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Abstract: The latticial cone K C R™ is called stiff, if it has a proper face K’
of maximal dimension such that each its element is comparable (with respect
to the order relation induced by K) with each element of the set K \ K’. The
face K’ of the latticial cone K is a stiff face if it is a stiff cone in the subspace
K" — K", it is a maximal stiff face if it is not contained in any other stiff
face of K. It is proved that each latticial cone K in R™ is the direct sum of
its maximal stiff faces; if K is not stiff, then it is the direct sum of its proper
maximal stiff faces. If K possesses r different maximal stiff faces, then its
conjugate K* is a cone generated by r linearly independent vectors.

1. Introduction

The theorem of Yudin [9] which asserts that a closed cone K C
C R™ induces a latticial ordering in R™ if and only if it is the positive
orthant of a coordinate system in R"™, is one of the first important
results in the vector lattice theory. (A such cone is called a Yudin
cone.) A different proof of Yudin's theorem was given by Szdkefalvi
Nagy in [7]. Another interesting result concerning the latticially ordered
Euclidean space is the assertion that each totally ordered Euclidean
space is lexicographically ordered. Due to Schaefer [8|, this theorem
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was rediscovered by Martinez-Legaz and Singer [2]. A different proof
of its is given by us in [3] and is included also into the present paper.

We call latticial cone the positive cone of the latticially ordered Eu-
clidean space. The Yudin cone and the lexicographic cone are extremal
cases for latticial cones. Both above cited characterization theorems
are related to the facial structures of the underlying cones. But what
about the latticial structure of the general latticial cone in R®? Our
aim is to answer this question.

To do this we have to mobilize a great amount of known results
from the convex geometry, linear algebra and vector lattice theory (Sec-
tions 3, 4, 7 and 10), and to augment them with some of their conse-
quences. We have to introduce and handle new notions (Sections 2 and
5), and to prove their properties (Sections 5, 8 and 9), results which
can have independent usages. The resulting material becomes this way
a contribution in searching the relation between the vectorial ordering
and the geometry of the Euclidean space.

2. Terminology and main results

We denote by R™ the n-dimensional Euclidean space. For the
interior, the closure and the boundary of the set A C R™ we shall use
the notations A°, A~ and AP respectively.

The nonempty set W C R™ is called a wedge if it possesses the
properties:

HW+WcCWw,

(i) tW C WVt e Ry = [0, 400).

The wedge K C R™ is called a cone, if it satisfies the condition

(iii) KN (-K) = {0}.

The space R™ endowed with a reflexive, transitive, antisymmet-
rical relation “<”, which is translation invariant (i.e., from u < v it
follows u + 2z < v+ 2, Vz ) and invariant with respect to multiplication
with non-negative scalars (i.e., u < v implies tu < tv, V¢ € R,) is
called ordered Euclidean space and is denoted with (R", <). We say that
the elements z, y € R™ are comparable if either z <y or y < z.

If (R™, <) is an ordered Euclidean space, then the set K = {z €
€ R™: z > 0} is a cone, which is called its positive cone.

With the aid of the cone K C R™ it can be defined a binary
relation < g by putting u < gv whenever v — u € K. Endowed with
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this relation R™ becomes an ordered Fuclidean space, whose positive
cone is K. Thus the order relation of the ordered FEuclidean space
is completely determined by its positive cone K. This circumstance
motivates the parallel usage for the ordered Euclidean space (R", <)
also of the notation (R™, K), where K is the positive cone of the space.
, The cone K in R™ is called generating if spK = K — K, the vector
space spanned by K is R™. '

If (R™, <) is ordered Euclidean space, then upper and lower bounds
of sets are defined as usual. For u, v € R" the supremum u Vv =
= sup{u, v} is defined as being the least upper bound of the set {u,v}
(if it exists). We define similarly the infimum u Av = inf{u, v} as being
the greatest lower bound of the set {u,v} (if it exists).

The ordered Euclidean space (R™, <) is called latticially ordered, if
u Vv (and hence also u A v) exists for every u and v. The positive cone
of a latticially ordered Euclidean space is called latticial cone. It is easy
to see that a latticial cone is generating.

The subset K’ of the cone K is called face of K if it is a cone and

if from 0 <y <z, z € K', it follows that y € K’, where < is the order
relation induced by K. The one dimensional faces are called edges of
K. The cone K is its own face. The face K’ C K is called proper face,
if K’ # K. The set {0} is always a face of K, which is said to be its
trivial face. The face K’ of the latticial cone K is itself a latticial cone
inspK' = K' — K.
Definition 1. A latticial cone K C R"™ is called stiff, if it possesses a
proper face Ky of maximal dimension, such that each element of Kj is
comparable with every element of K \ K. The positive cone K = R
of R is stiff. The face of this K for which the condition in the definition
holds is Ko = {0}.

The positive cone of the totally ordered Euclidean vector space is
a stiff latticial cone (see Cor. 8).

Let H C R™ be a hyperplane through 0. Let us denote by H*
one of the open semispaces determined by it. Let Ko C H be a latticial
cone in the n — 1-dimensional Euclidean space H. Then K = Ky U
U HT is a stiff cone in R™. Every stiff cone can be represented in this
form. (The assertions follow from Lemma 24 and Lemma 25.) Hence
the single closed stiff cone is the one dimensional one.

Since each face K' of the latticial cone K is a latticial cone in the
space spK’ it spans, the term “stiff face” make a sense. A stiff face is
maximal, if it is not contained properly in another stiff face. The edges
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of the latticial cone are its stiff faces.

We say that a cone K is the direct sum of cones Ki,...,Kp, if
each element of K can be uniquely represented as sum of elements of
these cones. (In this case the cones K; are faces of K.)

Our main result is the following one:

Theorem 1. Fach latticial cone in the Euclidean space is the direct
sum of its mazimal stiff faces.

If the latticial cone is stiff, then it is the single maximal stiff face
it contains. Hence the “direct sum” in the theorem reduces to a single
term.

Other important result in this regard is the following:

Theorem 2. For the latticial cone K C R™ the following assertions
are equivalent:

1. K 1is not a stiff cone;

2. K is the sum of its proper faces;

3. K is the direct sum of its proper mazimal stiff faces.

It will be shown that if the latticial cone is closed, then every its
stiff face is an edge. Hence from this theorem it follows the
Corollary 1. FEach closed latticial cone in the Euclidean space is the
direct sum of its edges.

This assertion is the theorem of Yudin [9].

Denote by (z,y) the scalar product of the elements z and y. If K
is a cone, then the set

K*={zeR": {(z,y) >0, Vye K}
is called the dual of K.
Theorem 3. Suppose that the latticial cone K has the representation
K=K +...+ K.,
with K; mazimal stiff face of K, V1 and + denoting direct sum. Then

the dual K* of K is a cone in R™ engendered by r linearly independent
vectors.

3. Preliminaries from the convex geometry

If H is a hyperplane in R™, then there exists a nonzero vector z*
in R™ and a real number « such that
H={zeX: (z%,z) = a}.
2™ is called the normal of H. The set
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H ={zeX: (z%,z) > a},
and respectively

Ht={zec X: (z*,1) > a}
is called the closed, respectively the open semispace determined by H
(in the direction of z*). The set H is closed, the set H™ is open in
R*, H* =(Hy)°=H,\H, HL=HUH™.

The hyperplane H is a supporting hyperplane of the set A if A C
C H, and HNA® £ 0.

The relative interior riC of a convex set C' C R" is the interior of
C with respect to its affine hull.

Some standard results from the convex geometry of the Euclidean
space as well as their immediate consequences constitute basic tools in
our proofs. They can be get in monographs as [5], or [6], and are the
following ones:

1. The closure of a cone is a wedge.

2. The cone K in R" is generating if and only if K° # (). Hence the
relative interior of every cone in R™ is not empty.

3. If W is a wedge with W° # (), then W° + W~ C W°.

4. Every boundary point of the wedge (cone) is contained in some
of its supporting hyperplane. Every supporting hyperplane of the
wedge (cone) contains the point 0.

5. If W is a wedge, x ¢ W, then there exists its supporting hyper-
plane

H={yeR": (z%,y) =0}
such that (z*,z) <0, that is,z € —H™.
We shall use these results next in the proofs with no special ref-
erences.

4. The geometry of faces

In this section we insert, for further usage, a lot of results on faces
of a general cone in the Euclidean space. Most of them are standard
results of the theory of cones and can be easily verified (hence we list
them without proofs).

Lemma 1. If K C R is a cone and {K; : i € I} is a family of faces
of K, then Micr K; is a face of K.

The subset K of the cone K is called subcone of K, if it is a cone.

The subcone Ky C K is a section subcone of K, if Ky = (spKp) N K.
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Lemma 2. Each face of K is a section subcone of K.
Lemma 3. Let Ky be a section subcone of K, u, v € spKy. Then
u < gv holds if and only if u < g, v.
Lemma 4. The subcone K; of the face Ky of the cone K 1is face of Ky
if and only if it is face of K.
Lemma 5. Let Ky be a face of the generating cone K C R", Ky # K.
Then KoNK° = (. Hence dim Ky < n (where dim Ky is the dimension
of spKp).
Corollary 2. If K1 and Ks are faces of the cone K C R™ and Ky C
C K1, K3 # K, then dim Ky < dim K.
Lemma 6. If H is a supporting hyperplane of the cone K, then K' =
=HNK is a face of K.

A face of K obtained as an intersection of K with a supporting
hyperplane of its, is called a supporting face of K.
Lemma 7. Let H' be a supporting hyperplane of the generating cone
KCR', z € KNH and —x ¢ K~. Then there exists a supporting
hyperplane H” of K, such that

dimKNH" <dimK N H'.

Proof. Let H be a supporting hyperplane of K for which —z €
€ —H*. Let z* be the normal of H, and z’ be the normal of H'.
Put 2" =z’ + z*, and

H'={yeR": (z",1) =0}

Since K C H, N H C HY, H" is a supporting hyperplane of K.

From the relation (H, N Hy)N H"” = H' N H we have
KNnH'Cc(H.NH)NH'"=H NH,
wherefore
KNnH'Cc(KNHYNHCKNH'.

At the same time z € KN H' and =z ¢ H", since (z”,z) > 0. This
shows that the supporting face K N H" is a proper subset of the face
K N H'. Putting this together with Lemma 2, the conclusion of the
lemma follows. ¢

As consequences of this lemma we have the following results:
Corollary 3. Let H be a supporting hyperplane of the generating cone
K. The face KNH is with respect to the inclusion a minimal supporting
face of K if and only if there is no z € K N H for which —z ¢ K.
Proof. Indeed, if it would exist an z € K N H such that —x ¢ K, it
would follow from the lemma that K N H is not a minimal supporting
face.
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On the other hand, each supporting hyperplane of the cone K is
the supporting hyperplane of the wedge K. If for each element z of
Ky=KNH —x € K—, it follows that spKy = Ky — Ky C K~ and
hence it will be contained in every supporting hyperplane of the wedge
K. Accordingly Ky — Kj is contained in every supporting hyperplane
of K, hence no proper face of Ky can be a supporting face. ¢
Corollary 4. If K C R™ is a closed cone, then it has a supporting
hyperplane H with the property K N H = {0}.

Let Ky be a subcone of the cone K. Then the set

{y € K : 3z € K, for whichy < z}

is a face of K called the face engendered by Ky. If Ky is generated by
a single element y € K, then the above defined face will be called the
face engendered by y.

Lemma 8. The face of K engendered by the subcone Ko C K does not
meet the interior K° of K, if and only if Ko has this property.

Proof. If y would be the common element of the engendered face and
of K°, then for z > y there would be z € K°. {

Lemma 9. If the boundary K° of the cone K possesses a nonzero
element of K, then K possesses a supporting face different from {0}.
Proof. Let H be the supporting hyperplane of K containing the el-

ement y € (K° N K)\ {0} Then K N H is the requested supporting
face. ¢

5. The anti-Archimedean subcone of a cone

Definition 2. Let K be the positive cone of the ordered Euclidean
space (R™, <). The element a € K is called anti-Archimedean, if there
exists b € R™ with the property na < b, Vn € N. The element a €
€ K is anti-Archimedean if and only if one of the following conditions
hold: There exists b € K such that: (i) ta < b, V¢ € Rt = (0, +o0);
(i) a < tb V't € RY; (iil) ra < sb, V1, s € RT.

Denote by K, the subset in K of the anti-Archimedean elements.
Then K, is a cone, called the anti-Archimedean subcone of K. Obvi-
ously, {0} C K,. If K, = {0} we say that the anti-Archimedean cone
is trivial.

Lemma 10. Let K, be the anti-Archimedean subcone of the generating
cone K. If v € Ko, y € K°, then k< y.
Proof. There exists by definition b € K such that tz < b, V¢t € RY.
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Since y € K°, ds € RT, for which sb < y, whence stz < sb <y, Vt €
€ R*. For a suitable ¢ the assertion follows. ¢

Lemma 11. Let K, be the anti-Archimedean subcone of the cone K C
C R™. Then z € R™ is in K, if and only if z is in K and —x is in
K.

Proof. Suppose first that K is a generating cone, z € K,, y € K°.
Then from Lemma 10, nx <y, Vn € N. Hence

1 1
ﬁy——mEK, Vn € N, whence -y —x — —z, n — 00, = —z € K.
n

Suppose now that x € K, —x € K—. Then for y € K°, %y € K°
and then 2y —z € K, Vn € N, hence nz <y, : Vn € N, thus = € K,.

If K is not generating, then we restrict the above reasoning to the
subspace spK = K — K, where K is generating. ¢
Corollary 5. If the cone K is closed, then K, = {0}.
Lemma 12. The anti-Archimedean cone K, is the minimal supporting
face of the cone K. Hence it is contained in every supporting hyperplane
of K.
Proof. The proof follows from Lemma 7, the Cor. 3 and Lemma 11. ¢
Lemma 13. Suppose that the dimension of the anti-Archimedean sub-
cone K, of the cone K CR"™ isn — 1. Then

1. the cone K possesses a single supporting hyperplane H,

2. Ko =KnNH,

3. K= HT,

4. K = K°UK,.
Proof. The subcone K, is a proper face of K, hence from Cor. 2 one
has that K is n-dimensional, hence K° # (.

From Lemma 12, K possesses a supporting hyperplane H for
which

K,=KnNH.
From Lemma 11, —K, C K~ and since K~ is a wedge,
H=K,-K,CK CHy,.
Let us show that
K°=HT,

whence it will follow that H is the single supporting hyperplane of K.

Let =* be the normal of the supporting hyperplane H, and k €
€ K° satisfying (z*,k) = 1. Assume that there exists y € H' \ K.
Then (z*,y) > 0 and since by a multiplication of y with a positive
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scalar it remains in H* \ K, we can suppose that (z*,y) = 1. Then

y—ke HC K™, and then y € K+ K~ C K, which is impossible.
Thus HT C K and hence HT C K°.

On the other hand K C H,, and hence K° C (H;)° = H* and
our assertion follows.

Since KN H = K,, K C H; and K° = H*, we have finally

. K=K°UK,. O

Definition 3. Let (R™, <) be an ordered Euclidean space. Denote by
L, the subset in R™ of the elements z for which exists y € R™ such that
—ty <z <ty, Vt € RT. L, is a vector space, called the anti-Archi-
medean subspace of the ordered space.
Lemma 14. Let K the positive cone of the ordered Euclidean space
(R™, <), and K, be its anti-Archimedean subcone, Lo the anti-Archi-
‘medean subspace of the ordered space. Then K, = K N L, and hence
Ly does not meet the interior of the cone K.
Proof. Let be z € KN L,. If y € R™ is the element in R™ for which
—ty <z < ty, YVt € RT, then nz <y, Vn € N, and hence z € K,.
That is, K N Ly C K,.

The inclusion K, C L, is obvious. ¢
Corollary 6. spK, C L,.

6. The totally ordered Euclidean space

The ordered Euclidean space (R™, <) is called totally ordered, if
for any two elements u and v of its either u < wv, or v < u.

If K is the positive cone of the ordered Euclidean space (R", <),
then the space is totally ordered if and only if R™ is the reunion of K
and —K.

The order relation < defined in R™ is called lexicographic if there
exists a base eq,..., e, of the space such that if u = ule; + -+ +uley
and v = vle; + - -- + v™e, are elements of the space, then u < v if and
only if either u = v, or u* < v¥ for the first superscript & for which ub £
+ v*. We shall say in this case that ey, ..., e, realizes the lexicographic
ordering. From its definition it follows that the lexicographic ordering
is a full ordering in R™.

Our aim is to prove that the total ordering in R™ can always
realized as a lexicographic ordering.

The positive cone K of the lexicographically ordered Euclidean
space is the following one:
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K={z=(z..,2") 2zt =..=21=0 2F>0, k=1,..,n}u{0}.

The totally ordered Euclidean space is obviously a vector lattice.
Lemma 15. Let (R", <) be totally ordered. If K, 1is the anti-Archi-
medean subcone of the positive cone K of this ordered vector space, then
dim K, =n— 1.
Proof. Since K is a latticial cone, K° # ). Let be b € K°, and let us
consider the set

Ko={zcK: x<th Vte R}

We shall show that dim Ky = n — 1, and then that Ky = K,.

Consider the elements kq,...,k,—1 in K which together with b
form a linearly independent system.

Consider the open line segments (—k;,b), ¢ = 1,...,n — 1 which
necessarily meet the boundary K® of the cone K. That is, there exist
the scalars t; € (0,1) such that y; = t;k;+(1—t;)b€ Kb, i=1,...,n—

— 1. The system of vectors y1,...,%Yn_1 is linearly independent. Since
K U (—=K) = R", for each index i either y; or —y; is element of K.
Denote by z; those of them which isin K. Then z,,..., 2,—1 are linearly

independent elements of K.

Assume that among the above determined elements there exists
a 2;, for which there exists the scalar t > 0 such that tb < z;. Then
z; € K°, which furnishes a contradiction with the hypothesis that y; €
€ K°.

From the fact that the space is totally ordered, we have then that
z; <th, VteR™, i=1,...,n — 1. Accordingly z1,...,2,-1 € K.

From the definition of Ky follows that Ky C K, and since dim K >
>n—1,one hasdim K, >n — 1.

On the other hand, since K, N K° = {, one has dim K, < n — 1.
Thus dim K, = n — 1. Each element y € K, can be represented as
y=t121+ - +tn_12n-1 and hence y < tb, Vt € R*. Thus y € Kj. ¢
Corollary 7. If L, is the anti-Archimedean subspace in the totally
ordered Euclidean space (R", K), then L, = spK, and hence K, =
=spK, N K.

Proof. We know that K° # 0 and L, N K° = { (Lemma 14), whereby
dim L, < n— 1. On the other hand spK, C L, (Cor. 6), and dim K, =
=n-—-1. ¢

Lemma 16. If (R", <) is totally ordered Euclidean space, and K is
its positive cone, then for each section cone Ko of K (spKy, < k,) is a
totally ordered vector space.
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Proof. Let be u, v € spKy. We can suppose that u < v. Then by
Lemma 3, u < g,v. ¢

Theorem 4. If (R*, <) is totally ordered Euclidean space, then the
ordering is lexicographic.

Proof. We proceed by induction with respect to the dimension of the
space. If n = 1, each total ordering in R! is lexicographic.

Suppose that each total ordering in R™~*! is lexicographic.

Let (R™, <) be totally ordered. Then the anti-Archimedean sub-
cone K, of the positive cone K of the space is of dimension n — 1 by
Lemma 15. From Lemma 16, (spK,, < k,) is a totally ordered vector
space. Let be e; € K\ K,. Then each element z € R™ can be uniquely
represented in the form

r=tle; +y, t' eR, y € spK,.
(This follows from the fact that e; ¢ spK,. Since from e; € spK,,
Lemma 12 and Lemma 2 via the relation K, = spK, N K proved in
Lemma 7 it would follow e; € K,.)

Let us see that if in the above representation of = one has t! > 0,
then z € K. Assume the contrary. Then t'e; +y € —K, from where
0 < t'e; < —y. Since ~y € spK, = Lg, with L, the anti-Archimedean
subspace of the ordered space (see the Cor. 7), there exists the element
z € R™ such that —tz < —y < tz, Vt € RT. But then —tz < tle; <
< tz, Vt € RT, whence tle; € L, = spK,. Since K, = spK, N K, it
would follow t'e; € K, which is impossible.

If £ € K, then in the above representation of z, t' > 0.

Indeed, z € K and t' < 0 would mean that —tle; +z =y €
€ K, y € spK,, hencey € K, and 0 < —tle; < ~tley+z =1y €
€ K,. Since by Lemma 12, K, is a face, it would be e; € K, which is
impossible.

Suppose that £ € K and ¢! = 0. Then z = y € spK, and z €
€ spK, N K = K, (Cor. 7).

Accordingly z is then and only then an element of K, if either in
its above representation t! > 0, or if z € K.

We know that (spK,, < k) is a totally ordered vector space of
dimension n — 1 in R™, which can be identified with the totally ordered
Euclidean space R*~!. From the induction hypothesis, this space pos-
sesses a base es,...,e, which realizes the ordering < g,  as a lexico-
graphic one. But then, from the above reasonings z is in K if and only
if in its representation as z = tle; + t%ey + -+ + tpe™ either every t*




186 A. B. Németh

is zero, or if the first t* which is not zero, is positive. Accordingly the
base e1, es,. .., e, realizes < as a lexicographic ordering. ¢

Corollary 8. The positive cone K of the totally ordered Euclidean
vector space (R™, <) is a stiff latticial cone.

Proof. According to the just proved theorem, there exists a base
{e1,...,en} of R™ such that

K={z=(z',...,z"):zt=.. =21 =0, 2 >0, k=1,..,n}u{0},
where z* are the coordinates of z with respect to this base. Then

Ko = {z € K for which z' = 0}
is the face of K for which the condition in Def. 1 holds. ¢

7. Faces of the latticial cone

Beside the results from the convex geometry wee need in our proofs
some standard results from the vector lattice theory. They can be get
in monographs on vector lattice theory as [8] or [1] and are the following
ones:

Lemma 17. The cone K C R" is latticial if and only if for any a, b €
€ R™ there erists c € R™ such that
(K+a)N(K+b)=K+c.

Lemma 18. If (R", K) is vector lattice, then K fulfils the Riesz sum
condition:
whenever uy, ug, v1, v3 € K, u1 + ug = v + vg
(9) Jwi1, wiz, way, wae € K

such that up = wi1 + Wiz, Uy = Wa1 + Waa,

V1 = W11 + W21, V2 = Wiz + Wa2.

Lemma 19. In the vector lattice (R™, K) holds the Riesz condition

whenever x1, T2, y € K, y < 1 + 23
(R) Jy1, y2 € K
such thaty = y1 + y2
andy1 < z1, Y2 < Ta.
The faces of the latticial cone possesses some important properties
which we shall prove for the sake of completeness.
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Lemma 20. Let Ky and Ko be faces of the latticial cone K C R™.
Then K1 + K> is a face of K.
Proof. Obviously, K1 +Ks isacone. Letbez € K1+ Kyand 0 <y <
< z, where < is the order relation induced by K. Then z = z1 + 3,
where z; € K;, © = 1,2. From Lemma 19 there exist the elements
Y1, Y2 such that y = y; + 32 and 0 < y; < z;, @ = 1,2. Since K is face,
1y, € K;,1=1,2, hencey € K7 + Kj. ¢
Lemma 21. If K; and Ky are faces of the latticial cone K with the
property K1 N Ky = {0}, then

Ky + Ky = Ky + K,
where the symbol + in the right term means that each element in K; +
+ K> is uniquely representable as the sum of elements of K and K.
We have further

(1) sp(K1 + K2) = spKi + spKo,
accordingly
dim(K; + K3) = dim K7 + dim K».
Proof. It is sufficient to prove the relation (1). To do this is enough
to show that
(spK1) N (spK2) = {0}.
Suppose that z is an element of the above intersection,
z=u—v=c—vy, u, vE€ Ky; z, ye< Ks.
Then u+y = z-+v and from Lemma 18 there exist w1, wia, wa1, woz €
€ K with the properties

U = wi1 + Wi2
Y = Wa1 + Wa2
T = w1 + W21
U = Wiz + Wag.

From the first relation 0 < w1 < u, hence wiy € Ki, from the third
one 0 < wq; < z, hence wy; € K3. But then w;; = 0. From the second
and the fourth relation we deduce in a similar way that wss = 0. By
substitution we get v = v and z = y whereby we conclude that z = 0. ¢

8. The stiff latticial cone

Lemma 22. Suppose that the latticial cone K C R™ is not closed.
Then the anti-Archimedean subcone K, of K is not trivial.
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Proof. Suppose that z € K~ \ K and let be y € K°. Then
t—1
t:v+(1—t)yEK,‘v’tE(O,l):>:cZTy,VtE(0,1)=>

= —sy<z, VsER™
Let be z =z A 0. Then 2z # 0.
Since —ty <0, and —ty <z Vt e RT,
—ty<z<0<ty, VtEeRT.
* Hence

1
Og—zggy, Vn €N,

and thus 0 # —2 € K. ¢
Lemma 23. If Ky is such a face of the generating cone K C R™ that
K = K°U Ky and dim Ky < n — 2, then there exists u € R™ with the
property that

Kn{(u+K)
18 not a translate of K.
Proof. Since Kj is a proper face, every its point is a boundary point
of K. Let be z € riKy and let H be a supporting hyperplane of K
containing the element z. Then Ky C H. From the condition dim Ky <

< n—2, Ko does not generate the hyperplane H, and hence there exists
u € H with the property that

Koﬂ(U-i—Ko):@.
Since u + Ko C H and HN K° = 0, K° N (u + Kp) = 0. Similarly
Ko N (u+ K°) =0, because (u+ K°) N H = . Accordingly
KNu+K)=(K°UKy)N({(u+K°)U(u+ Ko)) =

=(K°N(u+K°))U (Kon(u+ Kp)) =K°n(u+ K°).
Hence
KNnu+K)=K°N(u+ K°).
The set at the right-hand side of this relation is open as the intersection
of two open sets. Hence it cannot be the translate of K, which is not
open (0 € K is not an interior point of K). ¢
Corollary 9. If K C R" is a latticial cone with the property that
K = K°U Ky, where Ky is a proper face of K, then dim Ko =n — 1.
Proof. From the preceding lemma and Lemma 17, we have dim Ky >
>n — 1. From Cor. 2, dim Ky < n. ¢
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The stiff latticial cone was defined in Def. 1. We shall call it simply
stiff cone. Regarding this notion we have the following important result:
Lemma 24. Let K C R™ be a latticial cone. The following statements
are equivalent:

1. K is a stiff cone.

2. K possess a proper face Ko with the property that K = K° U K.

3. K possesses a single proper face Ky which contains any other

proper face of K.

4. dim K, = n—1, where K, is the anti-Archimedean subcone of K.
Proof. If n =1, dlmK =1 and K = {0} is the face satisfying all the
assertions of the lemma.

Suppose that n > 1, K is a stiff cone and Ky is the face from
Def. 1.

Assume that K\ Ky # K°. Then K has boundary points without
Ky. Let  be such a point and let H be the supporting hyperplane of
K through z. Then K N H is a proper face of K. Since each point
of (K N H)\ Ky is comparable with any point of Kj, for k € Ky we
must have ¥ < z and then Kg C K N H, since K N H is a face and
x € KNH. But Ky is a proper face of maximal dimension and K N H
is a proper face, thus we must have Ky = K N H. From this it would
follow = € Ky, contrary with the definition of x.

The obtained contradiction shows that K \ Ky = K°, whereby
K = K°U Kg and this proves the implication 1 = 2.

The equivalence 2 < 3 is obvious.

2 = 4. By a comparison of the assertion 2 with Cor. 9 it fol-
lows that dim Ky = n — 1. Let H be the supporting hyperplane of K
engendered by Ky. Then K C¢ Hy and K° C H,° = H™.

Assume that there exists x € HT \ K°, and let y be the element
with
(1) z+K)NK=y+ K

(Lemma 17).
Wehave z +Hy C HY, KN HT =0, hence z+ K C HT and
(z+K)NK = (z+K)NnK°.
Then y € K°. As element of  + K, y is on a closed halfline of this set
issuing from x. A such closed halfline intersects K° in an open interval
since z ¢ K°. Thus y is element of an open interval of the intersection

(z + K) N K. But then y cannot be the vertex of the translated cone
y + K in the formula (1).
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The obtained contradiction shows that K° = H* and hence H C
C K~. This means that —u € K~ for each u € Ky, and by Lemma 11,
u € K,. Hence K, = Kg and dim K, =n — 1.

4 = 1. The implication follows from Lemma 13. ¢

This lemma has some important consequences.

Corollary 10. The stiff latticial cone cannot be represented as sum of
its proper faces. '
Corollary 11. If K is a latticial cone which is not stiff, K' is its proper
face of dimension n — 1, then K possesses points in K \ K’ which are
also boundary points.
Proof. Indeed, if it would not so, then it would be K = K°U K’ which
according the point 3 of Lemma 24 would imply that K is stiff. ¢
Corollary 12. If K is a stiff cone and K, = {0}, then K is of di-
mension one. If K is a stiff cone of dimension greater then one then
K, # {0} and K cannot be closed.
Lemma 25. Let H be a hyperplane in R™ through 0, Kg C H a latticial
cone in the subspace H. Then

K=HT"UK,
1§ a stiff latticial cone in R™.
Proof. A formal verification shows that K is a cone and that K° =
=Ht,

Consider a coordinate system in R™ with the first axis in the
direction of the normal of H, the other axes being placed in H. For
the sake of simplicity we shall represent the points in R™ in the form
(z1,€), where z! is the first coordinate of the point, £ is the collection
of the other coordinates; £ is considered to be a point in H. Let us see
that for a = (a, ), b = (b*,8) € R" there exists a point ¢ = (c*,v)
with the property

2) (K+a)n(K+b) =K +c.

If a' < b', then K +bC K + a and we can take ¢ = b.

If a3 = b1, let v be the point in H, for which (Ky + a) N (Kp +
+ ) = Ko + v (see Lemma 17). Then taking ¢! = a! = b! it can be
shown that ¢ = (c',~y) satisfies the relation (2).

By Lemma 17, K is-a latticial cone. Kj is the single its face of
dimension n—1. From Lemma 24, we have then that K is a stiff cone. ¢
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9. The relationship of stiff faces

The faces K7 and K5 of the cone K are said comparable, if either
K, C Ky, or Ky C Ki. We know from Lemma 4 that K; C Ky is
equivalent with the fact that K is the face of K.

Lemma 26. If K1 and K are stiff faces of the latticial cone K C R™
and K1, N Kaq # {0} (with K, the anti-Archimedean subcone of K;),
then Ky and K> are comparable.

Proof. Since from Lemma 20 K-+ K> is a face of K, it is a latticial cone
in the space it spans. For the sake of simplicity we can then suppose
that K = Kl + Kz.

(a) Assume that K; and Ks are not comparable. Then K; and
K are proper faces of K, and since K is the sum of its proper faces, it
isn’t stiff (Lemma 10). Hence dim K, < n — 2 (Lemma 24).

(b) From the definition of the anti-Archimedean cone it follows
that

K 1a + K2a C Ka,-
(c) According to Lemma 12, the cone K possesses a supporting
hyperplane H such that -
KNH=K,.
(d) For any k € K1, N K3, and any z € K \ K, one has
k<zx.
Indeed, z = 11 + 72, z; € K;,1 = 1,2, and by (b) at least for an index
i, ¢; € K; \ Kiq, whereby k < z; < 21 + 22 = .

(e) Let H be the supporting hyperplane defined at (c). By (a)

there exists u € H such that
u€ H\ (K, — K,) and hence (K, +u) N K, = 0.

Let be v = 0V u, with V the lattice operation induced by K. Let
us show that v —u € K \ K,.

Indeed, if it would be v — u € K, then v € K, +u C H, and
since v € K, it should be v € KN H = K,. Hence from the definition
of u we would come to the contradiction v € (K, + u) N K, = 0.

(f) We have also v € K \ K,, since if it would be v € K, then
from v —u € K and v —u € H it would be v — u € K, and then
vev—K,C K, — K,, which would contradict the definition in (e) of .

(g) Since by (e) and (f) v and v — u are both in K \ K,, for the
element k € (K1, N Kag)\ {0} it holds according (d) the relations k < v
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and k < v —wu. Hence 0 < v — k and u < v — k and from the last two
relations it follows the contradiction

v=0Vu<v—k%. ¢
Lemma 27. If K; and K are stiff faces of the latticial cone K, then
they are either comparable, or K1 N Ky = {0}.
Proof. Suppose that z € (K1 N K3) \ {0}.

If K; (or K») is of dimension one, then K7 (or K3) is generated
by z € K3 (z € K1) and hence K; C K> (or Ky C K7).

We can suppose next that Kj, # {0} and K», # {0}

If z € K1, N Ky, by Lemma 26 K; and K are comparable.

Let be z € K1, and z € K3 \ Ka,. Then for each k € Ky, \ {0}
it holds k < z. But z is also in the face K1,, hence k € Kj,, and by
Lemma 26 K; and K, are comparable.

Suppose finally that z € (K; \ K14) N (K2 \ Kaq). Then for k& €
€ K1, \ {0} nk <z, Vn €N, and in the same time nk € K3, Vn € N,
consequently k& € Ky,. Thus Lemma 26 can be applied also in this
case. ¢

10. Proofs of the main results

Lemma 28. Let K C R™ be a latticial cone. Then K possesses faces
K* of dimension i,1=1,...,n — 1 such that

K'cK?c..c K.

Proof. If n = 2 and K is closed, then it possesses a supporting hy-
perplane (line) H through the nonzero boundary point z of its. Then
K N H will be a one-dimensional face of K. If K is not closed, then by
Lemma 22, K, # {0} will be a one-dimensional face of K.

Suppose that the assertion of the lemma holds for latticial cones
of dimension less than n. It is sufficient to prove that the latticial cone
K C R™ possesses a face of dimension n — 1.

- If K is a stiff cone, then by Lemma 24, dim K, = n — 1 and the
assertion of the lemma, follows from the induction hypothesis.

Assume that K is a face of maximal dimension of K and dim K’ <
< n—2. Then K cannot be a stiff cone and in the set K\ K’, K possesses
points which are its boundary points by Cor. 11. Let = be such a point
and let K” be the face of K engendered by it. Then K" is a proper
face of K (Lemma 8), which isn’t contained in K’, hence K’ + K" is a
face of K of dimension greater then the dimension of K'. Hence, by the



The facial structure of the finite dimensional latticial cone 193

definition of K’ it must hold K’ + K” = K. The face K" is a latticial
cone in the subspace it spans, subspace of dimension less then n. In
this subspace the induction hypothesis works and hence K’ possesses
the proper faces K' ¢ K% C ... C K*® such that dimK’ = j, j =
=1,...,4, i =dim K” — 1. The cones K’ + K7 are by Lemma 20 faces
of K. If K* ¢ K', then K’ + K! would be a face of dimension n — 1 of
K,if K' ¢ K’, and K? ¢ K’, then K’ + K? would have this property,
if K? € K’ we can proceed similarly with K2 and so on, by this way we
can get a face K7 for which dim K’ < dim(K’+ K7) < n. The obtained
contradiction shows that the dimension of K/ must ben —1. .

The proof of Theorem 1. We carry the proof by induction.

The assertion of the theorem is trivial for n = 1.

Suppose that it holds for each latticial cone of dimension less
than n.

If K is a stiff cone, then it is its own maximal stiff face and the
assertion of the theorem holds.

If K is not a stiff cone, then by Lemma, 28, it possesses a face K’
of dimension n — 1 and according Lemma 11, K has points which are
its boundary points in the set K \ K’. Let = be such a point and let
K" be a proper face of K containing the point z. Then K’ + K" is a
face (Lemma 20), and K’ is a proper subset of its. Hence it must be
equal with K (Cor. 2). The induction hypothesis works for the faces K’
and K", hence K’ possesses maximal stiff faces K| and K" possesses
maximal stiff faces K7 such that

K'=K{+...+ K,
respectively
K'=K{+...+ K.
Then
K=K +K"'=(Kj+...+K,)+ (K +...+ K).
Consider the sum
(Ki+...+ K,) + K.
If for every index i one has K| N K{ = {0}, then according to
Lemma 21 it follows that

(Ki+...+K)+K{ =K +...+ K, + K7.
If there exists a single 1, with K] N K{ # {0}, then from Lemma
27, K! and K{ are comparable. If Ky C K;, then
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(Ki—{—...—i—KI’,)-i-K{’:K{-}—...—FKI’,.
If K] C KY, then
(KL 4. +K)+ K =Kl 4. +Kl_, 1 Ky +... + K+ K.
If for the indexes i1,...,%s (s > 1) K NKj # {0}, then
K +...+K;, C Ky.
In this case
(K1 +.. + K + K = Figiy,.i Ki + KT
Hence for any possible case the sum
(Ki+ ...+ K,)+ KY

can be represented as a direct sum of stiff faces of K.

Following this procedure, we can see that

(Ki+...+ K, +K{)+ K3
can be represented as direct sum of stiff faces and so on, finally also
K can be represented as direct sum of stiff faces. From Lemma 27 the
stiff faces in this direct sum are maximal stiff faces of K. ¢
Corollary 13. If the latticial cone K is closed, then it is the direct
sum of its edges. Hence the closed latticial cone K C R™ possesses n
edges.
Proof. Since K is closed, by Cor. 5, K, = {0}, and by Cor. 12, the
cone K cannot have stiff faces of dimension greater as one. ¢
Corollary 14 [Yudin’s theorem|. The closed cone K € R" is latticial
if and only if it is engendered by n linearly independent vectors.
Proof. It is easy to see that for the linearly independent system of
vectors {e1,...,e,} the engendered cone
K={tleg+ - +tley,: t'€Ry, i=1,...,n}

is latticial. (It is the positive orthant of the reference system with
base vectors ey, ..., e, and thus the very classical example of a latticial
cone.)

If K is a closed latticial cone in R™, then by Cor. 13 it is the
direct sum of its n edges and hence is the convex hull of these edges.
Accordingly K is engendered by any 7 linearly independent vectors
placed on these edges. ¢
The proof of Theorem 2. According Lemma 28, the cone K pos-
sesses a face K’ of dimension n— 1. From Cor. 11 since K is not stiff, it
has boundary points in the set K \ K’. Let z be such a point and K" a
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proper face of K containing . Then by Lemma 20 and Cor. 2 we must
have K = K' + K", and the statement 2. is proved. By the proof of
Th. 1 it follows that K is the direct sum of their maximal proper stiff
faces. Thus the implications 1 = 2 = 3 were proved.

If K is the direct sum of its maximal proper faces, then by Cor. 10
it cannot be stiff, whereby we have the implication 3 = 1. ¢

The ordered Euclidean spaces (R™, K’) and (R™, K"’) are called
isomorphic if there exists a linear isomorphism (a linear bijection) A :
: R® — R™ such that A(K') = K".

We shall use next without special references the following standard
statements from the linear algebra:

1. Let be R* = L, + Lpy—yn = My, + M,,_,, two representations of

the Euclidean space as direct sum of subspaces, where L,, and
M,, are m-dimensional, L,_,, and M, _,, are n — m-dimensional
subspaces, 1 < m < n. If Ay : Ly, — M, and Ay : Ly, —
— M, _, are linear isomorphisms, then the mapping A : R® —
— R™ defined for = 21 + 29, 1 € Ly, T3 € Ly as Az =
= Ajxy + Asxa, is a linear isomorphism.
If K ¢ R™is a cone and A : R® — R™ is a linear operator,
then A(K) is a cone. The operator A transforms the faces of K
onto faces of A(K). If A is an isomorphism, then it preserves the
whole face structure of K, that is, A realizes a one to one (linear)
correspondence between the faces of K and the faces of A(K).

3. The conjugate A* of the liner isomorphism A of R™ (i.e. the linear
operator defined by the relation (Au,v) = (u, A*v), YV u, v € R?)
is a linear isomorphism.

4. If A is the isomorphism of the ordered Euclidean spaces (R™, K')
and (R™, K""), then the conjugate A* of A transforms linearly and
bijectively the conjugate K"* of K" onto K'*, the conjugate of
K' (and hence A*(K"*) = K'*.)

5. If two ordered Euclidean spaces are isomorphic, then they are
identical from the point of view of their ordered vector space the-
oretic structure.

Let K ¢ R™ be a latticial cone and consider the representation of
the positive cone K in the form

(1) K=K +...+ K,
with K; its maximal stiff faces (Th. 1).

N
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Let L; = spK; = K; — K; be the linear space engendered by the
face K;. Then by Lemma 21 we have
R*=Li+...+ L,
Consider the subspaces M;, i = 1,...,r of R” such that dim M; =
= dim L; and
(2) R*=M; &... & M,,

where @ denotes orthogonal sum.

Denote by A; a linear isomorphism of L; onto M;. Let be K| =
= A;(K;). Then the operator defined for z = z; +--- 4+ z,, z; € L; by
the formula

Az = Ajz1 + -+ Arzy
is a linear isomorphism and

AK)=K|®...®8 K,
is a cone having the same facial structure as K (hence K[, i =1,...,r
are maximal stiff faces of A(K)).
The proof of Theorem 3. According to the remarks above we can
suppose that K is represented as

K=K ®..9K,

with K; its maximal stiff faces, i =1,...,r.
Let K, be the anti-Archimedean subcone of K and Kj;,; be the
anti-Archimedean subcone of K;,1=1,...,r. Then

Ka:Kla@---@Kra-

Let be z* € K* \ {0}. Then z* is the normal of a supporting
hyperplane H of K and in the same time a supporting hyperplane of
the wedge K~. Then K, — K; C H by Lemma 12, and hence (z*,a) =
=0,Vae K,.

Since K; is a stiff face, dim K;, = dim K; — 1. Let k; € K; \ Kiq
be the element for which (k;,a’) =0, V o’ € K;, and whose Euclidean
norm ||k;|| = 1. We have then (k;, k;) = 0if i # j and (k;, ki) = 1.

Fach element z; of the face K is representable in the form z; =
= a; +t'k;, where a; € Kig, t* € R, Since a; € Kg, we have (z*,z;) =

Let be

We claim that
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1,—1

Indeed, an arbltrary element z of K can be represented in the
form z =z1+- + 2, where z; € K;, z; = a; + t'k;, a; € K C
Cc K,, t' € Ry, (ki,a;) = 0. Hence

(x*,m):ix ;) thm k)
i=1

On the other hand, (k;, z;) = t*, and using the relations (k;, ;) =
=0, 1 # j it follows that

™ ™ T
<Z($k>k :c> = (2", ki) (i, ) Zt’ z*, k)

Since the scalar product of the vectors z* and Zi:l (x*, ki)k; with
each = in K coincide, and since K is a generating cone, our claim is
verified.

Hence every element z* € K* can be written in the form

-
* *
i=1
The converse of this assertion is obvious: each sum of form

r
Zsiki, s €Ry,i=1,...,7
i=1

is an element of K*. {
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