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Abstract: We present some conditions under which a certain family of set-
valued functions is an expanding iteration semigroup, that is, in fact, it is an
iteration semigroup.

Introduction

It is well-known (cf. [2; Chap. IX, Sect. 1], [8; Ths. 5.1-8.1], [7;
p. 98-99], [3; Chap. I, Sect. 1.7], also [1; Th. 1]) that the formula

fHz) = a () +¢)

yields the fundamental form of iteration semigroup which means that
the translation equation

fori(z) = £ (£5(2))

is satisfied. In the present paper we consider a set-valued counterpart
(A) of this formula (see Sect. 1) and continue our study made in [4].
The main aim is to give sufficient conditions for a function F' : (0, c0) X
x X — 2% of form (A) to be the so called expanding iteration semigroup,
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1.e.
(E) F'(F*(z)) C F*t(z)

for every z € X and s,t € (0,00) (instead of F(t,z) we write F'(z)).
In [5] we proved the following result showing that for multifunctions of
form (A) condition (E) forces much more.
Theorem 1 ([5; Th.]). Let F': (0,00) x X — 2% be given by (A). If F'
15 an expanding iteration semigroup then F' is an iteration semigroup:
FY(F*(z)) = F*+ ()

for every x € X and s,t € (0, 00).

Notice also that in [4] functions of form (A) satisfying the inclusion
opposite to (E), i.e. collapsing iteration semigroups, were studied.

1. Preliminaries

Fix a set X and a set-valued function A4 : X — 28 with non-empty
values. Put
S:=A(X) and ¢:=supb.
Throughout this paper we will always assume that
(H) for every s,t € (0,00) and z,z € X such that [A(z)+s+t] N
N A(z) # () there exists a y € X satisfying the conditions

(1) [A(z) + s] N A(y) # 0
and
(2) [Aly) +t]NA(z) # 0.

It is known (see [4; Prop. 1 and Cor. 1]) that:

—if S is an interval then (H) holds;

— if all values of A are open and (inf S,sup S) C cl.S then (H)
holds;

—if all values of A are intervals and (H) holds then (inf S,sup S) C
cclS;

— for a single-valued A condition (H) holds if and only if S is an
interval;

— if all values of A are open intervals then (H) is equivalent to
(inf S,sup S) C cl S.

For every z € X define
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m(z) :=sup {t € [0,00): [A(z)+t]NS # 0}
Fact 1 (see [4; Th. 1]). Let z € X. Ift < 7(x) then [A(z) +t]N S #
and if t > 7(x) then [A(z) +¢]N.S =0 for every t € (0, 00).
Fact 2 (see [4; Lemma 1 and Cor. 2|). For every z € X we have

7(z) =g —inf A(z) and [A(z)+7(z)] NS C {q}.
Let e : (0,00) X X — [0,00) be defined by

e(t,z) :=sup {s € [0,t]: [A(z) +s]NS #0}.

Fact 3 (see [4; Lemma 2]). For everyt € (0,00) and z € X
e(t,z) = min{t, 7(z)}.
Now put
(A) F'(z) :== A7 (A(z) + e(t, 7)),
where
ATI V) i={z € X: Alz)NV # 0}
for every V C R.
Fact 4 (see [4; Lemma 3]). Let F : (0,00) x X — 2% be given by (A)
and let t € (0,00) and z € X. Ift < 7(z) then
Fi(z) = A7 (A(z) +t) #0

and if t = 7(x) then

. A~'({q}), ifq€ S and inf A(z) € A(z);

P = { .

/. otherwise.

2. Expanding iteration semigroups

Consider the following condition.

(H1) for every z,z € X and s,t € (0,00) with s+t < 7(z) if (1)
and (2) hold for a y € X then
(3) [A(z) + s +t] N [A(2)] # 0.

Remark 1. If A is single-valued then (H1) holds.
Proof. It is enough to observe that if z,y,z € X and s,t € (0,00)
satisfy s + ¢ < 7(z) and conditions (1), (2) then

Alz)+s=Aly) = A(z) —t. O
Proposition 1. Let F': (0,00) x X — 2% be given by (A). If F' is an
expanding iteration semigroup then (H1) holds.
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Proof. Fix z,z € X and s,t € (0,00) with
(4) s+t < 7(x)

and let y € X satisfy (1) and (2). By (4) we have s < 7(z), whence,
according to (1) and Fact 4,

y € A7 A(z) + 5) = F*(2).

Similarly, by (2) and Fact 1, we have ¢ < 7(y) and, so, using (A) and
Fact 3, we get

ze A7 (A(y) +t) = Fi(y).

Thus z € F*(F*(z)), whence z € F*t%(z) and, by (4) and Fact 3, we
come to (3) which completes the proof. ¢

Ths. 2-4 below provide conditions which together with (H1) are
sufficient for F' of form (A) to be an expanding iteration semigroup,
i.e., according to Th. 1, an iteration semigroup.
Theorem 2. Assume (H1) and let F : (0,00) x X — 2% be given by
(A). If

T(x) =00 for ze€X

then F' is an iteration semigroup.
Proof. Fix z € X and s,t € (0,00). Let z € F(F*(z)) and choose a
y € F*(z) such that 2z € F*(y). By Fact 4,

ye A (A(z)+s) and z€ A7'(A(y) +1),

that is (1) and (2) hold. Therefore, by (H1), we get (3), whence, ac-
cording to Fact 4,
z € F5t4(z).

Thus F' is an expanding iteration semigroup which, by Th. 1, completes
the proof. ¢

Th. 2 and Fact 2 imply the following corollary.
Corollary 1. Assume (H1) and let F : (0,00) x X — 2% be given by
(A). If either

(i) g = oo,
or

(ii) inf A(z) = —o0 for every z € X
then F' is an iteration semigroup.
Theorem 3. Let F : (0,00) x X — 2% be given by (A). If A is single-
valued then F' is an iteration semigroup.

In the proof we will need the following auxiliary fact.
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Lemma 1. Assume (H1) and let F : (0,00) x X — 2% be given by

(A). Ifz € X and card A(z) =1 then (E) holds for every s,t € (0, 00)
such that s +t < 7(z).

Proof. Fix s,t € (0,00) with s+t < 7(z) and a z € F*(F*(z)). Let
y € F*(z) be such that z € F(y). We will show that

(5) t<r(y).
Since s < 7(z), by Fact 4 we have

Fo(z) = A7 (A(z) + s)
whence we get (1) and, consequently,
(6) Az)+ s C A(y).
If s +¢ < 7(z) then, according to Fact 1,

[A(z) +s+t]NS #0.
Thus, by (6), we get [A(y) +¢] NS # @ and, on account of Fact 1, (5)
follows. Now assume that s+t = 7(z). Then 7(z) < co. Suppose that
t > 7(y). Therefore, by Fact 4, we have ¢ € S and inf A(z) € A(z).
Observe that, according to Fact 2, ¢ € A(z) + 7(z). Then

Az) +s+1t = Alz) +7(z) = {¢}

whence

[A(z) +s+t]NS #0
and, by (6),

[A(y) +t]NS #0
which contradicts Fact 1 and completes the proof of inequality (5) in
this case, too.
Using (5), Fact 3 and (A) we get

Fi(y) = A7 (A(y) +1)
whence (2) follows. Therefore, by (1) and (H1), we obtain (3), i.e., due
to the inequality s +t < 7(z),

z€ AT (A(z) +s+1t) = F*T(x)

which completes the proof. ¢
Proof of Theorem 3. On account of Remark 1 condition (HI) is
satisfied. Fix z € X and s,t € (0,00). By Th. 1 and Lemma 1 it
is suffices to show (E) assuming s + ¢t > 7(z). Take an arbitrary z €

€ F*(F*(z)) and choose a y € F*(z) such that z € F*(y). We will
prove that
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(7) t > 7(y).
If s < 7(z) then, by Fact 4,
y € F°(z) = A7 (A(z) + s)
whence A(y) = A(z) + s and, by Fact 2,
7(y) = q—inf A(y) = ¢—inf (A(z) +5)) = ¢—inf A(z) — s = 7(z) — s,
which, by inequality s+¢ > 7(z), gives (7). If s > 7(z) then, by Fact 4,
y € F*(z) = A7 ({a}),
that is A(y) = {¢} whence, by Fact 2,

7(y) =q—inf A(y) =0
which again yields (7).

Condition (7) and Fact 4 give

2 € F'(y) = A7 ({a}).

On the other hand, by Fact 4, we have
Fo(z) = A7 ({q})-

Thus z € F¥T%(z) which completes the proof. ¢

Th. 3 shows that a set-valued settings of families having form (A)
is of interest even when A is single-valued. In the classical case (cf. [2;
Chap. IX, Sect. 1], [8; Ths. 5.1-8.1], [7; p. 98-99], [3; Chap. I, Sect. 1.7]
(cf. also [1; Th. 1]) the generator A is always assumed to be invertible
to ensure that ' is single-valued. Now accepting multifunctions we may
resign that very restrictive condition.

The next theorem as well as Cor. 2 deal with a mixed situation
where each value of A is either a singleton, or is unbounded from below.
Theorem 4. Assume that (H1) holds, ¢ ¢ S and
(8) card A(z) =1 or infA(z)=-oc0 for z€X.

Assume also that for every x,y € X if

card A(z) =1 and infA(y)=—o0
then

supA(y) <uv  where {u}= A(z).

Then (A) defines an iteration semigroup F : (0,00) x X — 2%,
Proof. By Cor. 1(i), we can assume that ¢ # oo. According to Th. 1
it is sufficient to show that F' is an expanding iteration semigroup. Fix
z € X, s,t € (0,00) and at first assume that card A(z) = 1. Due to
Lemma 1 we can assume that
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(9) s+t >7(x).

Therefore, by Fact 4, F***(z) = 0. If s > 7(x) then, again by Fact 4,
F*(z) = () and (E) follows. Now consider the case s < 7(z). Then, by
Fact 4,

Fo(z) = A7 (A(z) + 5) #£ 0.
Taking any y € F*(z) we have (1), i.e. A(z)+ s C A(y) whence, by
our assumption,
card A(y) =1 and A(y) = A(z) +s

and, according to Fact 2, 7(y) = 7(z) — s. Therefore, by (9), we get
¢t > 7(y) whence, due to Fact 4, we infer that Ft(y) = 0. Consequently,
F'(F*(z)) = 0 and (E) follows again.

Now consider the case inf A(z) = —oco. Hence 7(z) = oo and s +
+t < 7(z). Let z € F!(F*(z)). Then there exists a y € F*(z) such
that z € F*(y). Since ¢ € S it follows from Fact 4 that

ze F'(y) = A" (A(y) + t) and t<T(y).

In particular, (2) is satisfied. Since s < 7(z) also (1) holds. Thus,
according to (H1), we obtain (3) and, consequently,
ze A7 (A(z) + s +t) = FoH(z)
which completes the proof.
Proposition 2. Let F : (0,00) x X — 2% be given by (A). Assume
that F' is an iteration semigroup, ¢ € S and q # co. If z,y € X and
inf A(y) = —oo < inf A(z) then sup A(y) < inf A(z).
Proof. Suppose that sup A(y) > inf A(z). Then (1) holds with an
s € (0,00), and, according to the assumptions on g and Facts 1 and 2,
we get s < 7(z) < co. Hence, by Fact 4, y € F*(z) and we can also find
a t € (0,00) with s +¢ > 7(z). On the other hand 7(y) = oo, which
gives t < 7(y). Therefore, on account of Fact 4,
Foti(z) =0 # Fi(y) C F*(F*(z))

which contradicts the assumption that F is an iteration semigroup. ¢

The next result follows immediately from Th. 4 and Prop. 2. It
turns out that if ¢ # oo and (8) holds then the condition provided by
Th. 4, sufficient for F' of form (A) to be an iteration semigroup, is, in
fact, also necessary.
Corollary 2. Let F : (0,00) x X — 2% be given by (A). Assume
that (H1) holds, ¢ ¢ S, g # oo and (8) is fulfilled. Then the following
conditions are equivalent:
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(i) F 1is an iteration semigroup;
(ii) for every z,y € X if
card A(z) =1 and infA(y)=—o0
then
supA(y) <u  where {u} = A(z).

The rest of the paper contains a discussion of the condition (H2)
below which is a strength of (H1) and formally arises from it by deleting
the requirement that s+ ¢ < 7(z) occurring there.

(H2) For every z,z € X and s,t € (0,00) if (1) and (2) hold for a
y € X, then (3) is fulfilled.

Remark 2. (H2) implies (H1). If 7(z) = oo for every z € X then the
conditions (H2) and (H1) are equivalent.

Remark 3. Assume (H2). If z € X and 7(z) < oo then card A(z) = 1.
Proof. In view of Fact 2 inf A(z) > —o0 and g < co whence sup A(z) < co.
Suppose that card A(z) > 1. Let u,w € A(z) and assume that v < w.
Then we can find an s € (0, o) with
U+ w

we A(z) +s and < inf [A(z) + s].

Similarly there exists a ¢ € (0, 00) such that

u€ A(z)—t and sup|A(z)—t] < u—;w'

Then, of course,
[A(z) +s]NA(z) #0 and [A(z) —¢]NA(z) #0
but from the inequality sup [A(z) — ¢] < inf [A(z) + 5] we have
[A(z) + s|N[A(z) —t] =0

which contradicts (H2). ¢
Example. Let A : X — 2% be given by A(z) = [0,1]. Then 7 =1
and for every z,y € X and s € (0,00) condition (1) holds if and only if
s < 1. Therefore A satisfies (H) and (H1) but, by Remark 3, not (H2).

For every z,y € X put

G(z,y) := {s € (0,00): (1) holds}.

The following remark can be proved by a standard calculation and

making use of Th. 1 whereas Remark 5 is obvious.

Remark 4. Let F: (0,00) x X — 2% be given by (A). Then F is an
iteration semigroup if and only if
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e(s+t,z) € Gz, 2)
for every z,z € X and s,t € (0, 00) satisfying

(10) e(s,z) € G(z,y) and e(t,y) € G(y,2)
with a y € X.
Remark 5. (H2) holds if and only if
s+te G(z,z2)
for every z,z € X and s,t € (0, 00) satisfying
(11) s € G(z,y) and teG(y,z2)
with a y € X.
Theorem 5. Let F: (0,00) x X — 2% be given by (A) and assume
that
(12) 7(z) & G(z,y) forz,y € X.

Then F' is an iteration semigroup if and only if (H2) holds.

Proof. Assume that F' is an iteration semigroup. Take z,z € X, s,t €
€ (0,00) and y € X such that conditions (11) are satisfied. Therefore
(1) and (2) hold whence, by Fact 1 and condition (12), we have s < 7(z)
and t < 7(y). Then, by Fact 3,

(13) e(s,z) =s € G(z,y) and e(t,y)=te G(y,z2).
Notice that if s +t > 7(z) then, by Fact 3, the assumption on F' and
Remark 4, we would have
7(z) = e(s +t,z) € G(z, z),
which contradicts (12). Thus s +¢ < 7(z). Hence, by Fact 3 and
Remark 4,
s+t=e(s+t,z) € Gz, z),
which, by Remark 5, gives (H2).
Now assume that (H2) holds. Fix z,z € X, s,t € (0,00) and
y € X satisfying (10). We will prove that e(s + ¢,z) € G(z, z), which,
by Remark 4, will complete the proof. By (10), (12) and Fact 3
e(s,z) =s<7(z) and e(t,y)=t<7(y).
Thus, according to Remark 5, s+t € G(z, z). Hence, by the definition
of G(z,2) and Fact 1, s +t < 7(z). Thus, on account of Fact 3,
e(s+t,z)=s+teG(z,2). O
Before formulating the final result we will prove the following sim-
ple fact.
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Lemma 2. Let z,y € X. Then
7(z) € G(z,y)
if and only if

g€ A(y)  and inf A(z) € A(z).

Proof. If 7(z) € G(z,y) then [A(z) + 7(z)] N A(y) # 0 whence, by
Fact 2,
ge Aly) and q¢€ A(z)+7(z) = A(z) + ¢ — inf A(z),

that is inf A(z) € A(z).

Conversely, due to Fact 2,

q € A(z) + g —inf A(z) = A(z) + 7(z)

whence g € [A(z) + 7(z)] N A(y) which means that 7(z) € G(z,y). ¢
Theorem 6. Let F': (0,00) x X — 2% be given by (A). If any of the
following conditions holds:

1) ¢ &S,

(ii) inf A(z) & A(z) for every x € X
then F' is an iteration semigroup if and only if (H2) holds.
Proof. It is enough to observe that, by Lemma 2, each of the above
conditions (i), (ii) implies (12), and to apply Th. 5. ¢
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