EXPECTED UTILITY WITH PSEU-DOTRANSITIVE PREFERENCES

Gianni Bosi

Department of Applied Mathematics "Bruno de Finetti", University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy

Received: September 2002

MSC 2000: 06 A 06, 91 B 08, 91 B 16

Keywords: Preference relation, pseudotransive preference-indifference, von Neumann-Morgenstern utility function, integral representation.

Abstract: Given a separable metric space Y, and a σ -algebra $\mathcal{B}(Y)$ of subsets of Y, consider the space $\mathcal{M}(Y)$ of all (countably additive) probability measures on the measurable space $(Y,\mathcal{B}(Y))$, endowed with the topology of weak convergence. Further, denote by \prec a preference relation on a σ -convex subspace \mathcal{P} of $\mathcal{M}(Y)$. Necessary and sufficient conditions are presented for the existence of a pair of real continuous bounded functions u,v on Y, such that, for every $p,q\in\mathcal{P}$, $[p\prec q$ if and only if $\int_Y udp < \int_Y vdq$, where the real functionals $p\to \int_Y udp$ and $p\to \int_Y vdp$ are utility functionals for two weak orders naturally associated to \prec .

1. Introduction

Grandmont [8, Th. 3] proved a classical theorem in expected utility theory. Given a separable metric space Y, a σ -algebra $\mathcal{B}(Y)$ of subsets of Y, and a weak order (i.e., an asymmetric and negatively transitive binary relation) \prec on a σ -convex subspace \mathcal{P} of the space $\mathcal{M}(Y)$ of all (countably additive) probability measures on the measurable space $(Y, \mathcal{B}(Y))$, Grandmont presented necessary and sufficient

E-mail address: giannibo@econ.univ.trieste.it

A previous version of this paper was presented at the Conference "Utility Functions on Ordered Spaces", Trieste (Italy), 16–18 July 1998.

conditions for the existence of a continuous bounded real function u on Y, such that, for every $p, q \in \mathcal{P}$,

$$p \prec q$$
 if and only if $\int_Y u dp < \int_Y u dq$.

In this case, u is said to be a (continuous) von Neumann-Morgenstern utility function for the weak order \prec .

Several authors pointed out that indifference relations should not be transitive (see e.g. Armstrong [1], Bridges [4], Chateauneuf [5], Chipman [6], Fishburn [7], Luce [10]). While (semi)continuous representations of preferences with intransitive indifference seem to have received a considerable attention in literature (see e.g. Bridges [4], Chateauneuf [5] and Bosi et al. [3]), only a few authors were concerned with linear representations of preferences of this kind (see e.g., Fishburn [7], Vincke [13], and Nakamura [11]).

In this paper, given a preference relation \prec on a σ -convex subspace \mathcal{P} of $\mathcal{M}(Y)$, we are concerned with the existence of a pair of continuous bounded real functions u, v on the consequence space Y, such that, for every $p, q \in \mathcal{P}$,

$$p \prec q$$
 if and only if $\int_Y u dp < \int_Y v dq$.

In such a representation, u and v are von Neumann–Morgenstern utility functions for two weak orders naturally associated to \prec .

2. Notation and preliminaries

Denote by Y the set of all consequences, and let $\mathcal{B}(Y)$ be a σ -algebra of subsets of Y. It is assumed that Y is a separable metric space. Moreover, let $\mathcal{M}(Y)$ be the space of all (countably additive) probability measures (lotteries) on the measurable space $(Y, \mathcal{B}(Y))$, endowed with the topology of weak convergence. We recall that a sequence $\{p_n, n \geq 1\}$ of probability measures in $\mathcal{M}(Y)$ converges weakly to a probability measure p if

$$\lim \int_{Y} f dp_n = \int_{Y} f dp$$

for every real bounded continuous function f on Y (see Parthasarathy [12]).

A subspace \mathcal{P} of $\mathcal{M}(Y)$ is said to be

- (i) convex if $\lambda p_1 + (1 \lambda)p_2$ belongs to \mathcal{P} for any p_1, p_2 in \mathcal{P} , and for any real number λ in [0, 1],
- (ii) σ -convex if $p_0 = \sum_{1}^{\infty} \lambda_n p_n$ belongs to \mathcal{P} for any sequence $\{p_n, n \geq 1\}$ of elements of \mathcal{P} , and for any sequence $\{\lambda_n, n \geq 2\}$ of nonnegative real numbers such that $\sum_{1}^{\infty} \lambda_n = 1$.

A real functional f on a convex (σ -convex) subspace \mathcal{P} of $\mathcal{M}(Y)$ is linear (σ -linear) if, for every p,q in \mathcal{P} , and any real number λ in [0,1], it is $f(\lambda p + (1-\lambda)q) = \lambda f(p) + (1-\lambda)f(q)$ (respectively, for any sequence $\{p_n, n \geq 1\}$ of elements of \mathcal{P} , and for any sequence $\{\lambda_n, n \geq 1\}$ of nonnegative real numbers such that $\sum_{1}^{\infty} \lambda_n = 1$, it is $f(\sum_{1}^{\infty} \lambda_n p_n) = \sum_{1}^{\infty} \lambda_n f(p_n)$).

Let \prec be a preference relation (i.e. an asymmetric binary relation) on a subspace \mathcal{P} of $\mathcal{M}(Y)$. Denote by \preceq and \sim the preference-indifference relation, and respectively the indifference relation associated with \prec , namely, for $p, q \in \mathcal{P}$,

$$p \leq q \Leftrightarrow \text{ not } (q \prec p),$$

$$p \sim q \Leftrightarrow (p \leq q) \text{ and } (q \leq p).$$

A preference relation \prec on $\mathcal P$ is said to be a weak order if \prec is negatively transitive. If \prec is a weak order, then the associated preference-indifference relation \preceq is a complete preorder (i.e., \preceq is transitive and complete).

The preference-indifference relation \leq associated with a preference relation \prec on \mathcal{P} is said to be pseudotransitive if, for every $p, p', q, q' \in \mathcal{P}$,

$$p \prec p' \preceq q' \prec q \Rightarrow p \prec q$$
.

We say that a preference relation $\stackrel{c}{\prec}$ on Y is induced by a preference relation \prec on $\mathcal{M}(Y)$ if, for every $y, z \in Y$,

$$y \stackrel{c}{\prec} z \Leftrightarrow p_y \prec p_z,$$

where, for every $y \in Y$, p_y is the probability distribution concentrated at the point $y \in Y$. Denote by D the subspace of $\mathcal{M}(Y)$ whose elements are the probability distributions which are concentrated, namely

$$D = \{ p \in \mathcal{M}(Y) : \exists y \in Y, p = p_y \}.$$

A preference relation \prec is represented by a utility functional U on \mathcal{P} if, for every $p, q \in \mathcal{P}$,

$$p \prec q \Leftrightarrow U(p) < U(q)$$
.

If such a representation exists, then \prec is a weak order. Grandmont [8] found necessary and sufficient conditions for the existence of

a continuous von Neumann-Morgenstern utility function representing a weak order \prec on a σ -convex subspace \mathcal{P} of $\mathcal{M}(Y)$ containing D. We recall that u is said to be a von Neumann-Morgenstern utility function for a preference relation \prec on \mathcal{P} if u is a real function on Y representing the preference relation $\overset{c}{\prec}$ among sure consequences and, for every $p,q\in\mathcal{P}$,

$$p \prec q \Leftrightarrow \int_{Y} u dp < \int_{Y} u dq.$$

It is clear that, if $\stackrel{c}{\prec}$ is induced by \prec , and there exists a real function u on Y such that

$$p \to U(p) = \int_Y u dp$$

is a utility functional for \prec , then u is a von Neumann–Morgenstern utility function for \prec .

A preference relation \prec is represented by a pair of real functionals U, V on \mathcal{P} if, for every $p, q \in \mathcal{P}$,

$$p \prec q \Leftrightarrow U(p) < V(q)$$
.

If such a representation exists, then \leq is pseudotransitive.

A preference relation \prec on \mathcal{P} is continuous if $\{q \in P : p \prec q\}$ and $\{q \in P : q \prec p\}$ are open sets in \mathcal{P} for every $p \in \mathcal{P}$.

To each preference relation \prec on $\mathcal P$ we may associate the binary relations \prec * and \prec ** defined as follows:

$$p \prec {}^*q \Leftrightarrow \exists r \in \mathcal{P} : p \prec r \preceq q$$

$$p \prec **q \Leftrightarrow \exists s \in \mathcal{P} : p \leq s \prec q.$$

Fishburn [7] proved that, if \prec is a preference relation with pseudotransitive preference-indifference, then \prec * and \prec ** are both weak orders. The indifference relations associated to \prec * and \prec ** are denoted by \sim * and \sim **, respectively.

3. Expected utility with pseudotransitive preferences

In the following lemma, we present a necessary and sufficient condition for the continuity of a linear utility functional on a convex subspace of $\mathcal{M}(Y)$.

Lemma 1. Let Y be a separable metric space, and let \prec be a preference relation on a convex subspace \mathcal{P} of $\mathcal{M}(Y)$. Assume that there exists a

linear utility functional U for \prec . Then U is continuous if and only if \prec is continuous.

Proof. Let U be a linear utility functional for a preference relation \prec on a convex subspace \mathcal{P} of $\mathcal{M}(Y)$. It is clear that, if U is continuous, then \prec is continuous. Conversely, assume that \prec is continuous. In order to show that U is upper semicontinuous, consider $p \in \mathcal{P}$, and $\beta \in \mathbb{R}$, such that $U(p) < \beta$. If p is a maximal element relative to \prec , then $U(q) \leq U(p)$ for every $q \in \mathcal{P}$, and therefore \mathcal{P} is an open set containing p such that $U(q) < \beta$ for every $q \in \mathcal{P}$. If p is not a maximal element relative to \prec , then there exists $q' \in \mathcal{P}$ such that $p \prec q'$, and therefore U(p) < U(q'). Since $\alpha \to (1-\alpha)U(p) + \alpha U(q')$ is a continuous function from the closed real interval [0,1] onto the closed real interval [U(p),U(q')], there exists $\bar{\alpha} \in [0,1]$ such that $U(p) < (1-\bar{\alpha})U(p) + \bar{\alpha}U(q') < \beta$. Define $\bar{q} = (1-\bar{\alpha})p + \bar{\alpha}q'$. Since U is a linear utility functional for U, it is U is U is a continuous, U is an open set containing U, such that $U(q) < \beta$ for every U is an open set containing U, such that $U(q) < \beta$ for every U is an open set containing U, such that $U(q) < \beta$ for every U is an open set containing U, such that U is lower semicontinuous. U

In the following proposition, necessary and sufficient conditions are given for the existence of an integral representation of a linear utility functional on a σ -convex subspace of $\mathcal{M}(Y)$.

Proposition 1. Let $\stackrel{c}{\prec}$ be a preference relation on a separable metric space Y, and let \prec be a preference relation on a σ -convex subspace $\mathcal P$ of $\mathcal{M}(Y)$ containing D. Assume that there is a linear utility functional U for \prec . Then there exists a real bounded continuous function u on Y, which is a utility function for $\stackrel{c}{\prec}$, such that, for every $p \in \mathcal{P}$, U(p) = $=\int_Y udp$, if and only if \prec is continuous and $\stackrel{c}{\prec}$ is induced by \prec . **Proof.** It is easily seen that, if u is a real bounded continuous function on Y, and $p \to U(p) = \int_Y u dp$ is a utility functional for \prec , then \prec is continuous and $\stackrel{c}{\prec}$ is induced by \prec . Let us show that, if U is a linear utility functional for \prec , \prec is continuous and $\stackrel{c}{\prec}$ is induced by \prec , then there exists a real bounded continuous function u on Y, which is a utility function for $\stackrel{c}{\prec}$, such that, for every $p \in \mathcal{P}$, $U(p) = \int_Y u dp$. First observe that U is continuous by Lemma 1. Define, for every $y \in Y$, u(y) = $=U(p_y)$. Since U is linear and continuous, and \mathcal{P} is σ -convex, we have that u is bounded (see Grandmont [8, Lemma 2]). From Parthasarathy [12, Chap. 2, Lemma 6.1], u is continuous. Since \mathcal{P} is convex and contains p_y for every $y \in Y$, any finite support probability distribution

p in $\mathcal{M}(Y)$ belongs to \mathcal{P} . From Parthasarathy [12, Ths. 6.2 and 6.3], each element p of \mathcal{P} is the limit in the topology of weak convergence of a sequence $\{p_n, n \geq 1\} \subseteq \mathcal{P}$ of finite support probability measures. Since U is linear, it is easily seen that $U(p_n) = \int_Y udp_n$ for every $n \geq 1$. By continuity of U, $\lim U(p_n) = U(p)$, and therefore, using the fact that u is continuous and bounded, $U(p) = \lim \int_Y udp_n = \int_Y udp$. \Diamond

Let us consider necessary and sufficient conditions for the existence of a pair U, V of linear functionals representing a preference relation \prec with pseudotransitive preference-indifference on a convex subspace \mathcal{P} of $\mathcal{M}(Y)$. In this axiomatization, U and V are utility functionals for the associated weak orders \prec * and \prec **, respectively. It is assumed that there is not a maximal element relative to \prec . We recall that another axiomatization was presented by Nakamura [11, Th. 1]. The following theorem allows us to recover an integral representation of both U and V, and this is the reason why we present it.

Theorem 1. Let Y be a separable metric space, and let \prec be a preference relation without a maximal element on a convex subspace \mathcal{P} of $\mathcal{M}(Y)$. There exists a pair U, V of real continuous linear functionals on \mathcal{P} representing \prec , such that U and V are utility functionals for \prec * and \prec **, respectively, if and only if

(1)
$$\begin{cases} \underline{A1}. & \preceq \text{ is pseudotransitive,} \\ \underline{A2}. & p \sim **q \Rightarrow \lambda p + (1 - \lambda)r \sim **\lambda q + (1 - \lambda)r \\ & \forall p, q, r \in \mathcal{P}, \ \lambda \in [0, 1], \end{cases} \\ \underline{A3}. & \prec^* \text{ and } \prec^{**} \text{ are both continuous,} \\ \underline{A4}. & \lambda p + (1 - \lambda)q \prec r \Rightarrow \exists r_1, r_2 \in \mathcal{P} : \lambda r_1 + (1 - \lambda)r_2 \prec^{**}r, \\ & p \prec r_1, q \prec r_2 \qquad \forall p, q, r \in \mathcal{P}, \ \lambda \in [0, 1], \\ \underline{A5}. & p \prec q, r \prec s \Rightarrow \lambda p + (1 - \lambda)r \prec \lambda q + (1 - \lambda)s \\ & \forall p, q, r, s \in \mathcal{P}, \ \lambda \in [0, 1]. \end{cases}$$

If U, V and U', V' are two pairs of such real functionals, then there exist two real numbers a > 0 and b, such that U' = aU + b and V' = aV + b.

Proof. It is easily seen that conditions (1) are necessary for the existence of a pair U, V of real continuous linear functionals on \mathcal{P} representing \prec , such that U and V are utility functionals for \prec * and \prec **, respectively. So let us prove that axioms (1) are sufficient for the existence of such a representation. By axiom $\underline{A1}, \prec$ * and \prec ** are both

weak orders. By axioms <u>A2</u> and <u>A3</u>, for any $p,q,r\in\mathcal{P}$, the sets $\{\lambda\in[0,1]:p\prec^{**}\lambda q+(1-\lambda)r\}$ and $\{\lambda\in[0,1]:\lambda p+(1-\lambda)q\prec^{**}r\}$ are open (see the proof of Th. 2 in Grandmont [8]). According to Herstein and Milnor [9, Th. 8], there exists a real linear utility functional V on \mathcal{P} representing \prec^{**} . Define, for every $p\in\mathcal{P}$,

$$U(p) = \inf\{V(q) : p \prec q, q \in \mathcal{P}\}.$$

Let us show that the pair U, V represents \prec . Consider $p, q \in \mathcal{P}$ such that $p \prec q$. By axioms $\underline{A4}$ and $\underline{A5}$, there exists $p' \in \mathcal{P}$ with $p \prec p' \prec **q$. Since V(p') < V(q), it is U(p) < V(q) from the definition of U. Conversely, assume that U(p) < V(q). Then there exists $p' \in \mathcal{P}$ such that U(p) < V(p') < V(q), $p \prec p'$. Hence $p \prec p' \prec **q$, and therefore $p \prec q$ by axiom $\underline{A1}$.

Let us prove that U is a utility functional for \prec *. If $p \prec$ *q, then there exists $q' \in \mathcal{P}$ such that $p \prec q' \preceq q$. Then $U(p) < V(q') \leq U(q)$, and therefore U(p) < U(q). Conversely, assume that U(p) < U(q). Then there exists $q' \in \mathcal{P}$ such that U(p) < V(q') < U(q), $p \prec q' \preceq q$, and therefore $p \prec$ *q.

Now, let us show that U is linear. Assume that there exist $p,q\in \mathcal{P}$, and $\lambda\in [0,1]$, such that $\lambda U(p)+(1-\lambda)U(q)< U(\lambda p+(1-\lambda)q)$. From the definition of U, and from linearity of V, there exist $r_1,r_2\in \mathcal{P}$ with $p\prec r_1,\ q\prec r_2,\ \lambda U(p)+(1-\lambda)U(q)< V(\lambda r_1+(1-\lambda)r_2)<< U(\lambda p+(1-\lambda)q)$. By axiom $\underline{A5}$, it is $\lambda p+(1-\lambda)q\prec \lambda r_1+(1-\lambda)r_2$, and therefore $V(\lambda r_1+(1-\lambda)r_2)< U(\lambda p+(1-\lambda)q)$ is contradictory. Using similar considerations, it can be shown that for no $p,q\in \mathcal{P}$, and $\lambda\in [0,1]$, it is $U(\lambda p+(1-\lambda)q)<\lambda U(p)+(1-\lambda)U(q)$.

Since U and V are real linear utility functionals for \prec * and \prec **, respectively, and \prec * and \prec ** are both continuous by axiom $\underline{A3}$, then U and V are continuous by Lemma 1.

Let U, V and U', V' be two pairs of real functionals both satisfying axioms (1). From Herstein and Milnor [9, Th. 8], there exist two real numbers a > 0 and b, and two real numbers a' > 0 and b', such that U' = aU + b and V' = a'V + b'. Assume that either $a \neq a'$ or $b \neq b'$, and consider $p, q \in \mathcal{P}$, such that $p \prec q$. Then it is both U(p) < V(q) and U(p) < 1/a (a'V(q) + b' - b). If 1/a (a'V(q) + b' - b) < V(q), then, using the fact that U is linear, it is easily seen that there exists $p' \in \mathcal{P}$ such that 1/a (a'V(q) + b' - b) < U(p') < V(q), and this is impossible since U, V and U', V' are two representations of \prec . Analogous considerations lead to a contradiction in the case when $V(q) \leq 1/a (a'V(q) + b' - b)$.

So the proof is complete. \Diamond

Remark 1. Observe that axiom $\underline{A5}$ is found in the axiomatization presented by Nakamura [11, Th. 1]. Axiom $\underline{A4}$ is a continuity axiom involving the preference relation \prec and the associated weak order \prec **. \Diamond

Now we are able to present the main result of this section.

Theorem 2. Let $\stackrel{c}{\prec}$ be a preference relation on a separable metric space Y, and let \prec be a preference relation without maximal elements on a σ -convex subspace \mathcal{P} of $\mathcal{M}(Y)$ containing D. There exists a pair u, v of real continuous bounded functions on Y, which are utility functions for $\stackrel{c}{\prec}$ * and $\stackrel{c}{\prec}$ **, respectively, such that, for every $p, q \in \mathcal{P}$,

(2)
$$\begin{cases} \underline{B1}. \ p \prec q \Leftrightarrow \int_{Y} udp < \int_{Y} vdq, \\ \underline{B2}. \ p \prec^{*}q \Leftrightarrow \int_{Y} udp < \int_{Y} udq, \\ \underline{B3}. \ p \prec^{**}q \Leftrightarrow \int_{Y} vdp < \int_{Y} vdq, \end{cases}$$

if and only if axioms (1) of Th. 1 hold, and

(3)
$$\stackrel{c}{\prec}$$
 is induced by \prec .

If u, v and u', v' are two pairs of such real functions on Y, then there exist two real numbers a > 0 and b, such that u' = au + b and v' = av + b. **Proof.** It is easily seen that axioms (1) of Th. 1, and condition (3) are necessary for the existence of a pair u, v of real continuous bounded functions on Y satisfying conditions (2). So, let us prove the sufficiency part. From Th. 1, there exists a pair of real continuous linear functionals U, V on Y, representing \prec * and \prec **, respectively. From Prop. 1, since it is easily seen that, if $\stackrel{c}{\prec}$ is induced by \prec , then $\stackrel{c}{\prec}$ * and $\stackrel{c}{\prec}$ ** are induced by \prec * and $\stackrel{c}{\prec}$ **, respectively, there exists a pair u, v of real bounded continuous functions on Y, which are utility functions for $\stackrel{c}{\prec}$ and $\stackrel{c}{\prec}$ **, respectively, such that, for every $p \in \mathcal{P}$, $U(p) = \int_Y u dp$ and $V(p) = \int_V v dp$.

Finally, if u, v and u', v' are two pairs of such real functions on Y, then, by Th. 1, there exist two real numbers a > 0 and b, such that u' = au + b, v' = av + b. So the proof is complete. \Diamond

References

- [1] ARMSTRONG, W. E.: A note on the theory of consumers' behavior, Oxford Economics Papers 2 (1950), 119–122.
- [2] BOSI, G.: Continuous von Neumann-Morgenstern utility representation of pseudotransitive preferences, Department of Applied Mathematics "Bruno de Finetti", Technical Report 9 (1996).
- [3] BOSI, G., CANDEAL, J. C., INDURÁIN, E., OLORIZ, E. and ZUDAIRE, M.: Numerical representations of interval orders, *Order* 18 (2001), 171–190.
- [4] BRIDGES, D. S.: A numerical representation of preferences with intransitive indifference, *Journal of Mathematical Economics* 11 (1983), 25–42.
- [5] CHATEAUNEUF, A.: Continuous representation of a preference relation on a connected topological space, *Journal of Mathematical Economics* **16** (1987), 139–146.
- [6] CHIPMAN, J. S.: Consumption theory without transitive indifference, in Preferences, utility and demand, J. S. Chipman, L. Hurwicz, M. Richter and H. Sonnenschein, eds., New York, 1971.
- [7] FISHBURN, P. C.: Utility theory for decision making, Wiley, New York, 1970.
- [8] GRANDMONT, J. M.: Continuity properties of a von Neumann-Morgenstern utility, *Journal of Economic Theory* 4 (1972), 45–67.
- [9] HERNSTEIN, I. N. and MILNOR, J.: An axiomatic approach to measurable utility, *Econometrica* **21** (1953), 291–297.
- [10] LUCE, R.: Semiorders and a theory of utility discrimination, *Econometrica* **24** (1956), 178–191.
- [11] NAKAMURA, Y.: Expected utility with an interval ordered structure, *Journal of Mathematical Psychology* **32** (1988), 298–312.
- [12] PARTHASARATHY, K. R.: Probability measures on metric spaces, Academic Press, 1967.
- [13] VINCKE, P.: Linear utility functions on semiordered mixture spaces, *Econometrica* 48 (1980), 771–775.