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Abstract: Let da(n) = d(d(n)), where d(n) is the number of divisors of n.
The asymptotic of # {n < = | da(n) = k} is investigated.

1. Introduction

Notation. Let d(n) be the number of divisors of n, dz(n) = d(d(n)),
and in general, d,,1(n) = d,(d(n)), that is d.(n) is the r'th iterate
of d(n). Let P be the set of primes. Let w(n), Q(n) be the number
of prime divisors and the number of prime power divisors of n. The
Liouville function A(n) is defined by A(n) = (=1)*(™). For the sake of
simplicity we shall write z, = logz, z3 = logzi, 41 = logz, (r =
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=2,3,...). N = set of nonnegative integers. The letters €, €1, €2, 4, 61
denote small positive constants.

Let
1 :Ek—l
1.1 (7)) = — 20—
It is clear that
o0
(1.2) > pw(z) =1,
k=1
R. Bellman formulated the conjecture, namely that
(1.3) Z d-(n) = (1+o(1))zz, (z— 00)
n<x
holds for every © = 1,2,... . This is proved for r < 4. See [1], [3], [4],
[6], [7], [11].

In [5] the limit distribution of da(n) has been investigated. Our
purpose in this short paper is to give the local distribution of da(n), i.e.
the asymptotic of

(1.4) #{n <z | da(n) = k}.

K. Ramachandra [10] proved asymptotic for sums >,  f(n),
z<n<z+h

where f is a multiplicative function, the generating Dirichlet series

> % of which can be expressed by the product of complex pow-

ers of L-functions, and h = z7/12*¢, ¢ > 0. He applied the so called

Hooley-Huxley contour in the proof. By using this technique, in [8] it

was proved that

S 1= +o)he(a)
w(n)=k
z<n<z+h

uniformly as 1 < k < T3 + ¢3+/T2, ¢z — oo sufficiently slowly, and
$7/12+s <h<uz.

In [9] the following theorem is proved.
Theorem A. Let z € C, |z| < c1, ¢1 be a constant,

(1.5) Ulsla, )= > 2 u(m)],

z<m<z-+h
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(1.6) [zt = |umw)
z<n<z+h
w(m)=l
el ()

Assume that £7/12+ < h <2066 Then
U(z|z, h)

(1.8) :

=Y(z) 27+ 0 (z772),

consequently,

(1.9) %Hl ([, 2 + h)) = ;?2- (1 +0 (-5-)) (),

2

P4

uniformly as 1 < [ < cza, c is an arbitrary positive constant.

2. The main auxiliary theorem

Every n € N can be written uniquely as n = K'm, where (K, m) =
= 1, K is square full, and m is square free. Let us write d(K) as
2%ky, k1 odd. Then d(n) = d(Km) = ky - 227“(™)  and so

(2.1) da(n) = d(k1)(a+ 1 + w(m)).
For some fixed square full K, let
(22) ¢k ={n|n=Km, (m,K)=1, |u(m)| =1},

For the integer S = ¢i" ... ¢%", q1,...,q- €P, u1,...,ur > 1, let
Bs be the set of those integers m all the prime factors of which belong
to the set {q1,...,q-}, i.e.

(2.3) Bs={m|m=q¢"...q)7, v1,...,v € Ng}.
We define
,_ () |z z

(2.4)  Hg(s,2) = Z_ S H_ 1+5)

(m,K)=1 (p,K)=1

—1 Q(v)
A

(2.5) Tx(s,2) == ]| (1 + i) =Y ———(U)i .

plK p vEBK v

From now on we assume that |2| <2 —4, ¢ > 0 a constant. It is clear
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that
(2.6) Hy(s,2) =Tx(s,2) - Hi(s, 2).
Let H > 1, and
(2.7) Vic(zlz, H) == > |u(m)] - 220,
z<m<z+H
(m,K)=1

Then, by (2.6) we obtain immediately that

(2.8) Vi (zlz, H) = Y Mv)"™U <z

vEBK

U is defined by (1.5).
Let

(2.9) [[(ez+HK)=" > |u(m).

w(m)=l
(m,K)=1
z<m<z+H
By using (2.8)

(210) [ (mz+H 1K) = Y M) Hl_gm([%’xtHD

vEBK

(1=1,2,...).
Assume that § > 0, ¢ > 0 be fixed, H = z7272. Let K <
<al, 2 <UI<(V2-d).

We define Y by logY = x§/4, say.
Let v < Y. Then,

Pl—9(v) (%) = p1—n)(T) <1 +0 (lc;glv>>
iy g 132
2
)

= pi(z) - (%)Q(v) exp (— QZE”) - <1+o (ngv + Q(l”)».
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Let us apply (2.10) and (1.9). For v > Y we shall use the obvious
inequality

(2.12) Hz—mv) q% z f)HD <H

v

We obtain that

U (v) 2 N
R R
UE<BYK

+ O(R1) + O(R3) + O(R3).

Here R; is the contribution of the error terms in (2.11), Ry is that

I Q(v)
of (1.9) and Rz is H 3, 1/v- (—) :

v>Y T2
, vEBK
We have
I\ r3(v) Qo) 02(v)
R, < Hpi(z) ;/(—ag) < B + ;i >exp<—— 5 >
J%BK

vy y? 1
Since glzaic (l—z + 7> exp <——> < 7 and Q(v) < logv, we

obtaln that

Ry <<M Z (xiz>ﬂ(v)'ﬂ(v)+

I9 v
v<levVT2
(2.14) vebx
(o) LML g g
Cngl z s P 2 -
evVi2 <u<yY
VEBK

Let L = a, shortly.
T2

To estimate Rgl) , observe that
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aQ(U) Qv Q(Ul)
IRV ) S D

veEBK plK a= 1 v EBK

vceT
<11 (1+%+<g>2+...>21/p.

plK

Thus, in the notation
(2.15) K(K) =Y 1/p
plK

we have

H
(2.16) Rgl) < __P_l__(fC_)E(K)eM(K).
Z32

Furthermore

S gt 1<<e va 3 4

evi2u<Y vEBK
vEBK

2
<e NEH( +—+(i—> +.. ><<e" Vel o —jvm
pIK VP

Here we used that

Q(v)

o

) log K
o 0 gL VK
/P V2 loglog K

Thus

RO < Hp(a)e /Y2,
and so we have 3
(2.17) R < H—Zl—z(f-c—)n(K)eWK).
From (1.9),

H 2 _ H
RQ < ;pl(Z)H <1+ EL‘ -+ (%) +> , l.e. Rz < m—p;(m)ea“(K).
2 2

plK P

Since
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(2.18) Zl/pgloglogK-lOJrcl,
plK

we obtain that

H
(2.19) Ry < m—opl(w)(log log 1OK)‘/§.
Since
aﬂ(v) ) aQ(U)
— /2
> ey
UEZBY vEBK
veB K

<<Y—1/2131;[{<1+7%+<7‘%>2+...> <

Vdiog K
<<Y‘1/zexp V82 <<Y"1/3,
loglog K

and similarly
1
Y <y
v

v>Y
veBg

we obtain thus
(2.20) Rs < HY 71/3,

Consequently the following theorem holds.
Theorem 1. Lete,§ > 0 be fited, 1 < K < z, H = g12+2, % <<

< (V2= 8)za, logY = mg/Ll.
Let a = L Then

I3
[ (. + B | K) = %{m(m) > @amu) exp <_Q22(lv)>+
(2.21) vebis

+0 <§pl(m)(loglogK)\/§> +0 (HY‘1/3> .
2

Furthermore,
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QQ
T MY) 90) e (__23@> 11 l_lj <
(2.22) veBy +
<Y

< %— (1 -+ RQ(K)e““(K)) ,

where k(K is defined by (2.15).
It remains to prove only (2.22). The left-hand side is less than

1 1 Q 1
<L = —afMQ% (v) + E —af),
2ZUEBK‘U UEBK'U
<Y v>Y

The second sum is < H-Y~1/3 < —I{—, as we proved earlier.

Let
aQ(v)
Ex(a) := Z Q% (v).
VEBK
Since
Q?%(v) = Za2+ Zoz-ﬂ,
p|lv P#q
v
qlv
therefore
=, o2 a 2
Ex(a) <> » —a® 11 1+—+<—> + +
plK \a=1 P pIK
oo oo @ 3 2
HYyyyy el Ba” H<1+9+<9> +)
sk gra=1p=1 P T Jpk Poo\P

and so
Ex(a) < e**F) 2 (K).
Thus (2.22) is true.

3. Formulation and the proof of the main theorem

Let s € N. We would like to estimate
(3.1) Q(s | [z,z + Ho]) = #{n € [z,z + Hy| | da(n) = s},

where Hy = z7/12+51 ¢ > 0.
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For some s € Nlet 7, = {1 =g < I3 < ... <ly(5} be the set of
divisors of s. For every [; let B;; be the set of those square-full integers
K for which d(ki) = l;, and K < z% holds. We shall use the notation
(2.1).

It is clear that
Qs | [z,z + Ho]) =

L R (75 ) o ()

lET.KEB

where the error term comes from the contribution of square full numbers
K > zf.
It is known that
(3.3) Z ro) oy gt
c<n<z+y
if y > g7/12+e2e > .

The inequality (3.3) can be proved by sieve methods (see [2]).
(3.3) follows from our Th. A, as well.
From (3.3) we obtain that

#{necz,z+H] |wh)>azr} K

<

1 H
E M « Z exp((r — alogr)zs).
ot 1
n<n<z+H

By choosing r = 5, o = 5, we obtain that
H
(3.4) #{n€z,z+ H] | wln) > bza} K -
1
Thus (3.2) remains valid if we drop all those [; for which
2 a—1> 5,
lj

Let t = zs- —a~1, K € Bj;. From Th. A we obtain that

28] | ) < 1, (3232 < o

I1, (|2 =]

which is valid for ¢ < cxs.
Since
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1 v/
pt(:c) <K "E exp <——§‘%> if ]t — le > 333/4,

we obtain that
Q(s | [z,xz + Hp)) =

-2 W (o] [ )+

(3.5) I;€T, K€By,

L1772
+ O (Hexp (———%—)) ,

where * means that we sum over those K only for which

i—04—1—:52
i

3/4

(3-6) <z,

holds.

If no such K exists, then on the right-hand side of (3.5) we have
an empty sum.

From Th. 1 we can deduce the following
Lemma 1. Assume that the conditions of Th. 1 are satisfied, and let

I =z9+ A, where |A] € x3/4. Then

@) Lo+ 11 ) - S Halon(x)| <

< Hpi(z) {I—%‘-(HK(K)H% <1+m2(K) exp <(1+%> m(K)>> }+

H

+H701®) 0108 K)VE + 0 (H : Y“1/3> .
I2

If K < x5, then the right-hand side of (3.7) is less than

(3.8) Hpi(z) {%(1+$4)+% (1+:cia:3+acg/§> }-}—O <H : Y‘1/3> :

Proof. (3.7) is a straightforward consequence of Th. 1. We observe

that
s =000 IL=T s —

2 (P+1)

and so
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log [], = = (s(K) + 0(1)) + 0 ((-A—)>
I[,-1= ;A;(H(K) +0(1) +0 <<%>2> |

Thus the left-hand side of (3.7) is less than
A
a2 () + o)) +

+ le’(x) (1 + 52(K) exp <<1 + '%') /-;(K)>> +

H
+0 <H . Y‘1/3> +0 <:—B~;pl(:c)(loglogK)‘/§> .

(3.8) directly follows from (3.7).
Thus Lemma 1 is true.
Lemma 2. Let f be additive, for prime power p° is defined by

0 ifa>2,
f*) =40 ifp*=2,
1 ifa=1, p>2

Then

max -#{n€x$—l—y Hf —x2]2$3/4}<

xT/12+4¢ <y<m y
< crexp (—c2v/Z2),
where € is an arbitrary positive constant, c; and co are suitable con-

stants.
Proof. By using the method of Erdés [2] we obtain that

#{nE[az,x+y] | f(n) >a:2+:c3/4}§

4
< pwemap’ E M) ymma—alt zi

ne[z,z+y]
¢t s :
Choosing z = 1 + 7 with a small positive constant c¢*, we obtain

Ly
that
#{ne [,z +y] | f(n) => 25 +23/* }<<ye><p (—%@)

Similarly, by sieve one can prove that
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(ZCQ + c2)k—-1

#{nelz,z+y] | f(“):k}éclym;

whence, by summing the right-hand side for &k < z3 — :Ug/ 4, Lemma 2
immediately follows.
Let §; be a fixed positive number, s < x%Hl, 51 < 1/4.
Let n = Km, d(K) = 2% ki,
d(k1)(a+1+m)=s.

Assume that |m — za| < 23/t o< 333/4. Then

S S S
d(ky) = :—+o<———>.
zz + O ($§/4> 2 fb’g/4

Since ;571 = 0,(1) (z — o0), therefore for some s < it if
2
|m — z3] < m2/4, a < :cg/4, then
d(k) =T,

where

1
|s — T'zo| < §$2'

The contribution of those n for which a > [:cg/ 4} = (3 is less than

1
Hy Z e < Hyexp (—caz%“) .
d(K)>2°

The contribution of those n for which |m — za| > mg/ :

Hyexp (—% mg).
If wg/4 < |s — T'za| < 32, then

is less than

1
(3.9) Q(s | [z, + Ho)) € Hoexp (——2—\/555> .
We estimate now

(3.10) Shi= > Qs lzz+ Hol).

146
52m2+ 1

If n is counted in (3.10), then either w(m) > 2zq, or o > T3, OF
d(k1) > :cgl. We have
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_ H

E & 2722 E 9w(m) < Hyexp ((1-2log2)zy) < —f

w(m)>2zy r<m<z+Hp 1
melz,z+Hg]

with a suitable constant ¢ > 0. If & > zy, then 2%|d(K), K > ml/E,

and so
Hy
E 1K g say.
z<n<z+Hy !
K>zl/®

If d(ki) > z3!, then K > mé/":, and so 5 il(o < %—1/25

3

K>zy/®
consequently
Hy

(3.11) Yo« 5
where B is an arbitrary large constant. Let
(3.12) |s — Tas| < x§/4, T integer, s < it

By using Lemma 1, we obtain that
(3.13) Q(s | [z,z + Hp)) =
B ¥ pp_ g1 U(K) Rl 1(93 n(K)
=Sy ro(Smy .

KeBr KeBp

+0 (Hoy—1/3) +0 <Ho exp <—-;-\/‘) +0 (fo» ,
2
where ** means that we sum only over those K for which a < a;g/ :,
The last three order term can be simplified by O (Hp - z5 B ).
We proved
Theorem 2. The following relations hold.
a) Let 61 > 0 be a small positive constant. Then

Z Q(s| [z,z+ Hyl) €
5>T 1+61 2
where B is an arbitrary positive constant.

b) Assume that s < m1+‘51 0< 61 <1/4, and T is an integer for

which :I:2/ < |s = Tzs| < 1z5. Then (3.9) holds.
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c) Assume that s < a:%'“sl, 0 < 6 < 1/4, T is the integer for

which |s — Txa| < m§/4. Then

Qs | [ma+Ho)) = (140 | S | | Ho > pr—a-1(z)n(K)

1/4
P KBy K
+ @] (HoiBz_B) .
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