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Abstract: A space X has the periodic-recurrent (PR-)property if for each
self-mapping the closures of the sets of periodic points and of recurrent points
are equal. It is known that the Gehman dendrite does not have the PR-
property. First, various consequences of this result are proved. Second, the
PR-property is studied for some continua obtained as compactifications of
trees with a finite number of points deleted. As a particular case we investi-
gate the property of compactifications of the ray and of the line.

1. Introduction and preliminaries

Let X be a compact Hausdorff space, and let f : X — X be a
mapping (i.e., a continuous function) of X to itself. We denote by N
the set of all positive integers and by C the set of complex numbers.
For any n € N let f* : X — X denote the n-th composition of f.
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A point z of X is said to be:
— a fixed point of f if f(z) = x;
— a periodic point of f provided that there is n € N such that f*(z) =
= z; if, moreover, f¥(z) # z for all integers k with 1 < k < n, then z
is called a periodic point of period n;
— a recurrent point of f, provided that for each open set U containing
z there is n € N such that f*(z) € U.

The sets of fixed points, periodic points and recurrent points of
a mapping f : X — X will be denoted by F(f), P(f) and R(f), re-
spectively. Notice that the following are consequences of the definitions
(compare e.g. [3, p. 77]).

(x)  F(f) cP(f) CR(f), P(f)=f(P(), R(f)=7FER).

Definition 1.1. A space X is said to have the periodic-recurrent prop-
erty (surjective periodic-recurrent property), abbreviated PR-property
(SPR-property, respectively), provided that each mapping (each surjec-
tive mapping) f : X — X satisfies

clx (P(f)) = clx (R(f))-

Note that the first inclusion in (*) and Def. 1.1 imply the following
statement.

Statement 1.2. A space X has the (S)PR-property if and only if
for every (surjective) mapping f : X — X the inclusion clx(R(f)) C
C clx(P(f)) holds.

The PR-property implies the SPR-property just by the definitions,
while the opposite implication need not be true in general. However,
we do not have any example showing this.

Question 1.3. Does there exist a space which has the SPR-property
while it does not have the PR-property?

The aim of the paper is to present a further study of the PR-
property for various spaces. After the first, preliminary section, auxil-
iary general properties are collected in the second one. The third section
concerns the PR-property for some special continua. It contains also
several open problems related to the subject. In the fourth section we
give various consequences and applications of the fact that the Gehman
dendrite does not have the PR-property. In particular, at the end of
this section, we apply the quoted result on the Gehman dendrite to
show that many hyperspaces for continua do not have the property.
Finally, in the last section, -we investigate the PR-property for some
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A-dendroids, namely for those which are obtained as compactifications
of trees with a finite set deleted. Studying the PR-property for those
A-dendroids we have observed that in the proof of [6, Th. 5.7, p. 116]
(as given there) not all mappings are considered, but only surjective
ones, so to show the result an additional argument is needed. In Sec. 5
a complete proof of the result is presented.

We would like to underline that the results presented in the paper
do not form any closed and/or complete theory. Our knowledge on the
subject is close rather to the beginning of the way than to the end, and
for today we have much more open problems than final results.

A mapping 7 : X — Y between continua X and Y is called a
retraction if Y C X and the partial mapping r|Y : ¥ — Y is the
identity. In this case Y is called a retract of X.

The following lemma on compositions of mappings is known (see
[4, Lemma 3.1, p. 136] and compare [10, Lemma 2.9]).

Lemma 1.4. Let X and Y be spaces with Y being a closed subset of
X,andletg:Y — Y be a mapping. If r : X — Y is a retraction and
f=gor: X —Y, then:

(1.4.1) f* =g"or for eachn € N;

(1.4.2) P(f) = P(g);

(1.4.3) R(f) = R(g)-

As a consequence of the above lemma we get a corollary, see [4,
Prop. 3.2, p. 136].

Corollary 1.5. The PR-property is preserved under retractions, i.e., if
a space X having the PR-property contains a closed subspace Y which
s a retract of X, then Y has the PR-property, too.

Question 1.6. Is the SPR-property preserved under retractions?

In connection with Cor. 1.5 the following question is of some in-
terest.

Question 1.7. What mappings do preserve the PR-property?

For partial answers see below, Prop. 4.11.

A continuum means a compact connected metric space. Given a
continuum X and a sequence {A,}52; of subsets of X, we let LimA,
denote the limit of the sequence as defined in [22, §29, VI, p. 339] or in
[31, Def. 4.8, p. 56]. By a ray and a line we mean a space homeomorphic
to the real half-line [0, c0) and to the real line (—oo0, c0), respectively.
Given two points p and g in the Euclidean space, we denote by pg the
straight line segment joining them.
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Given € > 0 a mapping f : X — Y is called an e-mapping pro-
vided that each fiber f~(y) of Y has diameter less than e. Recall that
a continuum X is said to be
— a graph if it can be written as the union of finitely many arcs any
two of which are either disjoint or intersect only at one or both of its
end points;

— a tree if it is a graph containing no simple closed curves;

— a solenoid if it is the inverse limit of an inverse sequence of simple
closed curves with surjective open bonding mappings;

— a tree-like if it is the inverse limit of an inverse sequence of trees with
surjective bonding mappings (equivalently, if for each £ > 0 there is an
e-mapping from X onto a tree);

— an arc-like if it is the inverse limit of an inverse sequence of arcs with
surjective bonding mappings (equivalently, if for each € > 0 there is an
e-mapping from X onto an arc);

— a circle-like if it is the inverse limit of an inverse sequence of circles
with surjective bonding mappings (equivalently, if for each € > 0 there
is an e-mapping from X onto a circle);

— a dendrite if it is locally connected and contains no simple closed
curve;

— hereditarily unicoherent provided that the intersection of any two sub-
continua of X is connected;

— hereditarily decomposable provided that every subcontinuum of X is
the union of two of its proper subcontinua,;

— hereditarily indecomposable provided that no subcontinuum of X can
be written as the union of two of its proper subcontinua;

— a dendroid if it is hereditarily unicoherent and arcwise connected;
— a A-dendroid if it is hereditarily unicoherent and hereditarily decom-
posable.

Let 7 denote the class of trees, Dy — the class of dendrites, D
— the class of dendroids, AD — of A-dendroids, 7L — of tree-like
continua, and HU — the class of hereditarily unicoherent ones. Then
we have the following inclusions.

TCDyCDCANDCTL CHU.

We will use a concept of an order of a point p in a continuum X in
the sense of Menger—Urysohn, written ord(p, X), as defined in [31, 9.3,
p. 141] or in [23, §51, I, p. 274]. For a dendrite X points of order 1 are
called end points of X, and points of order at least 3 are called branch
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points of X. We denote the sets of end points of X and of branch points
of X by F(X) and B(X), respectively.

A compact space K is said to be an absolute retract (written AR)
provided that whenever K is embedded in a normal space X, the em-
bedded copy of K is a retract of X. In particular, the following result
is known, see e.g. [23, §53, III, Th. 16, p. 344].

Proposition 1.8. Every dendrite is an AR.

Several results of this paper are connected with properties of the
Gehman dendrite. For the reader convenience we recall its construction
here. '

Example 1.9. The Gehman dendrite.

Construction. Let C denote the Cantor middle-third set lying in the
closed unit interval I = [0,1] x {0} in the plane. Put v = (3,3)
and join the end points a = (0,0) and b = (1,0) of I with v by the
straight line segments av and bu. Note that the slope of the former
segment is 1 and the slope of the latter one is —1. Next take the end
points (%, 0) and (2,0) of the biggest component of I\ C and construct
two perpendiculars, one from (1,0) to av and the other from (%,0) to
bu. Again slopes of these perpendiculars are 1. Proceeding in this
way, we construct countably many segments of slope %1, each of which
starts from an end point of a component of I \ C and is perpendicular
to some suitably chosen straight line segment previously constructed.
The Gehman dendrite G is the closure of the union of the constructed
segments (see [31, Ex. 10.39, p. 186 and Fig. 10.39, p. 187]; compare
[32, p. 422-424] for a detailed description).

Acknowledgement. The authors thank Professors Alejandro Illanes
and Sergio Macias for their valuable remarks and comments on the
subject of this paper.

2. Generalities

We start this section with the following result.
Proposition 2.1. For a mapping f: X — X and k € N it follows that
P(f) = P(f*) and R(f) = R(f*).
Proof. The inclusion R(f) C R(f*) is shown in [14, Th. I]. The other
inclusion and the equality P(f) = P(f*) follows from the definitions of
R(f) and P(f), respectively. ¢
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The following proposition is an immediate consequence of defini-
tions.

Proposition 2.2 Let A be a subspace of a space X, and let a mapping
f:X — X be such that f(A) C A. Then

(2.2.1) P(f|A) = AN P(f);

(2.2.2) R(f|A) = ANR(f).

The next result is formulated in [6, Prop. 4.1, p. 113], however
it is presented in that paper almost without proof (only the definition
of the continuum in matter is given, without verifying its properties).
Since the result has some important consequences, in particular in the
present paper, we decided to attach a full proof here. We also present
the statement of the proposition in the way we are going to use it.
Proposition 2.3. Let f : X — X be a mapping of a continuum X to
itself. Then {f™(X)}S2, is a decreasing sequence of subcontinua of X
and M (X, f) = ({f™(X) : n € N} is a subcontinuum of X such that
(2.3.1) M(X, f) = Limf™(X);

(2.3.2) fIM(X, f): M(X, f) — M(X, f) is a surjection,

(2.3.3) P(f) C R(f) C M(X, f);

(2.3.4) P(f) = P(fIM(X, f)) and R(f) = R(f|M(X, f));

(2.3.5) M (X, f) is a mazimal subcontinuum of X satisfying (2.3.2).
Proof. It is easy to see that {f™(X)}52, is a decreasing sequence of
subcontinua of X, so the intersection of all its terms, which is M (X, f),
is a continuum, see [31, Th. 1.8, p. 6]. Further, since any decreasing
sequence of continua has its intersection as the limit, see [22, §29, VI,
8, p. 339], we get (2.3.1). Clearly

(2:3.6) F(M(X, ) C M(X, f).

To show (2.3.2) take a point y € M(X, f). Then y € f*(X) for
all n € N. Hence, for a given n € N, there is a point v, € X such that
y = ["(yn). Put z, = f* (y,) and note that z; = f(y;) = y1. By
compactness of X there is a convergent subsequence {zn,}$2; of the
sequence {z,}22,. Put z = lim; o0 Tp,. Since z,, € f*~1(X) and
since the sequence of continua {f™~(X)}$2, converges to M (X, f) by
(2.3.1), it follows that z € M (X, f). By continuity of f we have

Fla) = F(lim ) =
= Hm f(zn,) = Hm f(f" " (yn,)) = Hm f™(yn,) =,
since f™ (yn;) =y for each ¢ € N. This completes the proof of (2.3.2).

Since P(f) C R(f), to prove (2.3.3) it is enough to show that
R(f) c M(X, f). To do so let z € R(f) and suppose, on the contrary,



PR-property 159

that = ¢ M(X,f). Thus X \ M(X, f) is an open set containing z.
Since z € R(f), there is n; € N such that f™(z) ¢ M(X, f), and
thus there in m € N such that f™(z) ¢ f™(X). Note that m > nq,
because otherwise f™ (z) € f™(X) C f™(X), a contradiction. Thus
there is a positive integer k¥ with m = ny + k. Since f(R(f)) C R(f)
according to (%), it follows that f™(z) € R(f). Note that X \ f™(X)
is an open set containing f™(z), and since f"(z) € R(f), there is
ny € N such that f™+"2(z) ¢ f™(X). As previously, it follows that
m > ni + ns. Repeating this argument k£ + 1 times we find numbers
n1,Na,...,Mg+1 € N such that frrtmet-+neti(y) ¢ f™(X), whence
niy+ns + -+ ngr; < m. But

ni+ng+--Fnga 2+ 14+ 1l=n+k=m,

a contradiction. Thus z € M (X, f), and then R(f) C M (X, f).

By (2.3.6) Prop. 2.2 can be applied with A = M (X, f), whence
by (2.3.3) we get (2.3.4). To show (2.3.5) consider a subcontinuum N
of X such that f|N : N — N is a surjection. Thus f(IN) = N, whence
f3(N) = f(N) = N, and further, inductively, f*(IN) = N for each
n € N. Therefore

N = (") :n €N} € [J{/M(X) :n €N} = M(X, f),

as required. Thus (2.3.5) is shown.

The proof is finished. ¢
Remark 2.4. Prop. 2.3 shows that, when a mapping f from a contin-
uum X into itself is investigated, the whole dynamics for f is on the
subcontinuum M (X, f) of X. So, in such situation, we can replace X
by M (X, f) and then assume that f is a surjection. However, contrary
to how it was considered in [6] after Cor. 4.5, p. 113, from Prop. 2.3 we
cannot reduce the study of the PR-property of X to the study of the
SPR-property of X, since for a given mapping f from X to itself, the
sets X and M (X, f) do not have to be homeomorphic and, in general,
a given map g from M (X, f) onto itself cannot be extended to a map
from X to itself. In the next example we see that the PR-property on
some set M (X, f) for some mapping f from X to itself, does not imply
the PR-property of X.
Example 2.5. There ezists a continuum X which does not have the
PR-property, and a mapping f from X to itself, such that the subcon-
tinuum M (X, f) has the PR-property.
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Proof. The continuum X is the Gehman dendrite G, as described in
Ex. 1.9. The mapping f : G — av from G onto the segment av C G
is the projection parallel to the z-axis, that is, for each point p € G
and its image ¢ = f(p) € a0 both p and g have the same y-coordinate.
Then M (G, f) = av. It is known that G does not have the PR-property
(see [20, Sec. 2, p. 460]), while M (G, f), being homeomorphic to [0, 1],
has the property, see Statement 3.1 below. ¢

The following question is related to the above example; it is also .
connected with Question 3.3.
Question 2.6. Does there exist a continuum X having the PR-property,
and a map f from X to itself such that M (X, f) does not have the PR-
property?

3. Some special continua

Topological dynamics on various spaces started with its study on
the interval (see for example an expository paper [34] and references
therein). In particular, the following statement has been shown in [12,
Th. 1, p. 316].

Statement 3.1. The closed unit interval [0, 1] has the PR-property.

The result has been extended to mappings of trees in [35, Th. 2.6,
p. 349]. In [6, Cor. 5.10, p. 117] it has been shown that the sin i—-curve
has the SPR-property. In this paper we show that this continuum also
has the PR-property (see Th. 5.8).

We say that a continuum X has the PR-property hereditarily pro-
vided that each subcontinuum of X has the property. Observe that
each subcontinuum of a tree is a tree, and that each subcontinuum of
the sin %-curve S either is an arc or is homeomorphic to S. Thus these
continua have the PR-property hereditarily. So, the following problem
is natural.

Problem 3.2. Characterize continua that have the PR-property hered-
itarily.

But at the moment the authors do not have any example of a con-
tinuum X that has the PR-property not hereditarily, i.e., such that X
has, while a proper subcontinuum of X does not have the PR-property.
So, the next question is a particular case of the previous problem.
Question 3.3. Does there exist a continuum X having the PR-property
and containing a subcontinuum without this property?
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Both the closed unit interval [0, 1] and the sin 1-curve S are ex-
amples of arc-like continua. Since these two continua have the PR-
property, it is natural to ask if all arc-like continua enjoy the property.
The answer is negative, since a class K of Knaster-type (thus arc-like)
continua has been constructed in [27, p. 426] such that each member X
of K admits a self-mapping f with the property that clx (P(f)) is a sin-
gleton, while clx (R(f)) = X. Therefore we have arc-like continua with
the PR-property, as an arc or S, and the ones without the property, as
members of . The next question is of a particular interest.
Question 3.4. Does the pseudo-arc have the PR-property?

Therefore the following problem is natural.

Problem 3.5. Characterize arc-like continua having the PR-property.
Remark 3.6. The result saying that the closed unit interval has the
PR-property cannot be extended to all graphs because the unit circle
S = {z € C : |z| = 1} does not have the property. Indeed, if f:S — S
is an irrational rotation (i.e., a rotation by an angle « such that o/ is
irrational), then P(f) = 0, while R(f) =S.

4. Gehman dendrite and its applications

For the definition of the Gehman dendrite G see Ex. 1.9. In other
words, G is a dendrite having the Cantor ternary set in [0, 1] as the set
E(G) of its end points, such that all branch points are of order 3 and
are situated in such a way that E(G) = clg(B(G)) \ B(G), see [31, Ex.
10.39, p. 186], where B(G) stands for the set of branch points of G. Note
that the infinite binary tree is another name of this dendrite, see e.g.
[16, Ex. 1.6, p. 45] and (20, p. 461]. Recall that G can be characterized
as the only dendrite whose set of end points is homeomorphic to the
Cantor set, and whose branch points are of order 3 only, (33, p. 100].

It is known that the result saying that trees have the PR-property,
[35, Th. 2.6, p. 349], cannot be generalized to dendrites, because of the
following result, see [20, Sec. 2, p. 460] and [4, Cor. 3.4, p. 136].
Proposition 4.1. The Gehman dendrite G (and any dendrite contain-
ing G) does not have the PR-property.

Moreover, the following characterization is known, see [18, Th. 2,
p. 222].

Theorem 4.2. A dendrite has the PR-property if and only if it does
not contain any copy of the Gehman dendrite.
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Note that the unit circle S is an example of a continuum that
does not have the PR-property, see Rem. 3.6, while each of its proper
subcontinua, being an arc, has the property. Other examples of such
continua are members of the above mentioned class K of Knaster-type
continua described in [27]. These continua are indecomposable. Thus
we have the next questions.

Questions 4.3. Is the simple closed curve the only (a) decomposable,
(b) hereditarily decomposable, continuum X without the PR-property
such that each proper subcontinuum of X has the PR-property?

The next result is related to the above questions. In its proof we
use Th. 4.2.

Theorem 4.4. The simple closed curve is the only locally connected
continuum X without the PR-property such that each proper subcontin-
uum of X has the PR-property.

Proof. Let a continuum X be locally connected without the PR-
property and such that each proper subcontinuum of X has the PR-
property. Since a simple closed curve does not have the PR-property,
it follows that X does not contain any simple closed curve as a proper
subset. Thus, if X itself is not a simple closed curve, it follows that X
is a dendrite without the PR-property. Hence, by Th. 4.2, X contains
a copy G of the Gehman dendrite. Clearly G contains proper subcon-
tinua without the PR-property. This shows that X is a simple closed
curve, as required. ¢

Note that a solenoid is a continuum such that each of its nondegen-

erate proper subcontinua is an arc, so each of them has the PR-property.
In the next result we show that no solenoid has the PR-property.
Theorem 4.5. Solenoids do not have the PR-property.
Proof. Let X be a solenoid. Assume that ¥ = iiin{S’i, fi}, where,
for each i € N, the space §; is the unit circle S and the mapping f; :
: Siy1 — S; is defined by f;(z) = 2P¢, with a positive integer p; for any
2z € Siyq. Let @1 : S1 — 57 be a rotation by an angle « such that 2is
irrational. To have the diagram

Syt Sit1

ﬁpil l@i+l

5'1‘<———f— Sit1

k3

commutative for each ¢ € N, we have to define ¢; : §; — S; for each
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i > 2, as a rotation by an angle S——2——. Then @; o fi = fi; 0 w11

Let ¢ : & — X be the limit mapping induced by the sequence {p;}52,,
i.e. the mapping defined by

o((z1, 22,73, ) = (w1(z1), p2(z2), p3(z3), - -)

for any point (zi1,%s2,%3,...) € 2. Note that ¢ is a surjection and
that ¢"((z1, %2, Z3,...)) = (¢T(z1), 5 (z2), Y5 (x3),...) for each n €
€ N and each (z1,z2,23,...) € ¥. Then, since each ¢; is an irrational
rotation, it follows that P(yp;) = @, whence P(p) =  as well. Note
that zo = (1,1,1,...) € ¥. We will show that zo € R(p). So, let
U be an open subset of 3 such that zg € U. Then there are 7 € N
and an open subset U; of S; such that z¢ € 7rj_1(Uj) C U, where
m; » & — S; is the j-th projection mapping. Since R(p;) = S; and
1 = mj(zo) € Uj, there is an n € N such that ¢7(1) € U;. Then
©™(x0) = (p7(1),¥5(1),93(1),...) € & and ¢™(zo) € 77 ' (U;) C U.
Hence zg € R(yp). This shows that ¥ does not have the PR-property. ¢
Note that S is a light open image of any solenoid. Thus, in con-
nection with Question 1.7, we have the following question.
Question 4.6. Is the PR-property preserved under light open maps?
The result showed in Th. 4.2 has many other consequences, not
mentioned in [20], in [18] or in [10]. For example, it follows from Th. 4.2
that if a dendrite has finitely many branch points, then it has the PR-
property. The next proposition also presents such a consequence.
Proposition 4.7. If a normal space contains the Gehman dendrite,
then it does not have the PR-property.
Proof. If a normal space X contains the Gehman dendrite G, then
by Prop. 1.8 there exist a retraction r : X — G. Thus the conclusion
holds by Cor. 1.5 using Prop. 4.1 (or Th. 4.2). ¢
Corollary 4.8. If a normal space contains a 2-cell, then it does not
have the P R-property.
Proof. Let X be a normal space that contains a 2-cell D. Clearly D is
homeomorphic to [0, 1] x [0,1], so D contains a topological copy of the
Gehman dendrite G. Thus the result follows from Prop. 4.7. ¢
Corollary 4.9. The PR-property is not productive, i.e., the Cartesian
product of spaces having the property need not have it.
Proof. Indeed, [0, 1] has the PR-property according to Statement 3.1,
while the unit square [0, 1] x [0,1] does not have it by Cor. 4.8. ¢
Spaces that contain no 2-cells are not necessarily 1-dimensional.
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It is known that there exist hereditarily indecomposable continua of
any dimension (see [2, Ths. 4 and 5, p. 270]) and, clearly, any such
continuum contains no 2-cells. Thus trying to detect 1-dimensionality
on continua with the PR-property the following questions are natural
and, indeed, of a special interest.

Question 4.10. Let X be a locally connected continuum with the
PR-property. Must X be 1-dimensional? Must X be a dendrite?

A positive answer to the second question will generalize the result
showed in Th. 4.2 as follows: a locally connected continuum has the
PR-property if and only if it does not contain any copy of the Gehman
dendrite. Also a positive answer to this question will imply that locally
connected continua with the PR-property have the PR-property hered-
itarily (see Problem 3.2). In other words, under the assumption that
locally connected continua with the PR-property are dendrites, it fol-
lows that the only locally connected continua having the PR-property
hereditarily are dendrites that contain no copy of the Gehman dendrite.

Prop. 4.7 was applied in [5, Th. 3.11] to show the following result.
Proposition 4.11. Let a dendrite X have the PR-property. If a sur-
jective mapping from X onto Y is one of the following:

(4.11.1) monotone, open, OM-mapping, confluent, locally confluent,
confluent over locally connected continua, or quasi-monotone,
then Y also is a dendrite having the PR-property.

As before, if locally connected continua with the PR-property are
dendrites, then we can replace the term “dendrite” in the previous
proposition by “locally connected continuum”.

Let us recall that in [20, p. 460] some kinds of dendrites are con-
structed, applying the general method of [21] in the following way. For
an inverse sequence X = { Xy, Pnn+1 : 1 € N} of compact polyhedra X,
such that X; is a singleton, with bonding mappings ppnt1 1 Xpy1 —
— X, and the inverse limit X = lim X consider an infinite telescope
T(X) (see [21] and [20, p. 460] for details) and define Z(X) = X UT(X).
It is known that Z(X) is a compact absolute retract, and that each
mapping g : X — X with clx(P(g)) # clx(R(g)) can be extended to
a mapping f : Z(X) — Z(X) satisfying clzx)(P(f)) # clzx) (R(f))-
Then Th. 4.2 implies the following observation.

Observation 4.12. If, for an inverse system X, the constructed con-
tinuum Z(X) is a dendrite, then it necessarily contains a copy of the
Gehman dendrite.
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We close this section with some results (also being consequences
of Th. 4.2) concerning hyperspaces. Some definitions are in order first.

Given a continuum X with a metric d, we let 2% denote the hyper-
space of all nonempty closed subsets of X equipped with the Hausdorff
metric H (see e.g. [30, (0.1), p. 1 and (0.12), p. 10]). We denote by
F;(X) the hyperspace of all singletons of X and, for each m € N, we
denote by F,,(X) the hyperspace composed of sets of cardinality at
most m, and we put Fo (X) = J{Fm(X) : m € N}. Thus Fi(X)
is homeomorphic to X, and Fu,(X) consists of finite subsets of X.
Further, we denote by C(X) the hyperspace of all subcontinua of X,
i.e., of all connected elements of 2% and, for a given m € N, we let
C(X) denote the hyperspace of all elements of 2% having at most m
components. Note that C(X) = C1(X). Let Coo(X) = U{Cm(X) :
: m € N} be the hyperspace of all elements of 2% having finitely many
components. All these hyperspaces are equipped with the inherited
topology (thus induced by the Hausdorff metric H). Therefore the
following statement holds by the definitions.
Statement 4.13. For each continuum X and each m € N,

(4.13.1)  F(X)C...C Fp(X) C Fnp1(X) C ... C FoolX) C 2%;

(413.2)  Ci(X)C...CCn(X) C Cni1(X) C...C Co(X) C 2%
(4.13.3) Fr(X) C Cr(X) and Foo(X) C Coo(X).

It is known that, for each continuum X and for each m € N, the
hyperspaces Fn(X), Cm(X) and 2% are continua, whence it follows
that Foo(X) and Ceo(X) are connected subsets of 2%, see [24, p. 238
and 239]. The reader is referred to [30] and [19] for more information
on hyperspaces. In particular, the papers [24] and [25] are devoted to
the hyperspaces Cp(X).

As a consequence of Prop. 4.7 we have the following result.
Theorem 4.14. If, for some fized k € N, the hyperspace Fy(X) con-
tains a copy of the Gehman dendrite, then for each integer m > k the
hyperspaces Fr,(X) and Foo(X) do not have the PR-property.

A particular case of the above, for k = 1, is of a special impor-
tance.

Corollary 4.15. If a continuum X contains a copy of the Gehman
dendrite, then for each m € N the hyperspaces Fpn(X) and Foo(X) do
not have the PR-property.

As a consequence of Cor. 4.8 we obtain the following result.
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Theorem 4.16. If, for some fized k € N, with k > 2 the hyperspace
Fy(X) contains a 2-cell, then for each m € N with m > k the hyper-
spaces Fp,(X) and Foo(X) do not have the PR-property.

The next proposition indicates the only way how the assumption
of Th. 4.16 can be realized.

Proposition 4.17. Let X be a continuum, and let k € N, with k > 2,
be given. Then the hyperspace Fy,(X) contains a 2-cell if and only if the
continuum X contains an arc.

Proof. Let C be a 2-cell contained in Fi(X), for kK > 2. Since C is
a compact and locally connected subset of Fy(X), it follows by [13,
Lemma 2.2, p. 252] that UC is a locally connected subcontinuum of X.
Thus UC is an arcwise connected subset of X, so it contains an arc, as
required.

Conversely, if A is an arc in X, then F5(A) is a 2-cell, and we have
Fy(A) C F2(X) C Fr(X) for any k > 2. The argument is complete. ¢
Corollary 4.18. If a continuum X contains an arc A, then for each
m € N with m > 2 the hyperspaces Fr,(X) and Foo(X) do not have the
PR-property.

Proof. Apply Prop. 4.17 and Th. 4.16.

Corollary 4.19. If a continuum X is locally connected, then for each
m € N with m > 2 the hyperspaces Fp, (X) and Foo(X) do not have the
PR-property.

Remark 4.20. Note that in Cor. 4.18 one cannot replace the arc A
by a hereditarily decomposable continuum A, since hereditary decom-
posability of A does not imply that F3(A) contains a 2-cell. Indeed,
note that there are hereditarily decomposable continua Z containing
no arcs, thus containing no locally connected subcontinua (see e.g. the
continuum ¥ in [26, Sec. 2, Part B, p. 14-16]; containing no arcs follows
from [26, (2.9), p. 16]; compare also [26, Main Th. (6.1), p. 30]). For
each such continuum Z the hyperspace Fy(Z), where k > 2, does not
contain a 2-cell by Prop. 4.17.

The study of the PR-property on the hyperspaces Cp, (X) reduces
to the following result, see [30, Th. 1.74.1, p. 120).

Theorem 4.21. For each continuum X any dendrite can be embedded
in the hyperspace C(X).

Theorem 4.22. For each continuum X and for each m € N the hyper-
spaces Cm(X), Coo(X) and 2% do not have the PR-property.

Proof. By Th. 4.21 the hyperspace C(X) contains the Gehman den-
drite GG, whence it follows that G is a subset of any of the mentioned
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hyperspaces according to inclusions (4.13.2) of Statement 4.13. Thus
these hyperspaces do not have the PR-property by Prop. 4.7. {

In connection with Th. 4.16 the following questions are of some
interest.
Question 4.23. Does there exist a continuum X such that the hy-
perspaces Fi,(X) (for some natural m > 2) and/or F,(X) have the
PR-property? Note that, by Cor. 4.18, the continuum X must contain
no arc.
Question 4.24. Does the continuum ¥ of [26, Sec. 2, Part B, p. 14-16]
(mentioned in Rem. 4.20 above) have the PR-property? Note that the
continuum ¥ is arc-like.

5. A-dendroids as compactifications

Given a A-dendroid X we denote by P(X) the family of all sub-
continua S of X such that for each finite cover of X the elements of
which are subcontinua of X, the continuum S is contained in a mem-
ber of the cover. A (transfinite) well-ordered sequence (numbered with
ordinals o) of nondegenerate subcontinua X, of a A-dendroid X is said
to be normal provided that the following conditions are satisfied:

X 1= X )
Xa+1 € P(Xa>;
Xg = ﬂ{Xa :a < B} for each limit ordinal g.

The depth k(X) of a A-dendroid X is defined as the minimum
ordinal number 7 such that the order type of each normal sequence
of subcontinua of X is not greater than n. The reader is referred to
[17] and [28] for an additional information related to this concept. The
following three assertions concerning the depth are known, {17, Ths. 1,
2 and 3, p. 94 and 95].

Statement 5.1. Let X and Y be A-dendroids.

(5.1.1) If Y C X, then k(Y) < k(X).

(5.1.2) X is locally connected (i.e., it is a dendrite) if and only if
E(X)=1.

(5.1.3) IfY is a continuous image of X, then k(Y") < k(X).

A subcontinuum @ of a continuum X is said to be terminal pro-
vided that for every subcontinuum K of X if K N Q # ( then either
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K Cc Q or @ C K. We need the following result, see [1, Th., p. 35] and
[6, Th. 3.1, p. 111].

Theorem 5.2. If X is a locally compact, noncompact metric space,
then each continuum is a remainder of X in some compactification of
X as a terminal subcontinuum of the compactification.

To make the paper self-contained and to formulate the needed
results we recall a construction described in [6, Sec. 3, p. 111]. Let a tree
T and points q1,...,q, of T be given for some positive integer n. Let
Q1,...,Qn be continua. Choose in T closed connected and mutually
disjoint neighborhoods Uy, ..., U, of points qi,...,q,. Then for each
i€ {1,...,n} the sets U; \ {¢;} are locally compact and noncompact,
thus applying Th. 5.2 to each of them we construct in a standard way
a compactification

(7) v (T\{a1,---sqn}) = v(T\{a1,---:qn})

such that:
(v1) X =clx(vy(T\{q1,---,qn})) is a continuum;
(v.2) the remainder of X, i.e. the set X \ v(T'\ {q1,-..,¢n}), consists
of n components @1, ..., Qn;
(7.3) for each index i € {1,...,n} the continuum @; is a terminal
subcontinuum of X.
The next observation is in [6, Obs. 3.6, p. 112].
Observation 5.3. If the inserted continua Q; are A-dendroids, then
the resulting continuum X satisfying (v.1)-(.3) is a A-dendroid, too.
Thus the concept of the depth k(X) is well defined for such X
(and for all subcontinua of X). We say that the inserted continua Q;
have the same finite depth provided that there is m € N such that for
each i € {1,...,n} we have k(Q;) = m.
To make formulation of the forthcoming results shorter accept the
following definition.
Definition 5.4. Let F be the class of all A-dendroids X that can be
obtained from some tree T', called the base of X, by replacing finitely
many of its points ¢i,...,q, by A-dendroids @i, ...,Qn of the same
finite depth using a compactification v with (v.1)-(v.3). Further, for any
member X of F, let A(X) stand for the union J{Q;:i € {1,...,n}}.
Note that different elements of F have, in general, different trees
as its base. The next theorem is proved in [6, Th. 5.7, p. 116].
Theorem 5.5. Let a A-dendroid X belong to the class F. If all con-
tinua Q; fori1 € {1,...,n} have the PR-property, then X has the SPR-



PR-property 169

property.

In [6, Th. 5.7, p. 116] it is written, as the conclusion of the the-
orem, that X has the PR-property (instead of the SPR-property as
written in Th. 5.5). Such statement is correct but it does not follow
from the proof of [6, Th. 5.7, p. 116], since it is based on the incorrect
statement that the study of the PR-property reduces to the study of the
SPR-property (see Rem. 2.4 and Ex. 2.5 above). In the next theorem
we complete the proof of the result that any continuum X, constructed
as in Th. 5.5, has the PR-property.

Theorem 5.6. Let a A-dendroid X belong to the class F. If all con-
tinua Q; for i € {1,...,n} have the PR-property, then X has the PR-
property.

Proof. Take X € F and a mapping f : X — X. Let M(X,f) =
= {f*(X) : i € N} and consider two cases.

CASE 1. For some k € N we have f¥(X) N A(X) = 0.

Then f*(X) is a tree and f|f*(X) : fE(X) — F*1(X) C f*(X)
is a mapping from f*(X) to itself. Since trees have the PR-property,
it follows that clse(xy(P(f|f*(X))) = el x) (R(FIF*(X))). By (2.3.3)
we have P(f) € R(f) € M(X,f) C f*(X). Then, using (2.2.1) and
(2.2.2) we get

clx (P(f)) = f5(X) Nelx(P(f)) = clpx ) (P(f)) =
= el (x) (P(f) 0 FH(X)) = elpr (POFIFH(X)))
= clpr 0y (R(FIFF(X))) = clypr ey (FF(X) N R(S))
= clyex) (R(S)) = FH(X) Nelx (R(f)) = clx (R(f))-

Thus, in this case, we conclude that ‘X has the PR-property.
CASE 2. For each k € N we have f*(X) N A(X) # 0.

Since we have finitely many sets Qi,...,&n and since each of
them is terminal in X according to (7.3), there is ¢ € {1,... ,n} such
that either f*(X) C @Q; or Q; C f#(X) for infinitely many k € N.

SUBCASE 2A. @; C f*(X) for infinitely many .

Then Q; ¢ M (X, f), so M(X, f) € F. Moreover, by (2.3.2) and
(2.3.4) it follows that f|M(X,f): M(X, f) — M(X, f) is a surjection
such that P(f) ¢ R(f) € M(X, f). Thus, by Th. 5.5, M(X, f) has the
SPR-property. To simplify notation, put M = M (X, f). Then we have



170 G. Acosta and J. J. Charatonik

clx (P(f)) = M Nclx(P(f)) = clu (P(f)) = clu(P(f) N M) =
= cly (P(f|M)) = clp (R(f|M)) = clu (M N R(f)) =
= clp (R(f)) = M Nclx (R(f)) = clx (R(f)).

Thus, in this subcase, we conclude that X has the PR-property.
SUBCASE 2B. f*(X) C @; for infinitely many k.
Notice that, to complete the proof, it is enough to assume that
for some k € N we have f¥(X) C @Q;. Since f*(Q;) C f*(X) C Q;,
it follows that f*|Q; : Q; — Q; is a mapping from Q; to itself. Since
@; has the PR-property, we have clg,(P(f*|Q:)) = clo, (R(f*|Q:)).
Moreover, P(f) C R(f) Cc M(X, f) C f*¥(X) C Q; and, by Prop. 2.1,
R(f) = R(f*) and P(f) = P(f*). Thus
clx (P(f)) = Qi Nelx (P(f)) = clg,(P(f)) = clg, (P(f) N Q:) =
= clg, (P(f*) N Qi) = clo, (P(f*|Qs)) = cla, (R(F*|1Q:)) =
= clo, (R(f*) N Qi) = clo, (R(f) N Q) = clg,(R(f)) =
= Qi Nclx (R(f)) = clx (R(f))-

Then, we again conclude that X has the PR-property. ¢

As a consequence of Ths. 5.6, 4.2 and of (5.1.2) we get the next
corollary.

Corollary 5.7 Let a A-dendroid X be in the class F, and let Q; be
dendrites none of which contains a copy of the Gehman dendrite. Then
X has the PR-property.

Taking as T" an arc with end points q; and g2 note that the inserted
continua @ and/or Q2 are terminal, that is, condition (+.3) is in this
case satisfied automatically (compare |7, Statement 3.18, p. 96]). Hence
we obtain very particular but important corollaries on Compactlﬁcatlons
of the ray and of the real line.

Corollary 5.8. Let a A-dendroid X = S U Q be a compactification of
the ray S = [0, 00) with a remainder Q. If Q has the PR-property, then
X has the PR-property.

Corollary 5.9. Let a A-dendroid X = Q1USUQ2 be a compactification
of the real line § =~ (—o00,00) with a remainder being the union of two
its components, Q1 and Q2, of the same finite depth. If each of Q1 and
@2 has the PR-property, then X has the PR-property.

Questions 5.10. Are the assumptions on the two components of the
remainder (a) to have a finite depth, (b) to have the same depth, nec-
essary in Cor. 5.97
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Now we consider the opposite implication: from the PR-property
of the whole space X to the property of the inserted continua ;. The
next theorem is a consequence of Cor. 1.5.

Theorem 5.11. Let a A-dendroid X be in the class F, and let i €
€ {1,...,n} be fized. If X has the PR-property and if there exists a
retraction from X onto @Q;, then @Q; has the PR-property.

We present several consequences of the above theorem. To this
aim recall the needed concepts and results.

A compact space X is called an absolute retract for a class K of
spaces (written AR(K)) provided that whenever X is embedded in a
space Y € K as a closed subset, the embedded copy of X is a retract
of Y.

The next result follows from Th. 5.11.

Theorem 5.12. Let a A-dendroid X be in the class F, and let Q1, ...,
Qn € AR(AD). If X has the PR-property, then each of the continua
@; has the PR-property.

Let us discuss a special case when the inserted continua @); €
€ AR(AD) are dendroids. To formulate the next result some definitions
are in order first.

A dendroid X is said to be smooth provided that there is a point
v € X (called an initial point of X) such that for each point z € X and
for each sequence {z,}22; of points of X which tends to z the sequence
of arcs {vz,}22, is convergent, in the Hausdorff metric, and it has the
arc vz as its limit (see e.g. [19, p. 194}).

A continuum X is said to have the property of Kelley provided
that for each point p € X, for each subcontinuum K of X containing
p and for each sequence of points {p,}5>; converging to p there exists
a sequence of subcontinua {K,}52.; of Xconverging to the continuum
K, in the Hausdorff metric, and such that p, € K, for any n € N (see
e.g. [19, p. 167]).

The class of all smooth dendroids has a universal element, i.e.,
there is a smooth dendroid that contains all other smooth dendroids, see
[11, Cor. 2, p. 165}, [15, Th. 3.1, p. 992] and [29]. It is known that each
member of AR(D) is a smooth dendroid having the property of Kelley,
[9, Cor. 3.6, p. 59]. Further, we have the following characterizations
(see [8, Th. 3.12, Cors. 3.14 and 4.6, p. 97 and 101]).

Theorem 5.13. The following conditions are equivalent for a den-
droid Q.
(5.13.1) Q is a member of AR(D) (equivalently: AR(AD) or AR(HU));
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(5.13.2) Q is a retract of the Mohler-Nikiel universal smooth dendroid;
(6.13.3) Q is a retract of the inverse limit of trees with open (equiva-
lently: with confluent) bonding mappings.

As consequences of the above results we get the following equiva-
lences.

Theorem 5.14. Let a A-dendroid X be in the class F, and let con-

tinua Q1,...,Qn be locally connected. Then the following conditions

are equivalent.

(5.14.1) X has the PR-property;

(5.14.2) each of the continua Q1,...,Q, has the PR-property;

(5.14.3) each of the continua Q1,...,Qn is a dendrite which does not
contain any copy of the Gehman dendrite.

In particular, the equivalences are true if X is a compactification

of either the ray or the line, i.e., if T is an arc and either n = 1 with ¢
being an end point of T', or n = 2 with q1 and g3 being the end points
of T.
Theorem 5.15. Let a A-dendroid X be in the class F, and let each of
the continua @Q1,...,Qn be a dendroid which is a member of AR(AD)
(equivalently AR(D) or AR(HU)). Then X has the PR-property if and
only if each of the dendroids Q1,...,Q, has the PR-property.

In particular, the equivalence is true if X is a compactification of

either the ray or the line, i.e., if T is an arc and either n = 1 with ¢
being an end point of T, or n = 2 with q; and gs being the end points
of T.
Theorem 5.16. Let a A-dendroid X be in the class F, and let each of
the continua Q1,...,Qn, be a A-dendroid which is a member of AR(AD).
Then X has the PR-property if and only if each of the A-dendroids
Q1,...,Qn has the PR-property.

In particular, the equivalence is true if X is a compactification of
either the ray or the line, i.e., if T' is an arc and either n = 1 with q;
being an end point of T, or n = 2 with ¢1 and g2 being the end points
of T.

In the particular (final) parts of Ths. 5.14, 5.15 and 5.16 prop-
erties of A-dendroids X as compactifications of the ray and the line
are discussed. The assumption that X is a A-dendroid implies that
each component of the remainder in the compactification must be a
A-dendroid. The general case, when no extra conditions are assumed
on the obtained compactification of either the ray or the line, remains
open. Thus we have the following problems.



PR-property 173

Problems 5.17. Let a continuum X be obtained as a compactification
of either a ray or a line. Under what conditions one of the conditions
below implies the other one?

(5.17.1) X has the PR-property;
(5.17.2) each component of the remainder of X has the PR-property.
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