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Abstract: In the center of this work stands the function fc{g) = ¢™ + ¢,
n € N\ {1} over the quaternions H. We start with ¢ = 0 and then we iterate
again and again. In this way a Mandelbrot set with its main body is born.
All this is done exactly as we did already over complex numbers [6]. A corre-
sponding paper due to J. Kosi-Ulbl [4] is essentially extended. Some ideas of
H. Schwarzmeier are used. Everywhere in this paper we are confronted with
two difficulties. In respect of algebra: The non-commutativity of multiplica-
tion in H. In respect of geometry: The impossibility to imagine figures in a
four-dimensional space.

1. Some fundamental properties of complex num-
bers and quaternions

Let R,C = {z¢+iz1 | 20,71 € R} and H = {z¢ +iz1 + jr2+kzs |
| 0,71, T2, 23 € R} be the sets of real numbers, complex numbers and
quaternions, respectively. We mention, just as a warning, some well-
known properties of complex numbers and quaternions, used in this
article.

We can calculate in C and H in the same way as in R, but we
have to use i = —1 in C and the multiplication table
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| i j &k
il =1 k —j
il =k =1 4
k|l 5 —i —1

in H. With respect to the operations of addition and multiplication, C is
a field and H is a skew field (as the multiplication is not commutative).

For the absolute values |z| = \/z3 + z? of 2 = zg + iz; € C and
lg) = /2% + 22 + 2% + 22of ¢ = zo+iz, +jza+kxs € H the “additional
inequality” holds:
|21+ 22| < |z1] + |22 (21, 22 € C) and |q1 + 2| < |q1] +|a2| (91,2 € H).

As in C, the square A2 of the imaginary part A = izg + jzo + k3
of a quaternion ¢ = xg + iz1 + jzo + kz3 is a real number:

A? = —(z3 + 75+ 73) e R.
In this paper a “polynomial representation” is important:
¢* = (zo+ A)? = 22 +2Az0 + A? = (22 — 2% — 22 — 22) 4+ 2204
and analogously

qg" =G+ AF
where

G =z + <Z> zh A% 4 (Z) g YAt + .. eR

F = G) it + <Z> zp A+ eR.

There is a bijective mapping of C into the Euclidean plane. This
geometric representation of C is called the Gaussian plane. However,
the geometric representation of H makes some difficulties. It is possible
to use the four-dimensional Euclidean space, spanned by 1,1, 7, k.

2. The Mandelbrot set and its main body

2.1. Over C

Let fo(z) = 2™+ ¢, n € N\ {1} be a function of a complex
variable z.

The Mandelbrot set in respect of f. is defined as the set of all
¢ € C so that the sequence { fc(s)(O)} does not tend to co as s tends to
oo:
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M@:{ceC|f§5>(0)7L>ooifs—>oo}.

We observe that zp = 0 is the only critical point of f.(z). Because of
a theorem due to Fatou [2] therefore this special point is chosen as a
starting point of the iteration.

A fixed point p of f. is called attractive (stable) if there exists a

neighborhood U (p) such that for all z € U(p) we have lim fc(s)(z) =p.
§—+00

This case happens if and only if | f.(p)| < 1. We are speaking about the
so-called stability criterion [2], [7].

The main body of Mc is the following subset of Mc:

Hc = {c € Mc | f.(z) has exactly one attractive fixed point

within the z-plane}

2.2. Over H

Let fc(q) = ¢" + ¢, n € N\ {1} be a function of a quaternion
variable q.

The Mandelbrot set in respect of f. is defined as

My = {ccH| f(0) £ oo if s — c0}.

In Il a derivative of f.(q) is not defined and therefore we have no
critical points. The theorem of Fatou cannot work here. In spite of
these facts we chose the seed gg = 0, hoping that by iteration really all
cycles are reached.

The main body of My is defined as the following subset of My:

Hy = {c € My | f.(q) has exactly one fixed point p

within the g-plane such that [np™~?!| < 1}.

We observe that exactly as in C a fixed point is called attractive (stable)
if there exists a neighborhood U(p) such that for all ¢ € U(p) we have
lim f89(q) = p.

The stability criterion now is a little bit more difficult as over C.
We calculate at first the functional matrix (Jacobian matrix), then the
characteristic equation and finally the eigenvalues X;. The spectral
radius g is defined as follows p = max |A;|. Then we have the criterion:

The fixed point p is attractive if and only if p < 1.

In the case n = 2 we succeeded to prove p = 2|gq|. We suppose that for
all n € N\ {1} it follows o = n|¢"~!|. That would be analogous to the
criterion over C. With this supposition we defined Hy — without using
any criterion.
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3. Mandelbrot set and main body over C

3.1. Theorem. The main body Hc in respect of f.(z) = 2™ + c is the
set of all points within an epicycloid with (n — 1) cusps [5].
Proof. (a) Fixed points. If p € C is a fixed point of f.(z) then we have
p™~+c = p. There exist solutions of this equation (fundamental theorem
of algebra). We write p = Aw with A € RT. The exact value of X is
given later. So we obtain ¢ = Aw — A"w™.

(b) Attractivity. Using the stability criterion — given above — we
now obtain [nA" 1w 1| < 1. We choose A such that nA""! =1 or
A = s==. Because of n > 1 this means |w| < 1.

(c) w-plane or (zg, z1)-plane. With w = zg + i1 we obtain in the
w-plane the set of all points within the circle z3 + z? = 1. Now we use
polar coordinates xg = cost, £1 = sint. Then the boundary circle has
the equation w = cost + isint = e¢*. The parameter ¢ is running from
0 to 2.

(d) c-plane or (yo,y1)-plane. Now we switch to the c-plane
c=dw— \N"w" = Azo +iz1) — A" (zo + iz1)".
Using polar coordinates we obtain
¢ = A cost+isint)—A"(cost+isint)"” = Aeft = \"eft™ — g0 4-iyq,

with yg = Acost — A" costn, y; = Asint — A" sintn. Due to [6] this is
the equation of an epicycloid with (n —1) cusps. In case n = 2 we have
a cardioid.

We delete here the proof that exactly one fixed point exists. This
proof works exactly as for H in Section 4.1. ¢
3.2. Mandelbrot set. In the case n = 2 the Mandelbrot set is well
known as the so-called “apple manikin”.

In all cases n a lot of decorations are growing out of the main
body: buds, antennas, filaments and satellites. We do not investigate
all these nice and difficult things here. But we refer to the exten-

sive literature [2] and we give some pictures for the cases n = 2,3,4
(Figures 1, 2, 3). The main body is very clear to make out.

4. Main body over H

In the following text we delete the index H. So we denote the
Mandelbrot set and the main body over H simply by M and H.
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Fig. 1. The so-called “apple manikin”
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Fig. 2. Mandelbrot set in case n = 3
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Fig. 3. Mandelbrot set in case n =4

4.1. Theorem. The main body H in respect of f.(q) = q"™ + ¢ is the
set of all points inside the boundary

c= )\(IEQ +izy + jzo + kmg) — /\n(CL’o +ix1 + jxo + k’mg)

1
(1) with A = 1
n—-\l/,ﬁ'

Proof. The proof is running similar as in 3.1.

(a) Fixed points. If p is a fixed point of f.(q) then we have p™ +
-+ ¢ = p. The fundamental theorem of algebra does not work in H.
Nevertheless there exist solutions of this equation. We write p = Aw
with A € RT. So it follows ¢ = Aw — A"w™.

(b) Attractivity. Using the unproved criterion given above we ob-
tain [nA™~tw"!| < 1. Now we choose nA"~! =1, A = == Because
of n > 1 it turns out that |w| < 1.

(c) w-space or (zg, x1,T2,T3)-space. With w = zg+iz1+jz2+kT3
we obtain in the (zg, 71, 2, z3)-space the set of all points within the
sphere $% : 22 + 22 + 2 + 22 = 1.

(d) c-space or (yo, y1, Y2, ys3)-space. Now we switch to the c-space.
This yields

eERY and zl + 22 + 23 +zi=1.
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c=Aw—=A"w" = ANzo + iz1 + jzo + kz3) — A" (z0 + izy + jTo + kxs)"
= yo + 11 + jy2 + kyz with yo,y1,v2,¥3 € R.

(e) Uniqueness. In the definition of the main body (Chapter 2) the
existence of exactly one fixed point with special qualities was required.
We had deleted the corresponding proof for complex numbers. But now
the missing proof is given (it holds for H as well as for C). So a gap is
closed.

We assume that we have two fixed points p, ¢ with p # ¢q. We
write again ¢ = Aw, p = Av and choose A such that nA\*~! =1 or A" =
= 2. Exactly as in 3.1 it turns out that |w| < 1 and |v| < 1. Further
we obtain

n n_ln_n_ﬁn_n_ﬁ__
Vimwt =m0 - ") = S ¢")=x-aq=
—%()\v—/\w):n(v—w)
and finally

But this is impossible, because now we show that |[v™ — w"| < njv —w|.
(With this we have a contradiction to our assumption p # ¢, v # w.)
We work with complete induction.
n =2
v? —w?| = v — vw + vw — w? = (v — w) + (v — w)w| <
< Jow — w)| + [(v — w)o].

But |v| < 1, |w| < 1, therefore [v? — w?| < 2|v — w|.

The inequality shall be proved up to n — 1. Then it holds
"t — ™ < (n - 1D)|v — w).

Now we go from n — 1 to n.

n 1

—w"| = o — o™ f o™ — ™| =
— l’U(Un_l - wn—l) 4 (U _ w)wn——1| S

< o™ = w ]+ (v = w)w .

lv

But |v| < 1, |w| < 1, therefore — using also the assumption of induction,
we have
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" —w™| < 0" —w T+ o - w| <
<m-1Dv-—w+p-—w=njv-wl. O
4.2. Other formulations. Using qualities of the skewfield sketched
in Chapter 1, Th. 4.1 may be formulated in different ways. Using (1)
one can write

c= ANzo + A]=A"[zo + A" = {)\mo—)\”xg - A" <Z>m3_2A2 - } +

+ A [A—A“(’ng—l ~/\”<Z>az}}“3A2 ~} =G+ AF

with G, F' € R, and thus
(2) c=G+iFzy+ jFxy + kFz3 = yg + iy1 + jya + kys

with Yo,Y1,Y2,Y3 € R.
With this we went from the w-space to the c-space, from the

(1170, T1,T2, :cg)—space to the (yOa Y1, Y2, y3>'spa’ce'

5. Visualization

Unfortunately we do not have four-dimensional eyes. That is why

we cannot see the object described with our nice equation (2). Therefore
we use an old trick and investigate some sections. So we obtain shapes
which we can really see and which we can grasp with our hands.
5.1. A first section. We cut the main body described by (2) with
a three-dimensional (zg,z1,z2)-space, with a hyperplane. Then the
coefficient of k£ has to disappear. This is done by setting z3 = 0,
respectively y3 = 0. In this way we find the boundary surface of our
cutting object.

3) c = Mzo +iz1 + jzo) — A"(z0 +iz1 + Jz2)" =
=G +iFz; + jFzy = yo +iy1 + JY2.

How does this point set look like?
5.2. Polar coordinates. As we did in the c-plane we now introduce
polar coordinates.

In our (zo,21,22)-space we have the boundary surface 23 + 2% +
+ 23 = 1. This is a sphere S?. Let P be a point of this sphere (OP =
= 1). Then we take from Fig. 4 — with all notions used there — the
polar coordinates of P:
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T1 = cospsinty, zp =sinpsiny, zo= cosy.
Substitution in (3) yields

c = A(cost) +icospsiny + jsinpsin)—
(4) — A™(cos 9 + i cospsinty + jsinpsiny)™ =
=G +icospsinyF + jsinpsinF = yg + iy1 + jya.

A\ %o

%)

Fig. 4. Polar coordinates in the (zg, z1, z2)-space

Using polar coordinates yields once more beautiful equations. But we
still have no visual idea of our cutting object in c-space.

5.3. A second section. We cut our three-dimensional object once
more using a plane. This is reached by setting o = y2» = 0 in (3) or
with ¢ =0 in (4). It follows

c = A(cosy + isinyp) — A"(cosyp + isiny))"™ =
= eV — A" =y + iy

(5)

This is an old friend, namely the epicycloid from 3.1.

In the case n = 2 we have A = % and with ¢ = 0, ¥ = 7 two
special points (yo = %, Y1 = O), (yo = ——%, Yy = O) are found. In Fig. 5
this situation is “freehand” sketched.
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A

Fig. 5. Section with (yg, y1)-plane in case n = 2

In the same way with x; = y1 = 0 respectively ¢ = %:71' we obtain a

second section — namely by cutting with the (yo, y2)-plane. This yields
an epicycloid congruent to the last one. Step by step a visual idea of
our three-dimensional section develops. We suppose an object arising
by rotation of our epicycloid around the yg-axis. But this assumption
needs a proof.
5.4. The apple theorem. Within the (yo,y1,y2)-space the boundary
of the main body consists in a surface which is created by rotation of
our epicycloid (equation (5)) around the yo-axis.

All points within this surface are the elements of the “filled” main
body. In case n = 2 this object looks like an apple.
Proof. Let Q(zp,x1,z2) be a point on the boundary sphere z; =
= cossinty, ro = sinwsiny. Now % and with this zp = cost are
constant. Switching to the (yo, y1,¥2)-space the point Q is (due to (4))
mapped on the point

P(yo = G,y1 = cospsinyF,ys = sin psinpF).

Naturally P is a point of the boundary surface in (yo,y1, y2)-space.
Further the point P is element of the plane £: yo = G (Fig. 6). Then G

is a function of zg = cost and A2 = —z? — 23 — 22 = — cos® psin®1h —
—sin? psin? ) = —sin? 1, totally of cos . So if zq = cos 1) is constant,

then G is constant, too.
Now we have y? + y3 = FZcos?psin®y + F?sin® psin®y =
= F?sin?4. F is also a function of zg = cosy and A2 = —sin?.
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It follows y? +v3 = R?, where R? is non-negative and constant. There-
fore P is element of a circle in £.

i)

N
Fig. 6. Section with the plane yg = G

Every point on the boundary surface and £ is element of such
a circle. And vice versa every point of this circle is contained in the
boundary set. Naturally every point of our epicycloid in the (yg,y1)-
plane determines a plane £. Now we see that G must be bounded such
that the corresponding plane really intersects the epicycloid.

Fig. 7. The apple

Views from different directions

Summarizing we can say that every plane parallel to the (y1,ys2)-
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plane intersects the boundary of the main body in circles or in a point
or the intersection is empty. With this the proof is done. ¢

Fig. 7 shows different views from the apple.
5.5. A very special example. I always preach that mathematics
really must be done. Therefore now I give a detailed investigation in
case n = 2. The results are formulated in a corollary.
Corollary. The intersections with planes y = G yield the following
different results.

3
G < —7 the empty set
= —§ one point
<G < = rel
1 7 one circle
1
G= 1 one circle and one point
1 3
1 <G< g two circles
3 .
G = 3 one circle
3
G > 3 the empty set.

Proof. What is already known?
(a)n=2=X=1.
(b) From (5) we take

1 1 1 1 1
G——cosw—zcosmp—§coszb—§cos @b—l—z

2
and with zg = cosy we obtain
1 1 1

G = §x0—§x3+1 or Ty = 5(1:i:\/3—8G).

(c) R? = F%siny = 1sin® (1 — cos)?. We know
1 1

c= 5(:1:0 +A) - Z(:co + A)? =

1 1 1 1 !

— (5.’,'60 — ‘2—37% — ZA2> —I—Z§$1(1 — :Eo) +j-2*1‘2(1 — 330).

With this
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1 1
yp = .2.5,31(1 — 1) = 5cosgosinw(l — cos ).

Comparison with (4) yields
1
y1 = 5 cos wsiny (1 — cos) = cos psin Y F

and finally FF =1 — cos.

(d) Fig. 8 shows our cardioid in the (yg,y1)-plane. The distance
between the tangent ¢ and the y;-axes is —g-. This follows from the
cardioid equation.

%

Rl

Fig. 8. The cardioid in the (yo, y1)-plane

Now we prove the results in different cases of the corollary.

3 1 3 .
G:—S— xoz—i:cossz2:6—4...circle
1 zg =cost) =1 = R?=0...point
Zg =costy) =0 = RQ:Z...circle
o 3 { To =cost =2 impossible
4 \zg=cospp=—-1=—= R? =0...point.

All these special limit cases are excluded in the following investigations.

From (b) follows immediately a necessary condition for the exis-
tence of intersections, namely G < -g-. This means that G > % yields
the empty set.
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Now we choose in (b) the positive sign and require cosy < 1.
Then it follows G > 1. If ;11 <G < % then 0 < cost < 1. Therefore we
have a circle in this case.

Let the sign in (b) be negative then zg = cosy = 3(1—+/3 —8G).
First case. 1——m>0:>@>%.

Therefore in case % <G< % occurs a second circle.
Second case. cosYy=1—-+4/3-8G<0=G< %.

Further it turns out
|cos | = (V3 8G—l)<1ﬁG>—Z.

In the area —— <G < 211_ we have a circle. It remains only G < ——
1
2

Here we have lcos Y|=21(v/3-8G—1) > 1. Impossible — this means
again the empty set. ¢

5.6. Some more intersections. In this chapter the main body H
was cut with the (yo,y1,y2)-space. The boundary of this section was
a rotation surface. The same procedure can be performed with the
(yo,v1,ys)-space and with the (yo,y2,ys)-space, too. By rotation of
epicycloids around the yg-axis we obtain further boundary surfaces,
congruent to one another.

There are quite other possibilities for cutting our main body H
within the (yo, y1, y2)-space. For instance by planes y» = B parallel to
the (yo,y1)-plane.

All these possibilities sound indeed very nice. But how the total
main body H really looks like? We do not see, we can never see.

3

6. Mandelbrot set over H

6.1. Lemma. Let fi(q) = q¢"+c1 =q"+a+ A, fa(q) =q¢" +c2 =
= q" + b+ B be two functions. We perform iterations in H with seed
go = 0. If the real parts of c1 and cp are equal and the absolute values of
the imaginary parts coincide then the absolute values of every iteration
with number s are equal.
In short: a =b and |A| = |B| then lf(s)( 0)| = |f2(s)(0)].

Proof. f1(0) =c1 =a+ A, f(z)( O)=ct+c=(@+A)"+a+ A We
use the polynomial presentation as in 4.2. With this we obtain

) (0) = {a +am+ <g’> a"2A% (Z) a" A% 1 } +
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+ A [1 + <71L>a”_1 + (;L) a" A%+ } =

=G® + AF® with G®, F® ¢ R.

G and F® are functions of a and A%. Therefore we write G (a, A2),
FQ@) (g, A?).

Using the principle of induction we show that for each generation
s € N a representation of this form exists.

We know that this is true for s = 2. The assumption shall be
proved up to s — 1. Then it holds G~ (a, A%), F(s=1) (q, 42).

Now we go from s — 1 to s.

D) = (6D + aFCD) 4oy A=
- {a—k (¢e)"+ (g) (G<S—1>)”_2 APy g } +

n T
All (s—1)\yn—1 p(s—1) (s—=1)\n—3 A2/ (s—1)\3
+ {+<1>(G A N [ (e Y i
=GB L AF®),

It is immediately seen that G(*) and F(*) are again functions of a and
A?. So we can write G(*)(a, A%), F*)(a, A?).
Now we consider the absolute values

F0)] =/ (@@)2 - |AR(FO)2,

The investigation of f2(q) is running in exactly the same way. We have
only to substitute a by b and A2 by B2. In this way we obtain

50)] = /(G2 — |BRFE).

G®) and F®) now are functions of b and B2. We write G(*) (b, B2),
F(©) (b, B?). Because of the assumptions a = b and |A| = |B| it follows
1752(0)] = | £¢(0)| and our lemma is proved. ¢

(The spelling technique is a little bit confusing. It may be that
there arise difficulties in understanding.)
6.2. The extended apple theorem. Let the Mandelbrot set M
intersect the (yo, Y1, y2)-space. The boundary of this section consists in
a surface which is created by rotation of the corresponding boundary
line in the (yo,y1)-plane around the yo-axis.
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Proof. Due to 5.3 we know already the section of our main body H

with the (yo,y1)-plane. This was exactly the “filled” epicycloid from

3.1. This point set was found by iteration with
fl@=d"+a=¢"ta+A=¢"+a+1a.

Using the same function we obtain the Mandelbrot set in the (yo,y1)-

plane following Def. 2.1. In this way the main body is extended to the

Mandelbrot set. So Figures 1, 2, 3 were produced.

Now we perform a rotation (as in 5.4) of the (yo, y1)-plane around
the yp-axis to the plane . Doing so the element ¢; = a+ia; is mapped
into the point ¢y = b + iby + jbs + kbs in v. From Fig. 9 we take out
a="b, by =0 and b3 + b2 = a2.

N

o

~

~>.

N
y 2

Fig. 9. Rotation around the yg-axis

Two functions are considered:
fi(@) = ¢"+a+A = ¢"+a+ia; and f3(q) = ¢"+b+B = ¢"+b+ib1+jbs.
The first working over the (yo,y1)-plane and the second over . With
a="b, |Al = /a2 = \/b? + b2 = | B| the conditions of our lemma are
fulfilled. Because of | fl(s)(O)l = |£$)(0)] the points are running in both
planes exactly in the same way — performing iterations. If the points
do not “escape” in one case, then they do not also in the other. We
obtain in both planes point sets congruent to one another.

The filled rotation surface is the intersection of M with the
(Y0, Y1, Yy2)-space. Figures 10, 11, 12 show in a very impressive way
such rotation solids for n = 2, 3, 4.
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Fig. 12. The extended apple theorem in case n = 4
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Views from different directions

All our investigation can also be done in respect of the (yo,y1,¥3)
or the (yo,%2,y3)-space. In any of the three cases we obtain solids
congruent to one another. ¢

Exactly as with H the true shape of M remains hidden within the
darkness of the fourth dimension.

7. Conclusion

A lot of interesting questions concerning iterations in quaternions
remain unanswered. We quote some of them.

7.1. In Chapter 2 two problems were already mentioned.

Is there any motivation to choose the starting point g = 07

What happens if the seed is not zero?

Is the stability criterion using the spectral radius p equivalent to our
assumption |np™~1| < 1 for all functions f.(g) = ¢ +c with n € N\ {1}7
7.2. Is it possible to obtain more visual clarity about M and H using
totally other cross-sections? In [1] some interesting pictures (with Cassini
curves) are given.

7.3. Not every quadratic function over H can be reduced to the case
fo(q) = ¢*> + ¢ (in contrast to C). Is it possible to classify these functions
in respect of iterations?

7.4. Investigate other functions over H performing iteration — for in-
stance rational or transcendental ones!

7.5. The Mandelbrot set over C may also be defined as the set of all
points whose corresponding Julia sets are connected. This definition is
equivalent to the definition given in Chapter 2. Is it possible to define
the Mandelbrot set over H in a similar way?

Summarizing we can say that we have much more questions than
satisfying answers. And the more mathematicians are doing research
in this field, the more questions arise.
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