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Abstract: In this paper, we improve some inequalities obtained by N. S.
Barnett and S. 8. Dragomir in [1] for random variables whose probability
density functions are bounded. Our approach is based on the use of a variant
of the Griiss inequality which is recently obtained by X. L. Cheng and J. Sun

(see [3]).

1. Introduction

In a recent paper (see [1]), N. S. Barnett and S. S. Dragomir,
using the pre-Griiss inequality obtained by Matié¢, Peciric and Ujevié
in [4], have established some inequalities for random variables whose
probability density functions are bounded. More precisely, we can find
in [1] the following result:

Theorem 1. Let X be a random variable having the probability density
function f : [a,b] — R. Let us denote F(z) := f: f(t) dt the distribution
function and E(X) the expectation of X. Assume that there ezist two
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constants v and ¢ such that 0 < v < f(t) < ¢ a.e. on [a,b]. Then we
have the inequality

(1.1) b-a

EX)+(b—a)F(z)—z— 5

< 4—1—\/3-(90 —M(b—a)?,

for all z € [a,b]. In particular, if in (1.1) we choose either x = a or

x =b, we get

a+b
2

(1.2) B(X) -

< f\-@(w—w(b—a)z,

The following result also is proved in [1}.
Theorem 2. Let X, f, v, ¢ and F as above. Then we have the

inequalities

b—a b—i—m 1 a+b\>
E(X)+—2—F(:c) 2\/_ (p— 7){ (b— a)?+ (33——2—~) <
(1.3) —=(p—7)(b—a)?,

4\/—

for all = € [a,b].

The aim of this paper is to give some improvements to the inequal-
ities established in the above theorems. Our approach will be based on
a recent result obtained by X. L. Cheng and J. Sun (see [3]).

2. The results

Before we proceed to the main results of this paper we need to
recall the following variant of the Griiss inequality which is recently
obtained by X. L. Cheng and J. Sun in their paper [3].

Theorem 3. Let h, g : [a,b] — R be two integrable functions such that
v < g(z) < @ for some real constants and for all z € [a,b]. Then

/h(m d:c—b_a/ h(z d:z:/ab (r)dz
< -;—(/ab h(ﬂ:)—bia/abh(y)dy dsc) (=)

Our first result is the following theorem:

<

(2.1)
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Theorem 4. Let X be a random variable ham'ng the probability density

function f: [a,b] — R. Let us denote F(z) := [T f(t)dt the distibution

function and E(X) the expectation of X Assume that there exist two

constants v and ¢ such that 0 < v < f(t) < ¢ a.e. on [a,b]. Then we

have the inequality

b—a
2

1

< g(‘p - ’Y)(b - a’)27

for all x € [a,b]. In particular, if in (2.2) we choose either x = a or
T = b, we get

(2.2) EX)+(b—a)F(z)—z—

(2.3) lE(X) _at b’ =

Rk

Furthermore, the constant § in (2.2) (resp. (2.3)) is the best possible.
Proof. Let X, f, v, p and F as above. Let p(z,t) be the kernel defined

on [a,b] X [a,b] by setting
t—a if tE€]a,z],

T,t) =
p(e1) {t—b it ¢ €z, b).
Making integration by parts, it is easy to derive the following identity:

b
(2.4) (b— a)F(z) + B(X) = b= / p(z, ) F(2) dt.

Applying the inequality (2.1) to f and g¢(t) := p(z,t), we get

/abf(t)p(:c,t)dt b_a/ xtdt/f £t <

(2.5)
1 b b
<3 (/a p(z,t) - b—a ) p(z,s)ds dt) (=)
We observe that
b b
1 b
fwar=1, = pz,t) dt = & — 22
b— 2
It remains to compute the integral f 'p T,t) — 7 f p(z, s ds' dt. To

this end, we shall discuss two cases:

(i) The case where z € [a, %2]. We set t1(z) := z — %52 and

t2(z) = x + 252, We observe that ¢1(z) < a and z < to(z) < b. We
observe also that



108 M. Akkouchi

T b
dt:/ [t—tl(x)]ahH—/ [t—to(z)| dt
=1 + I. |

Il:/;[t—tl(:v)]dt: (b—8a)2 _% {z_a;—br

b
p(a:,t)—bi / plz, s)ds

However,

and

I = /j(m)[@(m) —t]dt+/b [t — to(2)]dt = (b —;)2%_ {x — %Lbr

t2 (1})
We deduce that, in this case, we have

(2.6) ‘Ab bialfmxﬁym

(ii) The case where z €]2F2 b]. We set t1(z) 1= z — 25% and
ta(z) = z + 252 We observe that t2(z) > b and a < t1(z) < z. We
observe also that

/ab (s, t)—b%/b (z, 5)ds

However,

(b—a)®

dt =
4

p(:l:,t) -

dt = / r— dt+/b ita(z) — 1] dt

1= J+Js.

Jz=/mb[t2(x)—t]dt: (b“Sa)2 _% {I_aerr

:/mm —tﬁ+/bﬁ—hmwh:
1

2{ —ajb} +(b~a)2.

P4

and

We deduce that, in this case, we have

(2.7) / ’ ’

b—a J,
Therefore, for all = € [a, b], we have the following identity

B (b—a)?
dt = 1 )

p(lﬂ,t) - p(m,s) ds
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b b
(2.8) / p(w,t)—g—i—a-/ p(z,s)ds| dt

From (2.4), (2.5) and (2.8) we derive the inequality (2.2).
To prove the sharpness of the constant % in (2.2), assume that
(2.2) holds with a constant C' > 0, that is,

b—a

(2.9) EX)+(0-a)F(z) -z~ < Cle =) -a)?,

for every finite interval [a,b], for all z € [a,b] and all random variable
X taking values in [a,b] and having a probability density function f
such that 0 <y < f(¢) < ¢ a.e. on [a,b]. Set [a,b] = [0,1] and consider
the random variable X, taking values in [0, 1] having the probability
density function fp defined by:
if telo,1],
]

folz) ::{ it te)l1

Then ¢ = 2 and v = 5. We have E(X,) = 2. Consequently, by (2.9),
we get

{0 o

1
’g + F(z) —
for every z € [0, 1]. For z = 0, we get 5 1 < C. Therefore the constant %
is sharp in (2.2). The same example W111 show that the constant § is
the best possible in (2.3). So our result is completely proved. ¢
Corollary 5. Let X, f, v, ¢ and F as above. Then we have the
inequality

z| < C,

210 [BCO + (- a)r (<) - b[ < Le-m0-ap,

Jor all x € [a,b]. Furthermore, the constant 2 in (2.10) is the best
possible.

(2.10) is obtained from (2.2) by choosing z = 24b The example
used in the proof of Th. 4 can be used to show the shalpness of the
constant £ in (2.10).

Our second result is the following theorem.

Theorem 6. Let X, f, v, ¢ and F as above. Then we have the
mequalities
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b;aF(x)_b—i—x

1 1 a+b\>
z “(b—a)? —
<77 [4( a)” + (w 5 )
for all z € [a,b]. Furthermore, the constant % multiplying @ — 7 (resp.

appearing in the bracket) in the second member of (2.11) is the best

possible.
Proof. Let = € (a,b). We know by the identity (2.4) that

b b
(b~a)F(:n)+E(X)—b:/ (t—a)f(t)dt+/ (t — b) f(t) dt.

a

Bx) +

(2.11)

< Hlp= - aP,

We apply the inequality (2.1) on the interval [a,z] with f and g(t) =

;=1 — a. Then we get
T €T
it — o] dt. / ) dtl <
a a

| o
_-2~</a wia/:(s—aws &) (o=,
We have

/:f(t)dt:F(:c), xia/;(t—a)dt:x;a.

zr+a
2

1 z
—a)d
m—a/a(s a)ds

(2.12)

we observe that

By setting set t1(z) :=

;

Thus we get

dt:/m it — t1(z)| dt = (“’_4“)2.

t—a—

()| < 3o~ Mz —a)

We apply the inequality (2.1) on the interval [z,b] with f and g(t) :=
:=t — b. Then we get

(2.13)

/f(t )t —bld t——l—— b[t—b]dt./bf(t)dt <

gg(/j

(2.14) i

t—b_b—}_ (s—b)ds

T

dt> (e =)

‘We have
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b b
/f(t)dtzl—F(m), bix/(t—b)dt:a:;b.

By setting set ta(z) := g;‘—b, we observe that

/: b_lz/:(s—b)ds

Thus we get

/f

for all z € [a, b].
Summing (2.13) and (2.15) and using the triangle inequality, we
deduce that

/w(t-a)f(t) dt+/ (£ b)f(t) dt —

dt = /m £ — to(z)] dt = —433)2.

t—a—

(2.15)

[ -F@)| < (0 —7)b-2)?,

Oolv—\

_ b—
b aF(w) + z

<

(2.16)
(0= [(z~a)?+ -2,

OO|P—‘

however,

%[(x—a)2+(b—z)2} =§l<b~a)2+<w—a§b> :

From (2.4), (2.16) and the above identity, we deduce the first inequal-
ity of (2.11). Now, by using the example introduced in the proof of
Th. 4, one can prove easily that the constant % multiplying ¢ — v (resp.
appearing in the bracket) in the second member of (2.11) is the best
possible. The second inequality of (2.11) is clear. Thus, our result is
completely proved. ¢

Remark 7. If in (2.11) we choose either z = a or = = b then we get

a+b 1

5| S gle =M —a),

(2.17) lE(X) -

and we recapture (2.3).
Remark 8. If in (2.11) we choose z = %2 then we get

E(X)-F[—)*;—P (Xs a;b> az?’bl_ 116( —7)(b—a)?,

which is the best inequality that can be obtained from (2.11).

(2.18)
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3. A related result

Let X be a random variable as in section two. We set pg := "";b,

and define 4,, := f; | t — o | f(t)dt. In [1], the following inequality
was established:

b—a 1

A, —— < —

o4 | T 83

In this section, using Cheng—Sun inequality, we shall give an improve-
ment to this inequality. More precisely, we have

Theorem 9. Let X, f, v, ¢ and F' as above. Then we have the

inequality

(3.1) (¢ =7)(b—a)”.

b—a
4

1
<
- 16

Proof. By easy computation, we have

1 b b—a
m/a]t‘—/,toldt— 4 .

By using Cheng-Sun inequality, we get

(3.2) Apo — (o =7)(b—a)*.

b—a 1 b b—a
Ay — ——1 < =(p— t— ol — dt.
wo — | S 5l 7)/@ [t = pol = —
However,
b ath b
— b
/ lt—,u0|—b adt:/2 3a+b—tldt+/ t—a+3|dt:
a 4 a atb 4

a-+-3b

7 3b b b
+/ <az —t> dt+/ (t— a—{é—13 > dt = Ki+Ky+ K3+ K.
a- a

.4-b +3b
2 4

Easy computations will show that K1 = Ko = K3 = K4 = 3—12(6 —a).
From these equalities, we get the desired inequality. ¢
Acknowledgement. The author wishes to thank the referee for many
useful comments.
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