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Abstract: Here we try to investigate some properties of topological struc-
ture on some generalization of what has been achieved on near-rings with acc
on annihilators as by A. Oswald and K. C. Chowdhury et al. The so-called
pseudo character on nilpotency and strongly semi-primeness, lead us satis-
factorily towards our goal giving elegant results on N-groups rather than the
near-ring structure. Topological structure on such N-groups gives some inter-
esting fruitful results. Extending the idea of boundedness of Beidleman and
Cox on topological near-rings, F-boundedness etc. together with the notion
of topologically nilpotent sets are playing an important role on an N-group
E having finite number of elements (e’s) belonging to E with zero annihila-
tors [Ann(e) = 0], which occur as a necessity of the N-group E in the above
context. It is interesting to note the relevancy and elegancy of the result ob-
tained, as the same may be determined with accommodating justification on
such topological N-groups that their discrete character is in association with
the E-boundedness with zero radical or open character of the radical with
E-boundedness. Moreover all these lead us to the later type of the radical
of the N-group. Together with all these, some interesting results regarding
the discrete character of the N-group is observed in case of locally compact
groups if the near-ring is without unity.
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1. Introduction

The results due to A. W. Goldie on the structure of semiprime
rings [11, 12] seem to be still relevant due to its elegancy. As remarked
by Meldrum there is not a great deal of works being done in near-ring
theory on algebraic structures with acc on annihilators. Same may be
stated so far on its topological structure, too. Chowdhury et al. at-
tempted rigorously on what have been meant above [4, 7|. Here we try
to investigate some properties of topological structure on some gener-
alization of what has been achieved on near-rings with acc on annihila-
tors [17] by Chowdhury et al. [5, 7]. The so-called pseudo character on
nilpotency and strongly semi-primeness, lead us satisfactorily towards
our goal giving elegant results on N-groups rather than the near-ring
structure. Topological structure on such N-groups gives some interest-
ing fruitful results.

An N-group E with so-called Goldie character is well behaved so
far as pseudo quality on nilpotency as well as strongly semi-primeness
are involved for the proper development of what we have attempted for.

Extending the idea of boundedness of Beidleman and Cox [3], E-
boundedness etc. together with the notion of topologically nilpotent set
are playing an important role on an N-group F having finite number
of elements (e’s) belonging to E with zero annihilators [Ann(e) = 0],
which occur as a necessity of the N-group F in above context. It is
interesting to note the relevancy and elegancy of the result obtained, as
the same may be determined with accommodating justification on such
topological N-groups that their discrete character is in association with
the E-boundedness with zero radical or openness of the radical with F-
boundedness.

For the sake of completeness of the idea we are dealing with, once
more we like to mention that any near-ring (near-ring group) with as-
cending chain condition (acc) on its left near-ring subgroups obviously
satisfies what Oswald has chosen (viz., no infinite direct sum of left
ideals and satisfies the acc on left annihilators). But rings like Z[X |
|i=1,2,...,X;X; = X;X;] satisfy the acc on left annihilators having
no infinite direct sum of left ideals, though it may have a strictly as-
cending infinite chain of ideals viz.,

(Xl) - (Xl,Xz) C... .

Thus near-rings with the conditions described in [17], need not satisfy
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the acc on its sub-algebraic structures. This has lead Chowdhury et al.
towards the idea of the so-called strictly Artinian radical [7].

With N, a (right) topological near-ring, a topological N-group is
a pair (E, 1), where E is a topological group under addition and p is a
continuous map from N x E to E such that u(a+b,e) = p(a, e)+u(b, e)
and p(ab,e) = p(a, u(b,e)), for all a,b € N and e € FE (G. Pilz [18],
Clay [8], Magill [16]). As seen [16], in case of the topological group R
of real numbers under addition and Z, the discrete group of integers
under addition, T' = R/Z is the one-dimensional torus. On the other
hand, R™ denotes the Euclidean N-group and 7™ the n-dimensional
torus. Also it is interesting to note that in case of any topological
group E and a locally compact Hausdorff group H with compact open
topology on N(H) (the topological near-ring of all continuous self maps
of H under pointwise addition and composition), E can be made a
topological N(H )-group, where pu(f,z) =0, for all f € N(H) and z €
€ E. And Magill shows the existence of such p in case of E to be R™
or T™.

As insisted by Kaplansky [15] regarding continuity of addition and
multiplication on the product space, in case of a ring, it is found that
the coordinate wise continuity is all that is necessary in what we have
attempted for.

To be more explicit, our proposed continuity regarding addition
and multiplication is as follows: We stick to the definition of a topolog-
ical (right) near-ring N as suggested by Beidleman and Cox [3] where
coordinate wise continuities of the respective mappings are imposed. Keep-
ing this in note, we define topological N-group E as an N-group F in
which a Hausdorff topology is given with four continuous mappings p1,
L2, U3, pa such that for given e € E (i) pi(z) =z +¢, (i) pao(z) = e+
+z, for all z € FE, (iil) pz(n) = ne, for all n € N, and given m € N,
(iv) pa(e) = me, for alle € E.

Note. It is clear that if 1 € N, then for a given e € E, as —e = (—1)e,
the map z — e — x is continuous, for all x € E. Hence if V is open in
E and e € E, then each of V 4+ ¢, e +V and —V is open in FE.

Definitions and notations

Unless otherwise specified, throughout this paper NV will mean a
zero symmetric right near-ring with unity 1; £ will denote the left /N-
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group of yE, a left N-subgroup L of N will mean an N-subgroup of
~ NN and a left ideal of N will mean an ideal of yN.

If L and B are two N-subgroups of F with L C B, then L is
strictly essential N-subgroup of B when any non-zero N-subgroup C
(C B) has a non-zero intersection with L. We denote this by LC.B.

A strictly essential left N-subgroup L of N is a strictly essential
N-subgroup of yN. Moreover for L C B C F, then LC F if and only
if LC,BC.E.

An ideal I of E is an essential ideal of E when it has a non-zero
intersection with any non-zero ideal of E. If a left ideal I of N is an
essential ideal of x IV, then I is an essential left ideal of V.

It is clear that a strictly essential N-subgroup of E is always
essential as an ideal of it. We note that in the symmetric group
N(=S3), [19 (37), p. 342] {0,a},{0,b},{0,c} and {0, z,y} are proper
non-zero N-subgroups of y N where {0, z,y} is an ideal of yN. So this
is not a strictly essential as an N-subgroup of it though it is an essential
ideal. Thus an essential ideal of F need not be a strictly essential as an
N-subgroup of it.

We define the set Z,(E) = {z € F | Lz = 0, for some strictly
essential N-subgroup L of yN}.

An annihilator of S (C F) in N is defined as Anny(S) ={n € N |
| n.S = 0} (or denoted simply by Ann(S)), if S C N, then it is denoted
by {(S), the left annihilator of S in N.

Near-ring N is a duo near-ring if for every a,b € N, ab = bc = da,
for some ¢,d € N [9].

An element ¢ € N is quasi-regular [1] if there is an element n € N
such that n(1—¢) = 1. The set @) will denote the set of all quasi-regular
elements of V.

The intersection of all maximal N-subgroups of y N is the radical
subgroup [1] of N and will be denoted by A.

The radical J(E) [2] of E is the intersection of all ideals of E that
are maximal as N-subgroups of E. Similarly we define the radical J(N)
of N.

The content of almost all newly introduced concepts and some
results is supported by a good number of examples from a sweeping
point of view, viz. whether one intends to attempt with his liberty
regarding the presence or absence of the unity 1 in the near-ring.

Availability or the concepts seem to be meaningful in case of near-
rings even without unity is a refined of the same results from a broader
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angle, which may unveil the importance of generalization of the results
obtained.

Discussion. Examples and some observations

1. The near-ring N (= Ds) [19 (24) p. 345] is a non-zero symmetric
near-ring without unity having non-zero proper left N-subsets viz.,
{0,0},{0,0, a+b},{0, b, 2a-+b}, {0, 2a, b, 2a-+b} and {0, 2a, b, 2a-+b, 3a-+b}.
Here we note that, for any subset L of N there exists no left N-subset
X of N such that X"L =0, for any n € Z*. On the contrary,

2. in the near-ring N (= Zg) [19 (22) p. 343] without unity, all the
proper left N-subsets are {0,1},{0,2},{0,4},{0,4,5},{0,4,6},{0,2,
4,6}, {0,2,4,6,7} and {0,2,3,4,6}.

As {0,4,5}{0,5} = {0,4}(+ 0) and, in some sense, {0,5} may be
thought as nilpotent. We note that if {0,5} is replaced by {0, 4,5}, then
we have {0,4,5}3 = 0 and thereby {0, 4,5} is found as nilpotent.

3. In the near-ring N (= Zsg) [19 (84) p. 343], without unity the
only proper left N-subset of it is {0,2} and hence for any subset L of
it different from {0, 2}, we have {0,2}L # 0, but {0,2}2L = 0.

4. In the near-ring N(= Zg) [19 (46) p. 343] with unity all the
proper left N-subsets are {0,4} and {0,2,4,6}. As {0,2,4,6}{0,2} #0
and {0,2,4,6}2{0,2} = 0.

Near-rings with the above type of pseudo character in nilpotency
of subsets are playing an important role in what we have attempted for
and lead us to the following. ‘

A subset L of E is ps(pseudo)-nilpotent w.r.t. a proper left N-
subset B of N with nilpotency n € Z™, if BL # 0 such that B"L = 0,
for some n(> 2) € Z™.

Subset L of F is ps-nilpotent if it is ps-nilpotent w.r.t. some proper
left N-subset B of N with some nilpotency.

An element e € E is ps-nilpotent if {e} is a ps-nilpotent subset
of E.

In Ex. 1, N has no ps-nilpotent subset; on the other hand in Ex. 2,
{0,5} is a ps-nilpotent subset, in Ex. 3 any subset L of it different from
{0, 2} is ps-nilpotent and Ex. 4 contains {0, 2} as ps-nilpotent.

5. In the near-ring N(= Zg) [20 (22) p. 343] without unity, the
singleton set {3} is ps-nilpotent w.r.t. the proper left N-subset {0,4,5}.
Hence 3 is a ps-nilpotent element.
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6. In the near-ring N [19 (4) p. 340] of Klein 4-group with unity
b is ps-nilpotent element.

In obvious sense, it is assumed that 0 (zero of E) is the ps-nilpotent
element of E. Also if N has no proper left N-subset, then no element
of E is ps-nilpotent.

Also we note that

7. In the near-ring N(= Zg) [19 (27) p. 341] with unity there is
no element a, which is ps-nilpotent w.r.t. the proper left N-subset Na.

8. In the near-ring N (= Zsg) [19 (84) p. 343] without unity, every
element except 2 is ps-nilpotent w.r.t. the proper left N-subset {0,2}
but no element (say) a(€ N) is ps-nilpotent w.r.t. the proper left V-
subset Na.

9. In the near-ring N(= Zg) [19 (46) p. 343] with unity, we have
(N2)2 = {0,4} but (N2)?2 =0.

10. In the near-ring N(= Zg) [19 (22) p. 343] without unity, the
element 3 is such that N3 = {0,2,4,6}, (N3)3 = {0,4} and (N3)?3 =
= 0.

We say, an element a € N is self-nilpotent if it is ps-nilpotent w.r.t.
the proper left N-subset Na. Thus, in Examples 7 and 8, N has no
self-nilpotent element; on the other hand in Ex. 9 and Ex. 10, 2 and 3
are respectively both self-nilpotent.

We see that a self-nilpotent element of N is nilpotent in IV. Again
we say, subset B of E is ps-nil if each element of B is ps-nilpotent.

Some sort of counterfeitness is observed with the semi-prime or
strongly semi-prime character [7] with

11. The near-ring N [19 (7) p. 340] of Klein 4-group with unity,
where it has non-zero proper left N-subsets {0,a}, {0,b} and {0,a,b}
such that {0,a}"L # 0, for any subset L(# 0) except {0,b} and
{0,b}"B # 0, for any subset B(# 0) except {0,a} where n € Z™ .
Hence IV has no non-zero ps-nilpotent subset.

And in

12. the Klein 4-group, the near-ring N [19 (11) p. 340] without
unity, the only non-zero proper left N-subsets are {0, a}, {0, b}, {0, a, c}
such that for any subset L(# 0) of N {0,a}"L # 0, {0,a,c}™L # 0, for
any n € Z* and {0,b}L = 0. Thus here, NV has no non-zero ps-nilpotent
subset. In this sense, y NV is a ps-strongly semi-prime. In other words,
an N-group F is ps-strongly semi-prime if E/ has no non-zero ps-nilpotent
subset. Another quasi character of nilpotency springs up from what we
have cited below:
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13. In the near-ring N (= Zsg) [19 (46) p. 340] with unity, the
units are 1, 3, 5, 7. Now for the set N, of non-units of N, we have
N,2 # {0,4}, N22 = 0 but N2 # 0. In this sense, the element 2 € N
would be N, -nilpotent. Thus, an element z € F is N,-nilpotent, where
N, is the set of all non-unit elements of N, when there exists a least
positive integer ¢ (nilpotency) such that Ntm =0, but Nt 0.

Now it is noticeable that an element Z z; € @ E;, where each

E,; is N-group, is Ny-nilpotent if each z; E E is N mlpotent as for
each 7, Nliz;, = 0 but N} # 0, for some ¢; (least) € Z* and hence
@D Nz, =0, but N™ # 0, where m = max(t1,ta,...,tn).
i=1

And we make the following
Note. (i) It is clear that any proper left N-subset of N with nilpotency
greater than 2 is ps-nilpotent.

(ii) If B is ps-nilpotent w.r.t. a proper left N-subset L of N, then
LB is nilpotent.

(iii) It is obvious that an N,-nilpotent element of E with nilpo-
tency greater than one is ps-nilpotent.

Throughout our discussion @’ will denote the subset of E consist-
ing of all N,-nilpotent elements of E.

A non-empty proper N-subgroup of E is N,-nil if it is contained
in @'

The following example clarifies what we have proposed to carry
out regarding the radical of F.

14. We consider a near-ring group yE, where £ = Z3 and N
‘is obtained from a subset of the mappings of the group (Zs, +), which
elegantly expresses the N-group character with necessary requirements.

Consider (E =)Z3 = {0,1,2} and N = {0,4,a,b,¢,d,e, f,g}.

From the following table it follows that N is a right near-ring with
unity 4 having proper left N-subgroups

Al - {O’ a7 b}) A2 - {0?67 e}’ A3 - {07 d’g}7

where A; and Aj are left ideals. But J(IV) = A; N Ay =0. Again F =
= {0, 1,2} is an N-group such that J(E) = 0. Hence J(N)E = J(E).
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Addition in N Multiplication in N
+10|ilalblc|d|e|lf|g x|0|ila|blc|d|e|f]lg
0{0)ila|blc|d|elf]|yg 0{0]0|0|0|0|0|0]|0O}O
ili|flc|dlglelb|0]|a 110 2|la|blc|dle|flg
alalc|b|0|ld|i|flg]|e al0la|0|a|0]|0|c|c|d
blb|d|0jla|i|lc|lglelf b10|b|0|b|0|0|e|elg
cleclgld|ile|f|O0la|b c|0|cla|0}c|d|0]a]|0
dldleli|c|f|lgla|b|O d{0|d|alalc|d|c|d|d
ele|lb|flg|0lalc|d]|i el0|e|lb|0|e|lg|0|b]0
flflO0lglelalbld|ifc fl10|f|blale|glc|i|d
glglale|f|b|0|i]lc|d glO|g|blble|gle|glg

Product in E over N
NxE|0]|1]|2
0 0]0|0
1 0(1]2
a 0|01
b 0(0|2
c 0110
d o111
e 0(2]0
7 0|20
g 0122

We shall consider near-ring groups in the above sense termed as
fully radical character.

15. The near-ring N(= Zs) [19 (46) p. 343] equipped with a
topology
T(: {07 N’ {07 4}7 {l’ 5}’ {27 6}’ {37 7}’ {07 17 47 5}7 {07 3? 4’ 7}7 {07 27 4? 6}7
{1,2,5,6},12,3,6,7},{1,3,5,7},{0,2,3,4,6,7},{0,1,3,4,5, 7},
{0,1,2,4,5,6},{1,2,3,5,6,7}})
is a topological near-ring. Here the left N-subsets are {0,4} and
{0,2, 4,6},
Now for the subset L(= {0,2}) of N we have {0,2,4,6}L = {0,4}
and {0,2,4,6}2L = 0, which belongs to every open subset of N (con-
taining 0). In this sense we define the following;:
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(0 n
A subset D D; of @ E; is topologically nilpotent if for any open
z-l i=1

subset EB U, of @ E; containing 0, there exists a left N-subset C; U
i=1 =1

UCyU...UC, of N such that EB C!D; C EB U;, for some t € Z7T. Tt is

clear that in the discrete topologlcal N —group, a topologically nilpotent
set, with nilpotency greater than or equal to 2, is ps-nilpotent.

16. The near-ring N of Klein's four group [19 (12) p. 340] with
the topology T'(= {0, N, {0,a}, {b,c}}) is a topological near-ring. Here
we note that, for any subset L(# 0) of N, L{b,c} = {o0,a}, an open
subset containing 0. In view of this we define that, a subset B of N
is E-bounded, if for any open subset V of E containing 0, there exists
an open subset U of E such that BU C V. If B = N, then N is itself
E-bounded. "

In E = @ E;, where each F; is an N-group, a subset B of N is

i=1

n n
E-bounded, if for any open subset @ V; of @@ E; containing the zero,

i=1 i=1
n T w n

there exists an open subset @ U; of @ F; such that @ BU; € @ V;.
i=1 i=1 i=1 i=1

n
It is clear that if a subset B of N is E-bounded where E = @ E;,

i=1
then B is E;-bounded for each i.

2. Preliminaries

In the following lemmas, we assume that N is a duo near-ring
with the acc on annihilators of subsets of E in N and thus we call the
N-group E as a gyoacc N-group E.

Lemma 2.1. If E is a ps-strongly semi-prime guoacc N-group, then E

has no non-zero ps-nil N -subset.
Proof. Let B(# 0) be an N-subset of F and L(# 0) be a left N-

subset of N with LB # 0. So aB # 0, for some a(# 0) € L. We
have aNaB # 0, if not B is a ps-nilpotent subset of E, as (Na)?B =0
and NaB # 0 (as 1 € N), which is a contradiction. As FE satisfies
the acc on its annihilators, we can choose ab(# 0) € aB, (b € B) with
Ann(ab) as large as possible. Now aNab # 0, if not, as above, the set
{b} is a ps-nilpotent subset of E which is a contradiction. So azab # 0,
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for some z € N, and hence zab # 0, if not, azab = 0, giving thereby
z ¢ Ann(ab). But Ann(ab) being maximal and Ann(ab) C Ann(azab),
we get Ann(ab) = Ann(azab). So z ¢ Ann(azab) or, (za)®b # 0 or,
(zaz)ab # 0 or, zax ¢ Ann(ab) = Ann(azab), or (za)’b # 0 and so
on. Thus (za)tb # 0, for any ¢t € Z+. Therefore B possesses a non-zero
non-ps-nilpotent element b. So B is not ps-nil. ¢

We note above: For b(# 0) € B, we have a € L such that ab is a
non-ps-nilpotent element of B. ¢
Lemma 2.2. The set Z;(E) is a ps-nil N-subset of the guoacc N-
group E.
Proof. By Lemma 2.10 of [6], it is clear that Z;(E) is an N-subset of
E. Let e € Z;(F) and if Ne = 0, then e = 0, which is ps-nilpotent.
Again if Ne # 0, then ze # 0, for some z(# 0) € N. So B(= Nz) is a
left N-subset of N such that Be # 0, as 1 € N. We have (IV being a
duo near-ring)

(1)  Ann(e) C Ann(bie) € Ann(bybse) C ... (for any b; € B).
We claim that (1) is a strictly ascending chain. If possible let
(2)  Ann(bibs...be) = Ann(biby . ..bi1e), (for some t € Z7T).
At first, we show that

(3)  Ann(biby...bie) = Ann(biby ... byne) (for any n € Z").

We have, (3) is true for n = 1, by (2). Suppose it is true for n =
= r. Now let z € Ann(bibs...bse), then 2biba...bibsy1... btyrp1e =
= z2b1by...bte = 0 = 0, for some z € N, as N is a duo near ring,
which gives Ann(biby...be) C Ann(biba...bi4rs1€). Now for p €
€ Ann(bibs ... byrrr1€), we get pbiby ... bypry1e = 0, which gives
pbl (Anl’l(bgbg - bt—l—r‘—l—le) = Ann(b2b3 . bt+16),

giving thereby pbibs...bi11e = 0 and hence p € Ann(biba ... bir1€)
which implies p € Ann(biby...be). So, by induction we get the re-
sult (3).

Now Le = 0, as e € Z;(F), for some LC.nyN; this gives
L C Ann(e) and therefore Ann(e)C.yN as LC .y N giving thereby
Ann(biby ... bir1€)CenN. Hence, if nbiby...bie # 0, where n € N,
then

((Nblbg cee bt) N Ann(blbg PN bt+1€))6 75 0.

Now ’I’Lb1b2 Ce btblbg e bte = O, as 'nblbz PN bt S Al’ll’l(blbg e bt_,_le)
(= Ann(b1bs . .. bee)) which gives
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n € Ann((b1by...b;)%) (= Ann(biby...bse))

and so nbibs...be = 0 which contradicts the choice of nbibs ... be.
Hence (1) is a strictly ascending chain, which violates the hypothesis.

So we get nbiby...be =0, for all b; € B and n € N, which gives
Bte = 0, for some t(> 2) € Z* (if B= Nz = N, then Bt = Nt = N
gives Ne = 0 and is not true).

Therefore B is proper left N-subset of N. Hence e(€ Z;(E)) is a
ps-nilpotent element and thus Z;(E) is a ps-nil subset of E. ¢

From above we get the following (as in case of a guoacc N-group
E unless otherwise specified)
Lemma 2.3. If E is a ps-strongly semi-prime N -group E, then Z,(FE) =
=0.

As in Lemma 2.11 [6] we have
Lemma 2.4. If E is a ps-strongly semi-prime N-group such that N
has no infinite direct sum of left ideals and an essential left ideal of N
18 strictly essential as N -subgroup of yIN, too, then the annihilators of
subsets of B in N satisfy the dcc.
Lemma 2.5. Let I be a left N-subgroup of N and B be an N -subgroup
of E with distributively generated annihilators of subsets of E in N.
If iya; is a non-ps-nilpotent element of IB with Ann(iia,) mazimal
and igas € (Ann(ija;) N I)B with the same character as iiay, then
Ann(iiay + i2a2) = Ann(i1a1) N Ann(isas).
Proof. Let z € Ann(i;a1)NAnn(isay), then z = " £s; where s; € 5;

fin

and Ann(ija;) = (S1), 51 is a set of distributive elements.

Now, as each s; € Ann(iiaq), we get <Z isj>(i1a1 + 12a2) =

fin
= ( > isj)(igag) = zisas = 0 and hence z € Ann(i;a1 + izag) giving
fin

thereby Ann(ilal) N Aﬂn(’izaz) g Ann(ilal + izCLg).

Conversely, let y( = > :I:tj> € Ann(ija; + i2a2) = (S2), where

fin

t; € Sa, a set of distributive elements, then t; € Ann(iaq +1i2a2) which
giVGS tj (ilal + 7:20/2) =0 or, tjilal + tjiza,g =0.

Now ’ig(tjilal + tj’igaz) = 0 or, (Z :i:Sk> (tjilQl -+ tjiga,g) =

fin
= 0, as ig< = 3. :i:sk> € Ann(iia;) = (S3), where s, € S; (a
fin
set of distributive elements), or, > %(sgt;i1a1 + Sgtjizaz) = 0 or,
fin
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> Hpswiral +sptjizaz) =0, for some pe N, as N is a duo near-ring
fin
or, » Esptjizaz = 0 as s; € Ann(i1aq) or, (Z isk>tjz'2a2 = 0 or,

m e
igtjz'fgag = 0 or, t;qizag = 0, for some q € N, bfeing duo near-ring and
so t; € Ann(qigsaz)(2 Ann(izaz)). Now gizaz(€ (Ann(iiai) NI)B) is a
non-ps-nilpotent element. If not, then Sqisas # 0 such that S"qgizas =
= 0, for some proper left N-subset S of N and some n(> 2) € Z*. By
taking T' = Sq we get Tizas # 0 such that T™isas = 0 giving thereby
izaz is ps-nilpotent element which is not true. Thus Ann(gizay) =
= Ann(izaz), as Ann(izap) is maximal. So, t; € Ann(izas) for each
J, which gives t;i3a5 =0, for each j; this gives ¢;i;a; =0 and hence
( Zj:tj>i1a1 =0 and ( Z:ttj>z'2a2 =0, which implies y<: > :l:tj) €

fin fin fin
€ (Ann(é1a1) N Ann(izaz). Thus Ann(ija; + izaz) € Ann(ija;) N
NAnn(izaz). ¢

In the near-ring N(= Zg) [19 (22) p. 343], all the proper left N-
subsets are {0,1}, {0,2}, {0,4}, {0,4,5}, {0,2,4,6}, {0,4,6},
{0,2,4,6,7}, {0,2,3,4,6}, where {0,4} is distributively generated left
annihilator and {0, 3} is a ps-nilpotent subset of N. As {0,2}{0,3} #0
and {0,2}?{0,3} = 0. So N is not ps-strongly semi-prime. Moreover
{0,4} and {0,2,4,6} are only two left N-subgroups as well as ideals.
So each of them is essential left ideal as well as strictly essential as an
N-subgroup of yN. But y N contains no element e such that Ann(e) =
=0.

Thus we see how ps-strongly semi-prime character together with
distributively generated annihilator and coincidence of essential left
ideals and strictly essential N-subgroups of yN [17, Th. (7)] play a
key role for the existence of an element e of y N such that Ann(e) = 0.
And we note the following
Lemma 2.6. Let N-group E be as in Lemma 2.4 and the annihilators
of subsets of E in N are distributively generated, then there existse € E
such that Ann(e) = 0.

Proof. Let B be a non-zero N-subgroup of E and let IC . yN. We
have, by Note in Lemma 2.1, that B is not ps-nil having a non-ps-
nilpotent element of the form ia, (¢ € I, a € B). Now, by hypothesis,
we consider i1a1 € IB (i; € I, a; € B), with ¢1a; non-ps-nilpotent such
that Ann(iya;) is as large as possible. If Ann(ija;) = 0, we stop. If not,
then Ann(i1a1)NI # 0as IC, yN. Again we choose, as above, a non-ps-
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nilpotent element isas € (Ann(iya;)NI)B (12 € Ann(iya1)NI, as € B),
with Ann(isas) as large as possible. Now i1a; +42a2 € B, if Ann(iya; +
+iga2) = 0, we stop, if not Ann(iya;+igas)NI # 0as IC,yN. Now, by
Lemma 2.5, (Ann(iia; + igaz) NI)B = (Ann(i1a;) N Ann(izas) N I)B.
We choose as above a non-ps-nilpotent element isas € (Ann(ija;) N
N Ann(isaz) N I)B, (i3 € Ann(iiar) N Ann(isas) NI, a3 € B), with
Ann(isag) as large as possible. If Ann(ija; +isa2 +1i3a3) = 0, we stop.
If not we proceed as above and get a chain Ann(i;a;) 2 (Ann(ija;) N
NAnn(izaz)) 2 ... 2 (Ann(iza;)NAnn(isaz)N...NAnn(izat)) . ... We
get, by Lemma 2.4, some n € ZT such that Ann(i1a;+izas - - -+inay) =
= Ann(iia1+igae+- - +iny10n41) = ... Now Ann(iya+- - +inay) =
= Ann(i1a;+- - -+ipr1ane1) = Ann(iza; 4+ - +inan) AN (1110 11),
giving thereby Ann(iia; + - 4+ inan) € Ann(ipti1an+1). But, by our
choice, ipt1an+1 € (Ann(ita; +- - +inan) N 1B (C (Ann(ipa1an1) N
NI)B), where in,41 € Ann(iy41a,11)N] With é,,41ay,.+1 non-ps-nilpotent
such that Ann(i,11a,41) is as large as possible. Alsoi,41 € Ann(ija;+
+ -+ inan) (€ Ann(ini1a,01)) which implies 4418410001 = 0.
If ip419n+10n+1 I8 a ps-nilpotent, then Si,11ipt1an4+1 # 0 such that
SYipi1ini10ns1 = 0, for some proper left N-subset S of N and some
t(> 2) € ZT. We get, by taking L = Si,,1, a proper left N-subset
of N, that ¢,4+10,41 is a ps-nilpotent, which is not true. Hence 7,41
(=0) € Ann(i1a; + -+ +inan) NI = Ann(iya; + -+ + ina,) = 0, as
IC.nN or, Ann(e) = 0 where e = 4101 + -+ + inayn. O

For e € E, with Ann(e) = 0, we get easily the following:
Lemma 2.7. (i) An ideal B (N-subgroup) of NN is mazimal if and
only if Be is a mazimal ideal (N -subgroup) of Ne.

(ii) J(N)e = J(Ne).

The following lemma is easy to see.
Lemma 2.8. If S is an N-subgroup (ideal) of E, then S is also an
N -subgroup (ideal) of E.

We now consider an N-group of the type E = €5 Ne;, where each

i=1
Ann(e;) = 0 (as observed in Lemma 2.6).

n k3
Lemma 2.9. The radical J( . Neq;) of the N-group € Ne; contains
i=1 i=1
all the Ny-nil N-subgroups of € Ne;.
i=1
Proof. First we prove the result when F = Ne with Ann(e) = 0. Let
Ce be an N,-nil N-subgroup of Ne and suppose that Ce is not con-
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N-subgroup of N with [(b) = 0 such that Nb = N.

Thus the above example is sufficient to explain the point that the
converse of the above theorem is not true.

Moreover openness of Qe and E-boundedness of IV lead us to the
following expected results, mainly on openness of J(F) together with
discrete and finiteness of .

Theorem 3.1.5. If N is a E-bounded and E is with fully radical char-
acter, then J(E) is open.

Proof. As Qe is open and N is E-bounded, there exists an open subset
V of E such that NV C Qe. Thus we can write NV = {ge | for some
g€ Q}. Now, Vi ={qg€Q|qgee NV} (CQ). And NV = Vie, as
Ann(e) = 0. Now N(Vie) = N(NV) = N2V C NV = Vje, which gives
NV; € Vp, as Ann(e) = 0. So NV; = V4. Moreover, for each z € Vi,
Nz is a quasi-regular left N subgroup of N, and as what have been
stated above in case of A, we get Nz C J(N) and hence V3 C J(N).
Thus, we have V =1. VC NV =Vie C J(N)e C J(N)E = J(E). If
y € J(B), z € V, then y+ (—2) + V (an open subset of E containing
y) C J(E). Hence J(FE) is open. ¢

Corollary 3.1.6. If N is E-bounded, E is with fully radical character
and J(E) = 0, then E 1is discrete.

The following example reveals that the vanishing of radical is es-
sential for the discreteness of N-group F when N is E-bounded.

The topological near-ring N(= Zg) [19 (127) p. 344] w.r.t. the
topology T'(= {0, N,{0,4}, {1,5}, {2,6}, {3,7}, {0,1,4,5}, {0,3,4,7},
{0,2,4,6}, {1,2,5,6}, {2,3,6,7}, {1,3,5,7}, {0,2,3,4,6,7}, {0,1,3,4,
5,7}, {0,1,2,4,5,6}, {1,2,3,5,6,7}}) is N-bounded, J(N) = {0,4},
[(e) =0, where e = 1,2,3,5,6,7 and N is not discrete.

Corollary 3.1.7. If E is compact having fully radical character, N is
E-bounded and J(E) =0, then E is finite.

We now note the following
Note. (i) Suppose C"D’ C @, for some left N-subset C of N, n €
€ZT and D' C N. If C"D' ¢ B, for some left ideal B of N maximal
as N-subgroup, then Necica...cpnd + B = N for some cicy...cpd
(¢ B) € C"D’, where cy,¢c3,...,¢, € C and d' € D’ giving thereby
neicy...cpd +b = 1, where some n € N and b € B. And (C, be-
ing a left N-subset), (nci)ca...chnd € C"D'(C @), we get 1 € B, a
contradiction. Hence C" D’ C J(N).

(ii) Suppose n > 1 and C" D’ ¢ J(N). Now as Note (i) nc +
+b =1, for some n € N, b € B and ¢(¢ B) € C*'D’. Again
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for any cica...cpo1d’ € C"1D') where ci,¢3,...cno1 € C, d € D
we get cica...cp—1d = cica...cp1d (nec + b) — cicp...cp1d'ne +
+c1ca...cp1d'ne (€ B), as C, a left N-subset giving thereby from
Note (i) cica...cp-1d'nc(e C"D’' C J(N)) € B and B, a left ideal.
Hence C"~ 1D’ C B, a contradiction. Therefore by induction, we get
CD' C J(N) and by Lemma 2.7 (ii) we get CD C J(Ne).

(iii) When C"D C Qe, we get C"D’ C @ as Ann(e) = 0. By what
we have got CD C J(Ne).

Hence we get the following theorem establishing the link with the

T

topologically nilpotent notion of a subset of @ Ne; and that of the

=1
radical of the NV —gloup as follows

Theorem 3.1.8. If 69 D, ( EB D’el) is a topologically nilpotent sub-

set of @ Ne;, then @ CiD; C J( @Nel) for some left N-subset
=1

Cl U 02 n Of N

On the other hand, the squeezed character of each of the Qe; in
Ne; with respect to the given topology, leads us to the closeness of
what has been stated above regarding the direct sum of the group sum
of ideals related to quasi-regular left ideal of N, when zero is the only
element that kills the ¢;’s.
Theorem 3.1.9. If Ann(e;) = 0 and each Qe; is closed in Ne; for each

k3 n

i, then € Se; is a closed ideal of @ Ne;.
i=1 i=1
Proof. As above the result for one component is sufficient. Now, by

the proof of Th. 3.1.2. Se C Qe. S_Q__S—é C Qe, as Qe is closed. Again
we have by the proof of Th. 3.1.2. Se C Se and hence Se is closed. ¢
n
Theorem 3.1.10. As in case of Th. 3.1.9 if @ IL;e; is the unique maz-
i=1
n n n
imal N -subgroup of @ Ne;, then @ ILie; is closed and each of € Ae;
i=1 i=1

andJ(EBNe) is Q}IeZ

Proof. Wlthout loss of generality we see that, by hypothesis, Ie is the
unique maximal N-subgroup of Ne and Qe is closed, so Ae = Ie C
C Ae C Qe. Again Qe is a proper subset of Ne, if not Q = N, as
Ann(e) = 0, which is not true as 1 ¢ @ and hence by Lemma 2.8,
we get [e as closed. Again, for any left ideal B that is maximal as
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N-subgroup of N, we have by Lemma 2.7 (i), Be, an ideal which is a
maximal as N- subgroup Thus by uniqueness of e, we get Be = Ie.

Hence J(Ne) = Ie. Thus EB Lie; is closed and each of EB Ae; and
" n i=1 i=1
i=1 i=1

k2
The notion of N,-nilpotent element in N-group €5 Ne; gives the

i=1
following results, some of which are analogous to those obtained above.
The results obtained here are on the assumption that each Q; is an

open proper N-subset of Ne; with Ann(e;) = 0.
n n T
Theorem 3.1.11. If @ B;e; is a mazimal ideal of @ Ne;, then @ Bie;

i=1 i=1 i=1
1s closed.

Proof. Suppose Be = Ne. Since @' is open, so is —Q' + e and there
is an element ¢’ (= qge) € Q' and V' (= be) € Be such that —¢' +e =1’
which gives —g+1 = b, as Ann(e) = 0. Now, as ¢’ €Q’, we have Ni¢' =0
but N # 0, for some t(least) € Z* and hence Nlg =0, as Ann(e) =
=0. Now for any nins...n; € Nﬁ we get ning...ny = ning...ny(b+
+q) —ning...nyqg € B, as Nlg = 0 and B is a left ideal and thus
Nt C B. Again ning...ng—1 =ning...ng—1(b+¢q) —ning...ny—1q +
+ ning...ne_1q € B, as B is a left ideal and niny...ny_19 € N
(C B) giving thereby Ni~! C B. So, by induction, N,, C B which is a
contradiction, as by Lemma 2.7 (i), B is maximal. But by Lemma 2.8,

Be is closed. Thus it follows that € B;e; is closed. ¢
=1

n
Corollary 3.1.12. J( @ Ne;) is closed.
i=1

n
Theorem 3.1.13. If N is E-bounded where E = & Ne;, then
i=1

J( é Nez-) s open.
i=1

Proof. As Q' is open subset of Ne containing 0 and N is E-bounded,
so there exists an open subset V of Ne such that NV C @’. Now, for
each z € V, Nz is an N,-nil N-subgroup of Ne and hence by Lemma
2.9, Nz C J(Ne), for each z € V and thus V C J(Ne). Now fory € V
and z € J(Ne), we get z + (—y) + V as an open set containing z that
is contained in J(Ne). Hence J(Ne) is open. ¢
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n n

Corollary 3.1.14. If N is E-bounded where E = € Ne;, then @ Ne;
i=1 i=1
158 not connected. :

ki3 n
Corollary 3.1.15. If N is E-bounded where E= Ne; and J(@Nei)

i=1 i=1
n

is the zero ideal, then @ Ne; is discrete.

3.2. Component of zzelro. For the remaining of the paper N will be
a near-ring without unity. However we shall restrict our attention to the
case where the topology on F is locally compact. By Th. (2) of [10],
we see that this requirement forces (F,+) to be topological group i.e.
the function f(z,y) =z — y is continuous on E x E to E.

Let I denote the component of 0 in E. We now note the following
Note. (i) The set I' is a closed ideal in E and if it consists of O alone,
then F is totally disconnected.

(ii) When FE is totally disconnected and locally compact, it can
be seen that it is o-dimensional (as Remark 1 on page 22 of [13]).

We attempt the following theorem, which is obvious from Section 4
of [14].

Theorem 3.2.1. If E is locally compact, disconnected, contains no
proper non-zero closed ideals and satisfies the dcc on closed subgroups
of (E,+), then E is discrete.

Corollary 3.2.2. If E is compact, disconnected, contains mo proper
non-zero closed ideals and satisfies the dcc on closed subgroups of (E,+),
then E is finite. ¢
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