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Abstract: The aim of this paper is to present a method of finding all the
roots of a system of nonlinear equations which are located in a given domain.
We use here a different approximation method than in the previous paper

(18-

Let us remember that the usual numerical methods of finding the
solutions of a system of nonlinear equations are deficient because of
their dependence upon the starting point of the iteration process. We
gave in a previous paper ([5]) an effective method of finding all the
solutions of a system of nonlinear equations. The only assumptions we
supposed were that the system had to have a finite number of roots
in the given domain, and the roots had to be regular points of the
application defining the system of nonlinear equations.
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where
©1(t) = (1—)*(1+ 2¢),
By (t) = t*(3 - 2¢),
®3(t) = t(1 —1)%,

By(t) = —t3(1 —t).

It is clear now that each of the functions f; and f; can be approx-
imated in this way, so we would have instead of the nonlinear system

F(z,y)=0
a number of N - M systems of polynomial equations of the form
S(fi)(z1,22) =0
S(fZ)(xla x2) =0,

where z = (21,z2) € D;; for each sub-domain D;;, i =0,1,...,N —1
and j=0,1,...,. M — 1.

The method we then propose consists of the following steps:

STEP 1. Approximate the differentiable functions f; as was dis-
cussed earlier.

STEP 2. Apply the Groebner bases algorithm to the N - M poly-
nomial systems of equations

Si,j(f1)(z1,22) =0
Sij(fa)(z1,22) =0,

where for each sub-domain D;;, i=0,1,...,N—1 and j=0,1,...,M -1
in order to obtain equivalent “triangular” polynomial systems.

Recall here again some definitions and facts.

Definition. Let I C k[z1,...,z,] be an ideal (not 0).
(1) the set of leading terms of I we will denote by LT(I) = {cz® :
there exists f € I, with LT(f) = cz®},
(2) the ideal of leading terms is the ideal generated by the elements of

LT(I), and is denoted by < LT(I) >.

It is easy to prove that the ideal of leading terms is a monomial
ideal and is finitely generated by the leading terms of a finite set of
some polynomials of I.

Now we can give the definition of a Groebner base. Let us consider
given a monomial order. Let I be an ideal of k[zy, ..., z,].
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Definition. A finite subset G = {g1,...,9s} of I is said to be a
Groebner basis of I, if ([3])

<LT(¢1),...,LT(gs) >=< LT{) > .

We emphasize the most important property of a Groebner basis:
there is an algorithm which compute it. This algorithm starts of course
from a finite bases of I, supplied by the Hilbert bases theorem.

For effective computations we used the software package Singular
(14)).

Theorem (see [3], [1]). If the system has a finite number of solutions,
then there exists an ordering such that the Groebner bases of the ideal
generated by the polynomials is “triangular”.

STEP 3. Apply a standard numerical method to solve the poly-
nomial equation with one unknown. (In the example which follows we
used dedicated software packages as was mentioned earlier.)

STEP 4. Retain the solutions located in D;; for the appropri-
ate system. Generate all the solutions of the “triangular” polynomial
system, located in D;;.

STEP 5. Refine the solutions by a standard numerical method
using the original system (In the next example we used the Newton—
Kantorovich method.)

A detailed analysis of the numerical stability of this method are
planned in a future work.

Let us give now a simple example, actually the same example as
was given in [5]. We will gain a filing of comparison between the two
different approximation method.

Problem. Find all the solutions in [0, 1] x [0, 1] of the following nonlinear
system of equations:

1
cos(a:—i—y)—:c—y—l—zl—:O

1
x2+y2—w—y+Z:O.

Solution:

STEP 1. Let us choose N = 3 and also M = 3. Applying the
approximation formulas of the Theorem we get a number of 3 x 3 =9
polynomial systems. Here are the first three systems:

For i =0 and j = 0 or Dy = [0,0.333] x [0,0.333] we have the
system
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1.564 % 1023y + 2.757 % 107223 + 8.394 % 10~ 22%y—
—5.046 * 107 2% + 1.564 % 10" *zy® + 8.391 % 10 2zy%—
~1.027zy — z + 2.757 % 107 2y® — 5.046 % 107 19* — y + 1.250 = 0

z? —z+y? —y+2.500% 107! = 0.

For i =0 and 5 =1 or D1 = [0,0.333] x [0.333,0.666] we have
the system

1.301 # 10 2%y + 3.643 % 107223 + 2.414 10~ 1 2%y —
—5.570 % 107 2% + 1.300 % 10" *zy® + 1.114 % 10t zy®—
~1.086zy — 9.824 % 10~ z + 7.969 * 10™2y® — 5.563 * 10~ y*—
—9.829% 107ty 4 1.248 = 0
2?2 —z+y? —y+2.500%10"1 = 0.

For i = 0 and j = 2 or Dpo = [0,0.333] x [0.666, 1] we have the
system

8.940 * 10223y + 6.349 + 107222 4 3.722 % 10~ 122y~
—6.443 % 1071 2% + 8.934 % 10722y 4 1.934 x 10~ zy®—
—1.180zy — 9.439 % 10 'z + 1.230 % 107113 — 6.422 % 107 1y°—
—9.261 % 10ty + 1.236 = 0
22—z +y% —y+2.500%1071 = 0.
STEP 2. The Groebner basis method yields to the systems:
y—9.239%1072 =0
T+ 1.716 % 1072y° — 1.076 * 10~ 1y +
+3.785 % 10~ y® — 1.969 % 10~ 1¢%+
+9.593 % 10~y — 8.771 « 1071 = 0.

8 — 4.633y° + 1.185 * 10y* + 1.495y°+
+3.531 % 10y* — 3.707 * 10y + 3.043 = 0

T+ 2.048 * 107%y% — 1.070 * 107 1y*+

+4.079 % 107 y® — 3.297 % 107192+
+1.042y — 8.772 %1071 = 0.
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y® — 4.2449° +1.025 % 10y*—

—6.669 * 107 1y® + 2.922  10y%
—2.930 10y + 2.291 = 0

T+ 2.416 % 1072y° — 1.153 » 10 1yt +
+4.322 % 107 1y3 — 3.864 % 10~ 192+
+1.062y — 8.678 % 10~ ! = 0.

STEP 3. Solving the polynomial equations in only one unknown
we retain only the real solutions. For their values see the next step.

STEP 4. The solutions of these systems are, as follows: For the
first system, (0.797,0.09239) & Dy .

For the second system there are two real and four not real roots.
The real roots are (0.786,0.09) and (0.093,0.791), none of these belong
to D()’l.

The third system, which has also only two real solutions gives:
(0.78,0.085) & Dg o but (0.093,0.791) € Dy ».

STEP 5. Taking this last solution as the initial value for a New-
ton approximation method for the original nonlinear system we get:
(0.093,0.791) € Dy 5.

This example shows that the last step in this case didn’t increased
the accuracy of the value obtained in the previous step, suggesting that
the spline approximation could be very accurate.

Solving the remaining six systems we get one more solution, which
is symmetric to the first one. These are the only two solutions located
in the domain D of our search.
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