7=1,2,... ,n). Then using

& n(Tjim)
! . - I\,,TL VL
Qk,n(%,n) = mj_,n__": o o
(3.1), (3.4) and (3.6) we get
/
2 " 2 pn(fﬂj,n) / 2
w* By, Tin) =0w(z;,)———"<\l, (z; -
( k,n) ( J,n) ( J7n)p;1($k,n) [ k,n( ],"1)]
Pp(Tjn) Pp(j,n) :

—6w?(z; . o Zin) = 0.
(@) @) P @) @y — ) o3

If kK = j then

Q;c,n(xk,n) = Yk,n + [fﬁc,n (-'Ek,n>] = ﬁ%,n(mk,n)
so from (3.5) we obtain that
1

Q) o) =
= o ) (@)@l () =
— 6u?onn) (222 1 afty (o] - G n(on))
Moreover by (3.2), (3.3), (3.4) and (3.7)
ey WPt (o) =
= o () (e )t ) ) +

+ 3(wpn)' (z,n) (WL )" (T ) =

= 3w’ (Tk,n) <%’((71;%2 - 2[ ;c,n(m‘k,n)]Q + E%)n(m‘k,n)) +
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#3ut(on) () gl (o))" + 28 ) ) =

W (Tpn 5 3
= 60 (nn) (28— 2ff )) + i)

From the above relations it follows that (w? By )" (k) = 0. Thus the
third condition of (2.7) holds and this completes the proof of Lemma
2.3. &

3.5. Proof of Lemma 2.4. Fix the number £ =1,2,... ,n and let

G (t) = [t —2um)? + Ben(t — Thn) + L (Th,n) ln (8) = L (1),
where oy n, Okn given in Lemma 2.4. Since
Qk,n(wlﬂ,n) = Oa Q;g,n(mk,n) = 07

thus gy (t)/(t — Tk n)? is a polynomial of degree n — 1. Consequently
Apg  is a polynomial and deg Ay », = 3n.
It is easy to see that Ay , satisfies the first and second condition

of (2.9).
Now we prove that
(3.12) (W2 Akn) " (zjn) =0  (5=1,2,...,n).
If
¥ qr n(t)
o n(T) 1= ——— i
@)= || G225
then for 7 =1,2,... ,n and k # j we get
Ui (Tjin)
7 . S h,n 7,1
Qk,n(Tjn) (Zjm — Thm)?
and

1
Q;c,n(xk,n) = 5qg,n(mk,ﬂ) =

3 3 1
= Qk,n + —Z—E;c,n(xk,n)e;cl,n(wk,ﬂ) - [E;c,n(xk,ﬂ)] - '2— %:n(mk,n)'

From (2.7) and (2.8) it follows that
(w?pp Qin)™ (T5n)

wQAnn " Tin) = wQESn n Tin +
(W Agn)" (m5,0) = (WL )" (Z5n) o ()]

forall j =1,2,... n.
If =1,2,...,n and k # j then using (3.1) and (3.5) we get
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2
(wzpvzsz, )" (zjn Pn(Tsn)
) . 23 ) = 6w2($j,n)'[’/j—}2Q/k,n($j,n) =
[pn(zk,71)] pn(mk,n)]
2
Ph(zjn)]”  —lin(Tin)
P (@rn)]” (@i = Thn)?
Combining this with (3.8) we obtain (3.12) for 7 # k.
If £k =5 then
(w?pp Qi) (Th,n)

2
[p;(mk,n)]
3 3 1
= 6102(33];,71) (O‘k,n+§€/k,n($k,n)£g,n(xk,n>— [ﬁc,n(mk,n)} - 5 g:n(ka))'

Using (3.9) and the definition of ay, we get (w?Ag )" (zxn) = 0 .
Thus the third conditions of (2.9) hold and this completes the proof of
Lemma 2.4.

3.6. Proof of Theorem 2.5. From Lemmas 2.2, 2.3 and 2.4 it follows
that the polynomial

T k)
Z YinAgn(T) + Z Yo,n Brn(z) + Z yi"n Cloyn (
k=1

k=1

= —6w? (SCj,n) [ Ik,n(xj»n>] 3'

= 6’11)2(11:_7"“)

= 6w (zp,n) Qo (Thyn) =

has of degree < 3n and it satisfies CODdlthIlS (1.5). Let us denote by
D,, the remainder part of R,:

(3.13) Dy (z) := pi(x){/ pn(t)h(t)dt + c} (n € N),
0
where h € Py is an arbitrary polynomial and ¢ is an arbitrary real
number. Using (3.5) we have
Dy (zjn) =0, Dj(zjn)=0, (w2Dn)///(xj,n) =0

(3.14) _
(j,k=1,2,...,n).

which means that the polynomial R,, (see (2.10)) satisfies (1.5).
Conversely, if R, € Paniiis obeys (1.5) then the polynomial

Dn( th nAkn Zyk ann Zy”’ Chn

has of degree < 3n+1+3 and satisfies (3.14). Thus D, has the following
form
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Dn(z) = pp(2)Qn(z),
where @, () is a polynomial of degree < n + 1+ s. Since by (3.5)
(w*Dn)" (zh,n) = (WPLQn)" () = (W?PR)" (1) @ (T4,0) =
= 6w (21,0) [P (21.0)] Q@) = 0,
and w(zg,n) # 0 moreover pl,(zy ) # 0 thus we get
Qr(zpn) =0 (k=1,2,...,n).
Consequently @Q7,(z) = pn(z)h(z) and

Qn(z) = /Ox pn(t)R(t)dt + ¢

with suitable h € P, and c¢€ R. This completes the proof of Th. 2.5. ¢

3.7. Proof of Theorem 2.6. Applying Th. 2.5 with h=0and c=0
moreover the explicit forms of Ay, By, », and C, (see (2.8), (2.6) and
(2.4)) we obtain that the polynomial R, obeys (2.11).

For the proof of the uniqueness suppose that there exists another
polynomial R} of degree at most 3n satisfying (2.11). Then for k =
=1,2,...,n (n € N) we have

(Bn = Rp)(zhn) =0, (Ra—Rp) (zh,) =0,
(W (R — RL))" (24n) =0,  Rn(0) — RZ(0) = 0.
Hence it follows that
Ru(z) = Ry(2) = p}(2)Qn(),

where the polynomial @, is of degree at most n. By our condition

Pn(0) # 0 s0 @, (0) = 0.
For the third derivative we get (see (3.5))

(w*(Ry — R:))W(xk n) = 2w (Tpn )Pl (T } Qn(zpn) =0
(k=1,2,...,n),

ie. QL (zkn) =0 (k=1,2,...,n) and deg@, < n. This means that
Qr is a constant. Since @Q,(0) = 0 thus R,(z) = RX(z) for all z€R
and this completes the proof of Th. 2.6. ¢
3.8. Proof of Corollary 2.7. Let S be an arbitrary polynomial of
degree < 3n and consider the polynomial
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n n
T(m Z‘S’mhn Akn Z xkn Bkn( )_
k=1 k=1

—Z (w28)" (z,n)Chim ().
k=1

By Lemmas 2.2, 2.3 and 2.4 we have
T(zgn)=0 and T'(zxn)=0 (k=1,2,...,n),
i.e. the polynomial T has of the form

T(z) = pp(2)Qn(2),
where the polynomial @),, has of degree at most n.
Using (3.5) we obtain that

2

(sz)IH(CEk,n) =0=2w’ (mk,n) [pln(xkn)] an(xkn)
for all k = 1,2,...,n. Therefore Q, = ¢, is a constant polynomial.
Hence

capy(z) = S(z) — Z S(@r,n) Arn(z) — Z S"(@kn) B, ()=
k=1 k=1

™
- Z (w25)/”(mk7n)0k’n(m).
k=1
The value of ¢,, follows from the above relations. ¢
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