ON EXPANDING ITERATION SEMI-GROUPS OF SET-VALUED FUNC-TIONS

Grażyna Łydzińska

Institute of Mathematics, Silesian University, Bankowa 14, PL-40-007 Katowice, Poland

Received: December 2003

MSC 2000: 39 B 12, 39 B 52; 26 E 25

Keywords: Iteration theory, set-valued function, iteration semigroups, collapsing iteration semigroup, expanding iteration semigroup.

Abstract: We present some conditions under which a certain family of setvalued functions is an expanding iteration semigroup, that is, in fact, it is an iteration semigroup.

Introduction

It is well-known (cf. [2; Chap. IX, Sect. 1], [8; Ths. 5.1–8.1], [7; p. 98–99], [3; Chap. I, Sect. 1.7], also [1; Th. 1]) that the formula

$$f^t(x) = \alpha^{-1} (\alpha(x) + t)$$

yields the fundamental form of iteration semigroup which means that the translation equation

$$f^{s+t}(x) = f^t(f^s(x))$$

is satisfied. In the present paper we consider a set-valued counterpart (A) of this formula (see Sect. 1) and continue our study made in [4]. The main aim is to give sufficient conditions for a function $F:(0,\infty)\times X\to 2^X$ of form (A) to be the so called expanding iteration semigroup,

i.e.

(E)
$$F^t(F^s(x)) \subset F^{s+t}(x)$$

for every $x \in X$ and $s, t \in (0, \infty)$ (instead of F(t, x) we write $F^t(x)$). In [5] we proved the following result showing that for multifunctions of form (A) condition (E) forces much more.

Theorem 1 ([5; Th.]). Let $F:(0,\infty)\times X\to 2^X$ be given by (A). If F is an expanding iteration semigroup then F is an iteration semigroup:

$$F^t(F^s(x)) = F^{s+t}(x)$$

for every $x \in X$ and $s, t \in (0, \infty)$.

Notice also that in [4] functions of form (A) satisfying the inclusion opposite to (E), i.e. collapsing iteration semigroups, were studied.

1. Preliminaries

Fix a set X and a set-valued function $A:X\to 2^{\mathbb{R}}$ with non-empty values. Put

$$S := A(X)$$
 and $q := \sup S$.

Throughout this paper we will always assume that

(H) for every $s,t\in(0,\infty)$ and $x,z\in X$ such that $\left[A(x)+s+t\right]\cap A(z)\neq\emptyset$ there exists a $y\in X$ satisfying the conditions

$$[A(x) + s] \cap A(y) \neq \emptyset$$

and

$$[A(y) + t] \cap A(z) \neq \emptyset.$$

It is known (see [4; Prop. 1 and Cor. 1]) that:

- if S is an interval then (H) holds;
- if all values of A are open and $(\inf S, \sup S) \subset \operatorname{cl} S$ then (H) holds;
- if all values of A are intervals and (H) holds then (inf S, sup S) \subset $\operatorname{cl} S$;
- for a single-valued A condition (H) holds if and only if S is an interval;
- if all values of A are open intervals then (H) is equivalent to $(\inf S, \sup S) \subset \operatorname{cl} S$.

For every $x \in X$ define

$$\tau(x) := \sup \{ t \in [0, \infty) \colon [A(x) + t] \cap S \neq \emptyset \}.$$

Fact 1 (see [4; Th. 1]). Let $x \in X$. If $t < \tau(x)$ then $[A(x) + t] \cap S \neq \emptyset$ and if $t > \tau(x)$ then $[A(x) + t] \cap S = \emptyset$ for every $t \in (0, \infty)$.

Fact 2 (see [4; Lemma 1 and Cor. 2]). For every $x \in X$ we have

$$\tau(x) = q - \inf A(x)$$
 and $[A(x) + \tau(x)] \cap S \subset \{q\}.$

Let $e:(0,\infty)\times X\to [0,\infty)$ be defined by

$$e(t, x) := \sup \{ s \in [0, t] \colon [A(x) + s] \cap S \neq \emptyset \}.$$

Fact 3 (see [4; Lemma 2]). For every $t \in (0, \infty)$ and $x \in X$ $e(t, x) = \min\{t, \tau(x)\}.$

Now put

(A)
$$F^t(x) := A^{-1}(A(x) + e(t, x)),$$

where

$$A^{-1}(V) := \{ x \in X : A(x) \cap V \neq \emptyset \}$$

for every $V \subset \mathbb{R}$.

Fact 4 (see [4; Lemma 3]). Let $F:(0,\infty)\times X\to 2^X$ be given by (A) and let $t\in(0,\infty)$ and $x\in X$. If $t<\tau(x)$ then

$$F^{t}(x) = A^{-1}(A(x) + t) \neq \emptyset$$

and if $t \ge \tau(x)$ then

$$F^{t}(x) = \begin{cases} A^{-1}(\{q\}), & \text{if } q \in S \text{ and } \inf A(x) \in A(x); \\ \emptyset & \text{otherwise.} \end{cases}$$

2. Expanding iteration semigroups

Consider the following condition.

(H1) for every $x,z\in X$ and $s,t\in (0,\infty)$ with $s+t\leqslant \tau(x)$ if (1) and (2) hold for a $y\in X$ then

$$[A(x) + s + t] \cap [A(z)] \neq \emptyset.$$

Remark 1. If A is single-valued then (H1) holds.

Proof. It is enough to observe that if $x, y, z \in X$ and $s, t \in (0, \infty)$ satisfy $s + t \leq \tau(x)$ and conditions (1), (2) then

$$A(x) + s = A(y) = A(z) - t.$$
 \Diamond

Proposition 1. Let $F:(0,\infty)\times X\to 2^X$ be given by (A). If F is an expanding iteration semigroup then (H1) holds.

Proof. Fix $x, z \in X$ and $s, t \in (0, \infty)$ with

$$(4) s+t \leqslant \tau(x)$$

and let $y \in X$ satisfy (1) and (2). By (4) we have $s < \tau(x)$, whence, according to (1) and Fact 4,

$$y \in A^{-1}(A(x) + s) = F^{s}(x).$$

Similarly, by (2) and Fact 1, we have $t \leq \tau(y)$ and, so, using (A) and Fact 3, we get

$$z \in A^{-1}(A(y) + t) = F^{t}(y).$$

Thus $z \in F^t(F^s(x))$, whence $z \in F^{s+t}(x)$ and, by (4) and Fact 3, we come to (3) which completes the proof. \Diamond

Ths. 2-4 below provide conditions which together with (H1) are sufficient for F of form (A) to be an expanding iteration semigroup, i.e., according to Th. 1, an iteration semigroup.

Theorem 2. Assume (H1) and let $F:(0,\infty)\times X\to 2^X$ be given by (A). If

$$\tau(x) = \infty$$
 for $x \in X$

then F is an iteration semigroup.

Proof. Fix $x \in X$ and $s, t \in (0, \infty)$. Let $z \in F^t(F^s(x))$ and choose a $y \in F^s(x)$ such that $z \in F^t(y)$. By Fact 4,

$$y \in A^{-1}(A(x) + s)$$
 and $z \in A^{-1}(A(y) + t)$,

that is (1) and (2) hold. Therefore, by (H1), we get (3), whence, according to Fact 4,

$$z \in F^{s+t}(x)$$
.

Thus F is an expanding iteration semigroup which, by Th. 1, completes the proof. \Diamond

Th. 2 and Fact 2 imply the following corollary.

Corollary 1. Assume (H1) and let $F:(0,\infty)\times X\to 2^X$ be given by (A). If either

(i)
$$q=\infty$$
,

or

(ii) $\inf A(x) = -\infty$ for every $x \in X$

then F is an iteration semigroup.

Theorem 3. Let $F:(0,\infty)\times X\to 2^X$ be given by (A). If A is single-valued then F is an iteration semigroup.

In the proof we will need the following auxiliary fact.

Lemma 1. Assume (H1) and let $F:(0,\infty)\times X\to 2^X$ be given by (A). If $x\in X$ and card A(x)=1 then (E) holds for every $s,t\in(0,\infty)$ such that $s+t\leqslant \tau(x)$.

Proof. Fix $s, t \in (0, \infty)$ with $s + t \leq \tau(x)$ and a $z \in F^t(F^s(x))$. Let $y \in F^s(x)$ be such that $z \in F^t(y)$. We will show that

$$(5) t \leqslant \tau(y).$$

Since $s < \tau(x)$, by Fact 4 we have

$$F^s(x) = A^{-1}(A(x) + s)$$

whence we get (1) and, consequently,

(6)
$$A(x) + s \subset A(y).$$

If $s + t < \tau(x)$ then, according to Fact 1,

$$[A(x) + s + t] \cap S \neq \emptyset.$$

Thus, by (6), we get $[A(y) + t] \cap S \neq \emptyset$ and, on account of Fact 1, (5) follows. Now assume that $s + t = \tau(x)$. Then $\tau(x) < \infty$. Suppose that $t > \tau(y)$. Therefore, by Fact 4, we have $q \in S$ and inf $A(x) \in A(x)$. Observe that, according to Fact 2, $q \in A(x) + \tau(x)$. Then

$$A(x) + s + t = A(x) + \tau(x) = \{q\}$$

whence

$$[A(x) + s + t] \cap S \neq \emptyset$$

and, by (6),

$$[A(y) + t] \cap S \neq \emptyset$$

which contradicts Fact 1 and completes the proof of inequality (5) in this case, too.

Using (5), Fact 3 and (A) we get

$$F^t(y) = A^{-1}(A(y) + t)$$

whence (2) follows. Therefore, by (1) and (H1), we obtain (3), i.e., due to the inequality $s + t \leq \tau(x)$,

$$z \in A^{-1}(A(x) + s + t) = F^{s+t}(x)$$

which completes the proof. \Diamond

Proof of Theorem 3. On account of Remark 1 condition (H1) is satisfied. Fix $x \in X$ and $s, t \in (0, \infty)$. By Th. 1 and Lemma 1 it is suffices to show (E) assuming $s + t > \tau(x)$. Take an arbitrary $z \in F^t(F^s(x))$ and choose a $y \in F^s(x)$ such that $z \in F^t(y)$. We will prove that

$$(7) t > \tau(y).$$

If $s < \tau(x)$ then, by Fact 4,

$$y \in F^{s}(x) = A^{-1}(A(x) + s)$$

whence A(y) = A(x) + s and, by Fact 2,

$$\tau(y) = q - \inf A(y) = q - \inf (A(x) + s) = q - \inf A(x) - s = \tau(x) - s,$$

which, by inequality $s+t > \tau(x)$, gives (7). If $s \ge \tau(x)$ then, by Fact 4,

$$y \in F^s(x) = A^{-1}(\{q\}),$$

that is $A(y) = \{q\}$ whence, by Fact 2,

$$\tau(y) = q - \inf A(y) = 0$$

which again yields (7).

Condition (7) and Fact 4 give

$$z \in F^t(y) = A^{-1}(\{q\}).$$

On the other hand, by Fact 4, we have

$$F^{s+t}(x) = A^{-1}(\{q\}).$$

Thus $z \in F^{s+t}(x)$ which completes the proof. \Diamond

Th. 3 shows that a set-valued settings of families having form (A) is of interest even when A is single-valued. In the classical case (cf. [2; Chap. IX, Sect. 1], [8; Ths. 5.1–8.1], [7; p. 98–99], [3; Chap. I, Sect. 1.7] (cf. also [1; Th. 1]) the generator A is always assumed to be invertible to ensure that F is single-valued. Now accepting multifunctions we may resign that very restrictive condition.

The next theorem as well as Cor. 2 deal with a mixed situation where each value of A is either a singleton, or is unbounded from below. **Theorem 4.** Assume that (H1) holds, $q \notin S$ and

(8)
$$\operatorname{card} A(x) = 1 \quad or \quad \inf A(x) = -\infty \quad for \quad x \in X.$$

Assume also that for every $x, y \in X$ if

$$\operatorname{card} A(x) = 1$$
 and $\inf A(y) = -\infty$

then

$$\sup A(y) \leqslant u$$
 where $\{u\} = A(x)$.

Then (A) defines an iteration semigroup $F:(0,\infty)\times X\to 2^X$.

Proof. By Cor. 1(i), we can assume that $q \neq \infty$. According to Th. 1 it is sufficient to show that F is an expanding iteration semigroup. Fix $x \in X$, $s,t \in (0,\infty)$ and at first assume that card A(x)=1. Due to Lemma 1 we can assume that

$$(9) s+t > \tau(x).$$

Therefore, by Fact 4, $F^{s+t}(x) = \emptyset$. If $s \ge \tau(x)$ then, again by Fact 4, $F^s(x) = \emptyset$ and (E) follows. Now consider the case $s < \tau(x)$. Then, by Fact 4,

$$F^{s}(x) = A^{-1}(A(x) + s) \neq \emptyset.$$

Taking any $y \in F^s(x)$ we have (1), i.e. $A(x) + s \subset A(y)$ whence, by our assumption,

$$\operatorname{card} A(y) = 1$$
 and $A(y) = A(x) + s$

and, according to Fact 2, $\tau(y) = \tau(x) - s$. Therefore, by (9), we get $t > \tau(y)$ whence, due to Fact 4, we infer that $F^t(y) = \emptyset$. Consequently, $F^t(F^s(x)) = \emptyset$ and (E) follows again.

Now consider the case inf $A(x) = -\infty$. Hence $\tau(x) = \infty$ and $s + t < \tau(x)$. Let $z \in F^t(F^s(x))$. Then there exists a $y \in F^s(x)$ such that $z \in F^t(y)$. Since $q \notin S$ it follows from Fact 4 that

$$z \in F^t(y) = A^{-1}(A(y) + t)$$
 and $t < \tau(y)$.

In particular, (2) is satisfied. Since $s < \tau(x)$ also (1) holds. Thus, according to (H1), we obtain (3) and, consequently,

$$z \in A^{-1}(A(x) + s + t) = F^{s+t}(x)$$

which completes the proof. \Diamond

Proposition 2. Let $F:(0,\infty)\times X\to 2^X$ be given by (A). Assume that F is an iteration semigroup, $q\not\in S$ and $q\neq\infty$. If $x,y\in X$ and $\inf A(y)=-\infty<\inf A(x)$ then $\sup A(y)\leqslant\inf A(x)$.

Proof. Suppose that $\sup A(y) > \inf A(x)$. Then (1) holds with an $s \in (0, \infty)$, and, according to the assumptions on q and Facts 1 and 2, we get $s < \tau(x) < \infty$. Hence, by Fact 4, $y \in F^s(x)$ and we can also find a $t \in (0, \infty)$ with $s + t > \tau(x)$. On the other hand $\tau(y) = \infty$, which gives $t < \tau(y)$. Therefore, on account of Fact 4,

$$F^{s+t}(x) = \emptyset \neq F^t(y) \subset F^t(F^s(x))$$

which contradicts the assumption that F is an iteration semigroup. \Diamond

The next result follows immediately from Th. 4 and Prop. 2. It turns out that if $q \neq \infty$ and (8) holds then the condition provided by Th. 4, sufficient for F of form (A) to be an iteration semigroup, is, in fact, also necessary.

Corollary 2. Let $F:(0,\infty)\times X\to 2^X$ be given by (A). Assume that (H1) holds, $q\notin S,\ q\neq \infty$ and (8) is fulfilled. Then the following conditions are equivalent:

- (i) F is an iteration semigroup;
- (ii) for every $x, y \in X$ if

$$\operatorname{card} A(x) = 1$$
 and $\inf A(y) = -\infty$

then

$$\sup A(y) \leqslant u$$
 where $\{u\} = A(x)$.

The rest of the paper contains a discussion of the condition (H2) below which is a strength of (H1) and formally arises from it by deleting the requirement that $s+t \leq \tau(x)$ occurring there.

(**H2**) For every $x, z \in X$ and $s, t \in (0, \infty)$ if (1) and (2) hold for a $y \in X$, then (3) is fulfilled.

Remark 2. (H2) implies (H1). If $\tau(x) = \infty$ for every $x \in X$ then the conditions (H2) and (H1) are equivalent.

Remark 3. Assume (H2). If $x \in X$ and $\tau(x) < \infty$ then card A(x) = 1. **Proof.** In view of Fact 2 inf $A(x) > -\infty$ and $q < \infty$ whence $\sup A(x) < \infty$.

Suppose that card A(x) > 1. Let $u, w \in A(x)$ and assume that u < w. Then we can find an $s \in (0, \infty)$ with

$$w \in A(x) + s$$
 and $\frac{u+w}{2} < \inf [A(x) + s].$

Similarly there exists a $t \in (0, \infty)$ such that

$$u \in A(x) - t$$
 and $\sup [A(x) - t] < \frac{u + w}{2}$.

Then, of course,

$$[A(x) + s] \cap A(x) \neq \emptyset$$
 and $[A(x) - t] \cap A(x) \neq \emptyset$

but from the inequality sup $[A(x) - t] < \inf [A(x) + s]$ we have

$$[A(x) + s] \cap [A(x) - t] = \emptyset$$

which contradicts (H2). \Diamond

Example. Let $A: X \to 2^{\mathbb{R}}$ be given by A(x) = [0,1]. Then $\tau \equiv 1$ and for every $x, y \in X$ and $s \in (0, \infty)$ condition (1) holds if and only if $s \leq 1$. Therefore A satisfies (H) and (H1) but, by Remark 3, not (H2).

For every $x, y \in X$ put

$$G(x,y) := \{ s \in (0,\infty) \colon (1) \text{ holds} \}.$$

The following remark can be proved by a standard calculation and making use of Th. 1 whereas Remark 5 is obvious.

Remark 4. Let $F:(0,\infty)\times X\to 2^X$ be given by (A). Then F is an iteration semigroup if and only if

$$e(s+t,x) \in G(x,z)$$

for every $x, z \in X$ and $s, t \in (0, \infty)$ satisfying

(10)
$$e(s,x) \in G(x,y)$$
 and $e(t,y) \in G(y,z)$

with a $y \in X$.

Remark 5. (H2) holds if and only if

$$s + t \in G(x, z)$$

for every $x, z \in X$ and $s, t \in (0, \infty)$ satisfying

(11)
$$s \in G(x,y)$$
 and $t \in G(y,z)$

with a $y \in X$.

Theorem 5. Let $F:(0,\infty)\times X\to 2^X$ be given by (A) and assume that

(12)
$$\tau(x) \notin G(x,y) \quad \text{for } x,y \in X.$$

Then F is an iteration semigroup if and only if (H2) holds.

Proof. Assume that F is an iteration semigroup. Take $x, z \in X$, $s, t \in (0, \infty)$ and $y \in X$ such that conditions (11) are satisfied. Therefore (1) and (2) hold whence, by Fact 1 and condition (12), we have $s < \tau(x)$ and $t < \tau(y)$. Then, by Fact 3,

(13)
$$e(s,x) = s \in G(x,y)$$
 and $e(t,y) = t \in G(y,z)$.

Notice that if $s+t \ge \tau(x)$ then, by Fact 3, the assumption on F and Remark 4, we would have

$$\tau(x) = e(s+t,x) \in G(x,z),$$

which contradicts (12). Thus $s+t < \tau(x)$. Hence, by Fact 3 and Remark 4,

$$s + t = e(s + t, x) \in G(x, z),$$

which, by Remark 5, gives (H2).

Now assume that (H2) holds. Fix $x, z \in X$, $s, t \in (0, \infty)$ and $y \in X$ satisfying (10). We will prove that $e(s + t, x) \in G(x, z)$, which, by Remark 4, will complete the proof. By (10), (12) and Fact 3

$$e(s,x) = s < \tau(x)$$
 and $e(t,y) = t < \tau(y)$.

Thus, according to Remark 5, $s+t \in G(x,z)$. Hence, by the definition of G(x,z) and Fact 1, $s+t \leq \tau(x)$. Thus, on account of Fact 3,

$$e(s+t,x) = s+t \in G(x,z)$$
. \Diamond

Before formulating the final result we will prove the following simple fact.

Lemma 2. Let $x, y \in X$. Then

$$\tau(x) \in G(x,y)$$

if and only if

$$q \in A(y)$$
 and $\inf A(x) \in A(x)$.

Proof. If $\tau(x) \in G(x,y)$ then $[A(x) + \tau(x)] \cap A(y) \neq \emptyset$ whence, by Fact 2,

$$q \in A(y)$$
 and $q \in A(x) + \tau(x) = A(x) + q - \inf A(x)$, that is $\inf A(x) \in A(x)$.

Conversely, due to Fact 2,

$$q \in A(x) + q - \inf A(x) = A(x) + \tau(x)$$

whence $q \in [A(x) + \tau(x)] \cap A(y)$ which means that $\tau(x) \in G(x,y)$. \Diamond **Theorem 6.** Let $F: (0,\infty) \times X \to 2^X$ be given by (A). If any of the following conditions holds:

- (i) $q \notin S$,
- (ii) inf $A(x) \notin A(x)$ for every $x \in X$

then F is an iteration semigroup if and only if (H2) holds.

Proof. It is enough to observe that, by Lemma 2, each of the above conditions (i), (ii) implies (12), and to apply Th. 5. \Diamond

References

- [1] GUZIK, G., JARCZYK, W. and MATKOWSKI, J.: Cocycles of continuous itreation semigroups, *Bull. Polish Acad. Sci. Math.* **51** (2003), 187–197.
- [2] KUCZMA, M.: Functional equations in a single variable, Monografie Mat. 46, PWN, Warszawa, 1968.
- [3] KUCZMA, M., CHOCZEWSKI, B. and GER, R.: Iterative functional equations, Encyclopedia of Math. and Its Applications vol. 32, Cambridge University Press, 1990.
- [4] ŁYDZIŃSKA, G.: On collapsing iteration semigroups of set-valued functions, *Publ. Math. Debrecen* (in print).
- [5] LYDZIŃSKA, G.: Iteration semigroups for which expansion implies collapse (submitted).
- [6] SMAJDOR, A.: Iterations of multi-valued functions, Prace Naukowe Uniwersytetu Śląskiego w Katowicach **759** (1985).
- [7] TARGONSKI, Gy.: Topics in iteration theory, Vandenhoeck and Ruprecht, Göttingen, 1981.
- [8] ZDUN, M. C.: Continuous and differentiable iteration semigroups, Prace Naukowe Uniwersytetu Ślaskiego w Katowicach 308 (1979).