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Abstract: Structure of dendrites Y is studied such that for each dendrite X
and for each mapping f: X — Y = f(X) that satisfies some special condi-
tions (mainly of monotoneity type) the dendrite X contains a homeomorphic
copy of Y.

1. Introduction

Krzysztof Omiljanowski has proved [2, Th. 6.12, p. 183] the fol-

lowing theorem.

Theorem 1.1. Let a dendrite Y be such that

(1.1.1) all ramification points of Y are of order 3;

(1.1.2) the set R(Y") of all ramification points of Y is discrete.

If a dendrite X can be mapped onto Y under a monotone mapping, then
(1.1.3) X contains a homeomorphic copy of Y.

The result resembles the well known theorem of Gordon Thomas
Whyburn for light open mappings (see [13, (2.4), p. 188] and compare
[5, Cor. 4, p. 1839]) that runs as follows.

Theorem 1.2. Let D be a dendrite. For every compact space X and
for every light open surjective mapping f : X — Y with D C Y there
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exists a homeomorphic copy D' of D in X such that the restriction
fID": D" — f(D') = D ‘s a homeomorphism.

Since each nonconstant open mapping defined on a dendrite is
light, see [7, Cor. 6, p. 216}, if X is a dendrite, then the assumption
of lightness in Th. 1.2 can be omitted. For more general results see [5,
Cor. 10, p. 1842] and [6, Th. 16].

The two results, namely Ths. 1.1 and 1.2, play the key role in prov-
ing some results in dynamical systems about preserving PR-property
and QEP-property under monotone as well as under open mappings of
dendrites, see [4, Ths. 3.6, 3.9 and 3.11]. Since the inverse implication
to that of Th. 1.2 is known to be true (and thus characterizations of
dendrites are obtained, see [5, Cor. 10, p. 1842] and [6, Th. 16]), it
is natural to ask if Th. 1.1 can be reversed; in other words, we are
interested in solving the following problem.

Problem 1.3. Characterize all dendrites Y having the property that if
a dendrite X can be mapped onto Y under a monotone mapping, then
X contains a homeomorphic copy of Y.

Observe that, contrary to open mappings, not all dendrites Y
have the above formulated property. If X is of the shape of the letter
H then shrinking the horizontal bar of X to a point we get a monotone
mapping of X onto a simple 4-od Y, that is, onto a dendrite of the
shape of the letter X, and we see that X does not contain any copy
of Y.

Note also that, since the image of a dendrite under a monotone
mapping is again a dendrite, the obtained characterization is valid for
all continua, not only for dendrites.

In this paper we present a partial answer to the above formulated
Problem 1.3.

2. Preliminaries

All considered spaces are assumed to be metric, and a mapping
means a continuous function. We denote by N the set of all positive
integers and by C the set of all complex numbers. For A C X we
denote clx(A) and bdx(A) the closure and the boundary of A in X,
correspondingly. The symbol card (A) stands for the cardinality of A,
and diam (A) means the diameter of A.

A concept of an order of a point p in a continuum X (in the sense
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of Menger—Urysohn), written ord (p, X), is defined as follows.
Let n stand for a cardinal number. We write:

(¢) ord (p,X) < n provided that for every ¢ > 0 there is an open
neighborhood U of p such that diam (U) < e and card (bd(U)) <
<mn

(e) ord(p,X) = n provided that ord (p, X) < n and for each cardinal
number m < n the condition ord (p, X) < m does not hold;

(#) ord (p, X) = w provided that the point p has arbitrarily small open
neighborhoods U with finite boundaries bd(U) and card (bd(U))
is not bounded by any n € N.

Thus, for any continuum X we have

ord (p, X) € {1,2,...,n,...,w, N, 2%}

(convention: w < Rg); see [8, §51, I, p. 274].

A point p € X is called an end point of X provided that
ord (p, X) = 1, and it is called a ramification point of X provided that
ord (p, X) > 3. For a space X we denote the sets of end points of X
and of ramification points of X by F(X) and R(X), respectively.

A continuum X is said to be a dendrite if it is locally connected
and contains no simple closed curve.

A surjective mapping f : X — Y between topological spaces is said
to be:

— light provided that for each point y € Y the set f~1(y) has
one-point components (note that if the point-inverses are compact, this
condition is equivalent to the property that they are zero-dimensional);
— open (O) provided that the images of open sets under f are
open; :

— monotone (M) provided that for each point y € Y the set
f71(y) is connected;

— an OM-mapping (or an MO-mapping) (OM or MO, respec-
tively) provided that there exist mappings f; and fo such that f=
= fa o f1, where f; is monotone and £, is open (or fy is open and f; is
monotone, respectively);

— locally MO-mapping (Loc(MO)) provided that for each point
y € Y there is a closed neighborhood V of y in Y such that the partial
mapping f[f~1(V): f~1(V) — V is an MO-surjection;

— almost monotone (AM) provided that for each subcontinuum
@ of Y with nonempty interior the preimage f~(Q) is connected;
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— feebly monotone (FM) provided that X and Y are continua,
and if A and B are proper subcontinua of ¥ such that Y = AUB, then
the inverse images f~'(A) and f~1(B) are connected;

— quasi-monotone (QM) provided that for each subcontinuum @
of Y with a nonempty interior the preimage f~1(Q) has a finite number
of components and each of them is mapped onto ) under f;

— weakly monotone (WM) provided that for each subcontinuum
Q of Y with a nonempty interior each component of the preimage
f~YQ) is mapped onto @ under f;

— confluent (C) provided that for each subcontinuum @ of ¥ each
component of the preimage f~1(Q) is mapped onto @ under f;

— locally confluent (Loc(C)) provided that for each point y € ¥V
there is a closed neighborhood V of y in Y such that the partial mapping
flf~Y%(V) : f7Y(V) — V is a confluent surjection (equivalently, if for
each point z € X there is a closed neighborhood U of z in X such that
the partial mapping f|U : U — f(U) is confluent, see [11, Th. 4.24,
p. 19]);

— semi-confluent (SC) provided that for each subcontinuum @ of
Y and for every two components C; and Cy of the preimage f~1(Q)
either f(C1) C f(C2) or f(Ca) C f(Ch).

The following implications between these classes of mappings are
known, and none of them can be reversed in general, see e.g. [11, Table
II, p. 28, p. 28], [9] and [3, Prop. 2.1, p. 16, and Remarks 2.3, p. 17].

@) SC
4 fr
MO = Loc(MO) = OM = (€ = Loc(C)
(2.1) T N
M = M = OM = WM
4
FM

Further, if the range space Y = f(X) is locally connected, then all
locally confluent mappings and all weakly monotone mappings f are
OM-mappings and quasi-monotone ones (see [11, (6.2), p. 51]), whence
the statement below follows.

Statement 2.1. If f : X — Y is a surjective mapping onto a lo-
cally connected space, then the conditions f € A are equivalent for the
following classes A:
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(2.1.1) OM, C, Loc(C), QM, WM.

3. Extensions to other classes of mappings and of
continua

A natural question related to Th. 1.1 is what classes of mappings
(in particular, the ones larger than the class of monotone mappings)
the result can be extended to. Further, one can ask if it is necessary to
assume that both continua, X and Y, are dendrites. The results below
give answers to these questions.

Theorem 3.1. Let a continuum Y be such that

(1.1.1) all ramification points of Y are of order 3;

(1.1.2) the set R(Y) of all ramification points of Y is discrete.

If a dendrite X can be mapped onto Y under a mapping that belongs to
one of the following classes of mappings:

(3.1.1) open, monotone, MO-mappings, or OM-mappings,

then

(1.1.3) X contains a homeomorphic copy of Y.

Proof. Recall that open as well as monotone mappings preserve the
property of being a dendrite (see [11, Table IV, p. 69 and 70]), whence
it follows that MO- and OM-mappings do. Thus if X is a dendrite and
J: X —Yisasin (3.1.1), then Y is a dendrite as well.

Consequently, the conclusion (1.1.3) for monotone mappings fol-
lows from Th. 1.1. Further, since each nonconstant open mapping de-
fined on a dendrite is light, see [7, Cor. 6, p. 216], it follows that “open”
and “light open” are equivalent, so the conclusion for open mappings
follows from Th. 1.2. Finally, for MO-mappings and OM-mappings it
is a consequence of the previous assertions using compositions of map-
pings. ¢
Corollary 3.2. Let a continuum Y be such that
(1.1.1) all ramafication points of Y are of order 3;

(1.1.2) the set R(Y) of all ramification points of Y is discrete.

If a dendrite X can be mapped onto Y under a mapping that belongs
to one of the classes of mappings listed in (2.1) (ezcept the class SC),
then

(1.1.3) X contains a homeomorphic copy of Y.

Proof. By Cor. 3.2 the conclusion (1.1.3) holds for mappings in (3.1.1).
Since any locally MO-mapping is an OM-mapping, we have the conclu-
sion for locally MO-mapping.
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Again it follows that Y is a dendrite, since any one of the map-
pings of (2.1) preserves the class of dendrites, see [11, Table IV, p. 69
and 70] and [3, Prop. 2.5, p. 18]. Applying Statement 2.1 we get the
conclusion for mappings listed in (2.1.1). Further, since each almost
monotone mapping is quasi-monotone just by the definitions, the con-
clusion for almost monotone mappings follows from the previous asser-
tion for quasi-monotone mappings. Finally, since each feebly monotone
mapping from a continuum onto a locally connected one is confluent
(thus weakly monotone), see [3, Prop. 2.5, p. 18], the conclusion holds
for feebly monotone mapping as well. ¢

Recall that the class of semi-confluent mappings is essentially
larger than that of confluent mappings, even for mappings between lo-
cally connected continua, [11, Ex. 3.12, p. 14], and thus semi-confluent
mappings cannot be attached to ones in (2.1.1) of Statement 2.1. How-
ever, the image of a dendrite under a semi-confluent mapping is again
a dendrite, [10, Cor. 5.4, p. 262]. In connection with this the following
question is interesting.

Question 3.3. Let a continuum Y satisfy conditions (1.1.1) and (1.1.2),
and let a dendrite X can be mapped onto Y under a semi-confluent
mapping. Must then X contain a a homeomorphic copy of Y7
Remark 3.4. Let us note that that Th. 1.2 and, consequently, Th. 3.1
and Cor. 3.2 cannot be extended to (locally connected) continua X (or
linear graphs even) that contain simple closed curves. This can be seen
by the (known) example below.

Example 3.5. There are a planar linear cyclic graph X all ramification
points of which are of order 3, and a local homeomorphism (thus an open
mapping) f : X — Y which is 2-to-1, onto a non-planar linear cyclic
graph'Y such that both conditions (1.1.1) and (1.1.2) are satisfied, while
(1.1.3) is not.

Proof. The example is constructed in [13, Ch. X, §3, Ex., p. 189].
Conditions (1.1.1) and (1.1.2) follow from the construction. Since X
is planar and Y is not (in fact, Y is homeomorphic to one of the Ku-
ratowski non-planar graphs, see [8, §51, VII, Fig. 11 (left), p. 305]),
(1.1.3) does not hold. ¢

Remark 3.6. Note that the possibility of the construction as in Ex. 3.5
follows from the following result, which is the inverse implication to that
of Th. 1.2 (see [5, Th. 9, p. 1842]).

(3.6.1) Let a continuum D be such that for every compact space X,

for every light open mapping f : X — Y = f(X) with D C Y
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there exists a homeomorphic copy D' of D in X such that the
restriction f|D': D' — f(D’) = D is a homeomorphism. Then
D is a dendrite.

In this way, combining Th. 1.2 with (3.6.1) one gets a character-
ization of dendrites in terms of light open mappings, see [5, Cor. 10,
p. 1842].

It is interesting to know if a similar characterization of dendrites
can be obtained in terms of monotone mappings. More precisely, one
can ask the following question.

Question 3.7. Let a continuum Y satisty conditions (1.1.1) and (1.1.2),

and let a continuum X be such that

(3.7.1) if X can be mapped onto Y under a monotone mapping, then
X contains a homeomorphic copy of Y.

Must then X be a dendrite? If not, under what additional assumptions

does the implication hold?

4. Inverse implications

Another important and interesting question related to Th. 1.1 is
if the implication in the result can be reversed. Below we give a partial
affirmative answer.

Theorem 4.1. Let ¢ dendrite Y have the following property:

(4.1.1) for each dendrite X if X can be mapped onto Y under a mono-
tone mapping, then X contains a homeomorphic copy of Y.

Then either Y is an arc or

(1.1.1) all ramification points of Y are of order 3.

Proof. Suppose on the contrary that neither Y is an arc nor (1.1.1) is

true, i.e., that Y contains a ramification point of order greater than 3.

We will construct (using the inverse limit procedure) a dendrite X and

a monotone mapping f : X — Y such that all ramification points of X

are of order 3, and thus no homeomorphic copy of Y is contained in X.

Recall the following known facts.

(4.1.2) Bach ramification point of a dendrite is of order at most w, see
8, §51, VI, Th. 4, p. 301 and IV, Th. 9, p. 287].
(4.1.3) The set of all ramification points of a dendrite is at most count-
- able,see [8, §51, VI, Th. 7, p. 302].
(4.1.4) A continuum Y is a dendrite if and only if ord (y, Y) is equal to
the number of components of Y \ {y} whenever either of these
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is finite, see [8,§51, VI, Th. 6, p. 302] and [13, Ch. V, (1.1), (iv),
p. 88]. -
Thus there exists a sequence

(415) Y1 Y2, -« -y Yl Yk+15 - - -

of points of Y such that, for each k¥ € N, the following conditions are

satisfied.

(4.1.6) If ord (y,Y) > 4, then the point y appears in the sequence
(4.1.5), i.e., y = yi for some k € N.

(4.1.7) Bach point yy is a ramification point of Y of order at least 4.

(4.1.8) Each point y; appears in the sequence (4.1.5) exactly once, so
that the members of the sequence (4.1.5) are mutually distinct.

Now we define the above mentioned inverse sequence { X, fj’c } of
dendrites X and monotone bonding mappings fj’? : X; — Xj, where
4,k € N with § < k and with ff : X, — Xj being the identity, as
follows.

Put X; = Y. Let C} be the one-point compactification of a
component of the set X; \ {1}, where m € {1,2,...,ord (y1,X1)} if
ord (y1, X1) > 4 is finite, and m € N otherwise. Denote by cl. the
point being the remainder in the compactification. It follows that, in
the latter case, lim,, .o, diam (C}) = 0 since X is locally connected.
Define a dendrite X as follows. Let A; be an arc with end points ay, b1
such that diam A; < 1. Consider three cases.

CASE 1.1. If ord (y1, X1) = 4, then we identify ci and c; with the
point ag, identify ¢} and ¢} with the point b1, and define

X, =AUClUCsUCIUC,.

Note that X, is a dendrite, and that ord (c}, X2) = 3 for i €
€ {1,2,3,4}.

CASE 1.2. If ord (y;,X1) = m for certain integer m > 4, then
we choose in the set Aj \ {a1,b1} some m — 4 pairwise distinct points
pL,...,p and identify ¢} and c} with ay, identify c§ and cj with b;
(as in Case 1.1), and identify ¢} with p} for each ¢ € {5,...,m}. Then
define

Xo=A 0| J{C! :ie{1,2,...,m}}.
Again X, is a dendrite, and ord (¢}, X2) = 3 for i € {1,2,...,m}.
CASE 1.3. If ord (y1,X1) = w, then we choose in the set A; \

\ {a1,b1} a sequence of distinct points pi,p, ... such that ay < pg <
< p§ < -+- < by (where < means the ordering on A; from a; to by)
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converging to b;. Identify, as previously, ¢} and ¢} with a;, ci and c}
with b1, and identify ¢} with p} for each i € {5,6,...}. Then define

Xy =AUl J{C}ieN}.

Thus, as previously, X3 is a dendrite, and ord (c}, X5) =3 for i € N.
In this way the dendrite X5 is defined. Let a mapping ff: Xy —
— X shrink the arc A; back to the point y; and be one-to-one on
X2\ A1, Thus (ff)"'(y) = A1 if y = y1 and (f2)"1(y) is a singleton
otherwise. Therefore f? is monotone. Finally, since y; = 13, the inverse
image f{(y2) is a singleton in X, \ A;. Denote by 2 the copy of y;
in X5, that is, y3 € X5\ A; is defined by the condition f2(y2) = y,.
Assume now that the dendrites Xy, Xjy1, the arc 4 C Xit1
and a monotone bonding mapping f,iH'l : X1 — X that shrinks
the arc Ay to a point y’kc € Xj are defined for some k& € N, and let
the point y,’::[i € Xjp+1 be determined by f{”“(y,i“]:) =y € X1 =
= Y. We will define Xj;2. Note that, since the elements of the
sequence (4.1.5) are distinct, we have y]’:jj € Xit1 \ Ag. Let CkH1
be the one-point compactification of a component of the set X1\
\ {y,’:ii}, where m € {1,2,...,ord (y’,:fj;%,XkH)} if ord (y’,ji%,XkH) >
> 4 is finite, and m € N otherwise. Denote by cﬁjl the point being
the remainder in the compactification. It follows that, in the latter
case, limy, o diam (CEF) = 0 since Xy, is locally connected. De-
fine a dendrite X1, as follows. Let Ag,; be an arc with end points
Qk+1,bk+1 such that diam A, < k—}ﬁ Consider three cases.

CASE k+1.1. If ord (y’,:ﬁ, Xk41) = 4, then we identify c’f“ and

C§+l with the point ay.r1, identify c’§+1 and c’i‘” with the point bgq,
and define
Xpyo = A UCTTH U CETL U CBHL U O+,
Thus Xpyo is a dendrite, and ord (chrl,XkH) = 3 for i €
€{1,2,3,4}.

CASE k+1.2. If ord (y',:j:%, Xit+1) = m for certain integer m > 4,
then we choose in the set A; \ {a1,b1} some m — 4 pairwise distinct
points pIgH, ..., pE*1 and identify c’f+1 and c§+1 with a1, identify
A and ¢+ with by, (as in Case k + 1.1), and identify ¢ with

P+ for each i € {5,...,m}. Then define
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Xptz = A UJ{CF ri e {1,2,...,m}}.
Again X0 is a dendrite, and ord (C?+1,Xk+2) = 3 for 1 €
€{1,2,...,m}.
CASE k£ +1.3. If ord (y,’:ﬁ, Xki1) = w, then we choose in the set

Aky1 \ {ag+1,br+1} a sequence of distinct points p’”“,p}g“, ... such
that apy; < pPils < plle - < bgy1 (where < means the ordering

on Ayyq from agi to byy1) converging to byy1. Identify, as previously,
’1”+1 and c’”L1 with ax+1, c:,,,+1 and c’”Jrl with bg41, and identify c’”Jr1

with p®+11; for each i € {5,6,...}. Then define
Xpr2 = A U {CFT i e N},

Thus, as previously, Xxio is a dendrite, and ord (cf“, Xpt2) =3
for i € N.

Let a mapping f,’fjff : Xgyo — Xpoy1 shrink the arc Ag1 back to

the point yx.1 and be one-to-one on Xjy2\ Agy1. Thus (f,’fi'lz) Yy) =

= Apr1 if y = yp41 and ( FEF2)=1(y) is a singleton otherwise. Therefore

k+1
f,fif is monotone. Consequently, the mapping f’c T2 Xpgo — Xy is

monotone as the composition of monotone mappings, and it follows
from the construction that ( ]‘+2) Yypte) is a singleton in Xpio \
\ Ag.t1. Denote this point by yk

Since all the cases are con81deled the inductive procedure is fin-
ished, and thus the inverse sequence {X}, f;"} of dendrites with mono-
tone bonding mappings has been defined. Let X = lim { X, fj"} be the
inverse limit space. Then X is a dendrite, see [12, Th. 10.36, p. 180].
Since all ramification points of order greater than 3 were consecutively
eliminated in the process of constructing the dendrites X}, the dendrite
X contains ramification points of order 3 only. This statement can be
more precisely shown using the standard argument of the Anderson—
Choquet Embedding Theorem, because the construction can be pro-
vided so that all dendrites X}, are lying in the plane R? and that X is
homeomorphic to ({clge (U{Xx : k& > j}) : j € N} (see [12, Th. 2.10,

p. 23]; the details are left to the reader).
To complete the proof note that the projection f: X — X; =Y

is a monotone mapping, see [1, Lemma 4.2, p. 241]. {

We close the paper with the following question.
Question 4.2. Let a dendrite Y have property (4.1.1). Must then Y’
either be an arc or have the set R(Y') of its ramification points discrete?
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