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Abstract: We give a structure theorem for the multiplicative semigroup of
an arbitrary zero symmetric near-ring with DCCN and we will see that the
multiplicative semigroup is of a very special nature. After that we study some
classes of near-rings with special multiplicative semigroups. In particular, we
study near-rings with O-simple, regular and semisimple multiplicative semi-
groups.

1. Introduction and preliminary definitions

What concerns the notation and basic results used in this paper,
we are refering to [7] for near-rings, in particular we use right near-rings,
and to [3] and [5] for semigroups.

In the first part of the paper we study the multiplicative semi-
groups of zero symmetric near-rings N with descending chain condition
on N-subgroups of y N in full generality. Usually we write IV for near-
rings and (IV, %) for the multiplicative semigroup of V. We will see that
(N, %) is always the union of two disjoint sets N# and Z., N# (if not
empty) being regular and a union of isomorphic groups and Z,. being an
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ideal of (IV, *). Based on this result we then study zero symmetric near-
rings whose multiplicative semigroup is 0-simple, so has no ideals other
than {0} and N. We also try to generalize results we obtain in this
area and we will be in a position to prove results on regular near-rings
and on near-rings whose multiplicative semigroup is semisimple.

The study whether a semigroup admits a near-ring structure or
not is by far not so well developed as the study which near-rings can be
defined on certain types of groups. A good survey for what has been
already done from the semigroup point of view can be found in [4] and
this paper also should contribute to this theme. Note that when dealing
with zero symmetric near-rings N, with |N| > 2, our semigroups are
always semigroups with zero.

Before starting our work we recall some definitions. If a semigroup
S with at least two elements contains an element 0 such that for all s €
€ S, 0s = s0 = 0, then we call S a semigroup with zero 0. If we would
not want S to have more than two elements, then the trivial semigroup
{e}, in which e? = e, would be a semigroup with zero. We do not want
that. Furthermore, note that in a semigroup with zero 0, 0 is unique.

A non-empty subset A of a semigroup S is called a left ideal if
SA C A, a right ideal if AS C A and an ideal if it is both a left and a
right ideal.

Following the notation of [3] we define:

Definition 1.1. A semigroup S is said to be O-simple if S? # {0}
and {0} and S are the only ideals of S. Similary a semigroup S is left
O-simple if {0} and S are the only left ideals. For semigroups without
zero, we use the terminology simple and left simple, respectively. A
left (right) ideal M (# {0}) of a semigroup S with zero is said to be
O-minimal if M and {0} are the only left (right) ideals of S properly
contained in M. A 0-simple semigroup is said to be completely O-simple
if it contains at least one 0-minimal left ideal and at least one O-minimal
right ideal.

Definition 1.2. Let E be the set of idempotents of a semigroup S. If
e,f € Ewedefinee< fifef =fe=e.

Note that < is a partial order on E (see [3] or [5] for more on that
subject).

Definition 1.3. A non-zero idempotent e of a semigroup S is said to
be primitive if e is minimal w.r.t. < in the set of non-zero idempotents
of S.

For later use we need the following lemma:
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Lemma 1.4. [5, Chapter 3, Th. 3.1.] A 0-simple semigroup is com-

pletely 0-simple if and only if it contains a primitive idempotent.
Finally, an element a of a semigroup S is called regular if there

exists ¢ € S such that aza = a. S is called regular if all its elements

are regular. A near-ring is called regular if its multiplicative semigroup
is regular.

2. The multiplicative semigroup of a zero symmet-
ric near-ring

In this section we take a look at the multiplicative structure of
an arbitrary zero symmetric near-ring with descending chain condition
on N-subgroups of yN (abbreviated by DCCN). Although we are in a
very general situation, we will see that we can give some very detailed
results. First we study the role that zero divisors play. Let N be a zero
symmetric near-ring and let Z, :={n € N |3z € N\ {0} : zn = 0} be
the set of right zero divisors.

Definition 2.1. N# := N\ Z,.

In the following, we always assume N # {0}, so 0 € Z,.. We will
now show that Z, is an ideal of the multiplicative semigroup of N, in
case N has the DCCN.

Theorem 2.2. Let N be a zero symmetric near-ring with DCCN. Then
Zy, is an ideal of (N,*) and any proper ideal of (N,*) is contained
mn Ly,

Proof. If N#* = @, there is nothing to prove. So, let m € N#,
Then any m*, k a natural number, must be in N#. The descending
chain condition on N-subgroups of N guarantees that the chain Nm D
D Nm? D Nm?3... terminates. So there is some natural number [ such
that Nm! = Nm!*? = Nm(m!). Consequently, for any n € N there
exists k € N such that nm! = (km)m!. Since m! is not a right zero
divisor, we get n = km, so N C Nm. Clearly, Nm C N and hence,
N = Nm (see [6, Lemma 2]).

let 2z € Z, and n € N. If n € Z., then clearly nz € Z,.. If
n € N#, then Nn = N and since z € Z,, there is an element j € N \
\ {0} such that jz = 0. Now j = mn for some non-zero m € N and
consequently, jz = m{nz) = 0. This shows that nz € Z,.

Clearly Z.N C Z,, s0 Z, is an ideal of (N, *).

Let I be an ideal of (IV, %) and suppose I € Z,. Then there is an
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element i € I\ Z,. By the above, Ni = N C I so I = N. Consequently,
each proper ideal of (N, *) is contained in Z,. ¢

From the proof of the theorem we also have that for n € N #,
Nn = N. We will need this a few lines later.

The theorem we just have proved shows that only such finite semi-
groups S with zero admit a right near-ring structure where the set of
right zero divisors Z, form an ideal. In case Z, is a proper ideal, it
must be the greatest proper ideal of S.

In order to prove our main theorem of this section, we need some
more facts which we collect in the next lemma.

Lemma 2.3. Let N be a zero symmetric near-ring with DCCN such
that N# £ @. Then (N#,%) is a semigroup and for each a € N#
and each b € N the egquation xa = b has a unique solution s in N. If
be N#, then also s € N#.

Proof. We first show that (N, %) is a semigroup. Let ni,ng € N#,
Suppose ning € Zr, so there is an element m € N \ {0} such that
m(ning) = 0. Since ng € Z,, mny = 0 and similary, m = 0 which is a
contradiction. So, N# is closed under multiplication.

Let a € N# and b € N. Consequently, Na = N. So, there exists
an element s € N such that sa = b. Suppose also sya = b. Then we
have (s — s1)a = 0. Since a € N#, (0:a) ={n € N | na =0} =
= {0} and therefore, s = s1. So s is the unique solution of the equation
za =b. By Th. 2.2, s€ N# if b€ N#. {

Now we are in a position to prove our main structure theorem on
the multiplicative semigroup of an arbitrary zero symmetric near-ring
with DCCN.

Theorem 2.4. Let N be a zero-symmetric near-ring with DCCN and
N# £ @&, Fora € N# let 1, be the unigue solution of za = a and let
B, :={z € N# | 1,2 = z}. Then the following hold:

(1) Each (Ba,*) is a group with identity 1, and 1, is a right identity

of N.

(2) Z, and the sets B, (a € N*) form a partition of N.

(3) For a,b € N#, (Bg,*) and (Bs, ) are isomorphic groups.

(4) (N#,%) is a regular left simple semigroup which is a union of
isomorphic groups.
Proof. Let a € N# and b,b; € B,. Then, bb; € N# by Lemma 2.3.
Furthermore, 1,(bb;) = (14b)b; = bb1, so bb; € B,. This shows that
B, is closed under multiplication. Since (1515)a = 14(1sa) = 1aa, we
have that 1,1, = 1, by Lemma 2.3 and 1, is a left identity in B, (note
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that 1, € N# by Lemma 2.3). Since for every m € N, ml, and m is a
solution of 1, = ml,, we have m = ml, and 1, is a right identity of
N. In particular, 1, is the identity in (B, *).

Let b € B,. Let b be the (unique) solution of zb = 1,. Since
(1,0)b = 14(bb) = 1,1, = 1,, we get 1,b = b and consequently b € B,.
On the other hand, bb = bl,b = bbbb and 1,bb = bb and hence bb = 1,.
So b is the multiplicative inverse of b in B,.

The proof of part (1) is now complete. For part (2) it suffices to
show that Va,b € N# either B,NBy = @ or B, = By: Let m € B,NB,.
Then 1,m = m = 1ym and hence, 1, and 1 are solutions of xm = m.
So 1, = 1 and B, = B,.

For proving (3), consider the map ¢ : B, — By, z — 1,z. Note
that 1z € By for any z € N#. Let ¢(z1) = 1pz1 = 1pz2 = ¢(z2). By
part (a) we have z; = 1,21 = 1,(1p71) = 14(1p22) = 1lazo = 3, SO
¢ is injective. Let y € By. Then, 1,y € B, and ¢(1,y) = 1p(1ay) =
= 1y = y € By, so ¢ is injective. Furthermore, for z1,z9 € B,,
¢($1$2) = 11,((131582) = lb((wllb)mg) = (15361)(1(,:1?2) = ¢($1)¢($2) We
finally have proved that ¢ is a group isomorphism.

To prove part (4), it follows immediately from (2) and (3) that
(N#,%) is a union of isomorphic groups. Hence, (N#, %) is a regular
semigroup. Since for each a € N# and each b € N# the equation
za = b has a unique solution s in N# by Lemma 2.3, (N#, %) is left
simple. ¢

Note that it may happen that N = Z,. for a zero symmetric near-
ring N. Then Th. 2.4 does not give us any information. To the authors
knowledge there does not exist a meaningful description of near-rings
with N = Z,, if possible at all. Note that Th. 2.4 has a high similarity
to the “Main structure theorem of planar near-rings” (see [2, Th. 4.9)]).
Planar near-rings (see Def. 5.3 and [7] or [2] for a good survey) however
do have some very special properties. It therefore seems to be a big
surprise that our Th. 2.4 can be proved in the general setting of arbitray
zero symmetric near-rings with DCCN.

Observe also that any idempotent in N which is not a right zero
divisor is a right identity. This shows that a zero symmetric near-ring
with DCCON and N# # @ must have a right identity (see [7, Rem. 1.112]
in case of finite V). We now also can give an interesting corollary on
near-rings with identity.

Corollary 2.5. Let N be a zero symmetric near-ring with identity and
DCCN. Then, (N*,%) is a group.
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Proof. N# # @ since 1 € N#. By Th. 2.4, N# is a disjoint union of
groups and each idempotent in N # is a multiplicative right identity of
the near-ring. Since N has an identity 1, 1 is the unique idempotent in
N#. So, (N#,%) is a group by Th. 2.4. ¢

Remark 2.6. Note that by setting Z. = {0} in Th. 2.4 we immediately
get that a zero symmetric integral near-ring N with DCCN is a union
of disjoint isomorphic groups and zero. However, integral near-rings
are very well studied (see [7] and [4]) and the author does not claim the
originality of this result.

In the following section we use the observation that the set Z is
an ideal of (IV, *) to study near-rings N which do not have proper ideals
in (N, *). This will imply that the multiplicative semigroup of N must
be of a very special nature, since we will see that such near-rings turn
out to be integral.

3. Near-rings whose multiplicative semigroup is 0-
simple

According to Th. 2.2, we already see that zero symmetric near-
rings with DCCN whose multiplicative semigroup is O-simple are in-
tegral or Z, = N. In the following, we will see that Z, = N cannot
happen.

This study can also be seen as a kind of counterpart to the study
which near-rings can be defined on simple groups (see [7] for a survey).
However, note that 0-simple semigroups do not have to be congruence-
free as this is the case with simple groups.

Theorem 3.1. Let N be a zero-symmetric near-ring with DCCN such
that (N, *) is a 0-simple semigroup. Then N is an integral near-ring
which acts 2-primitively on yN.

Proof. Suppose that N is a zero symmetric near-ring where the multi-
plicative semigroup (IV, %) is O-simple and N has DCCN. Hence N 24
# {0}. If N has no right zero divisors, then it is integral, and due to
the DCCN it is 2-primitive on y N (see [7, Rem. 9.48 dJ).

Suppose Z, # {0} and N# # @. Then Th. 2.2 shows that (IV, *)
is not O-simple. Hence, this case cannot happen.

Suppose N = Z,. We consider the left ideal Jq,2(IV) of the near-
ring N (see [7, Def. 5.5]). By [7, Th. 5.40] J1/2(/V) is nilpotent, so
.]1/2(N)'C = {0}, k a natural number. Now consider the set I := Jy /o (N )*
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* NUJq/2(NV). It is clear that I is an ideal of (V, *). We proceed to show
that I* = {0}. If k = 1, this is clear, so suppose k > 2. Let 7 € I, then
either i € Jy/2(IN) and then clearly i*=0oriec J1/2(N) * N. In the
latter case ¢ = jn for some j € J1/2(N) and n € N. Consider (jn)* =
= \(jn) * ..ok (jnz Since Jy/2(N) is a left ideal of the zero symmetric

-~
k-times

near-ring N, N x J1,2(IN) € J1/2(IV). So, by changing the parentheses
in the product (jn) *...* (jn), we get (jn)* = (j* hy * ... % hp_1) * n,
where h; € J1/2(IN) for ¢ € {1,... ,k — 1}. Since J1/2(N)* = {0}, we
now see that (jn)* = 0 and consequently, I® = {0}. Since (N, *) is as-
sumed to be O-simple, I = {0} or I = N. Suppose I = N. This means
that N is nilpotent. But N? is an ideal of (IV, *), so N2 = N. Therefore,
N cannot be nilpotent and we arrive at a contradiction. Consequently,
I = {0} and therefore, J;,2(N) = {0}. Then, by [7. Th. 5.39], N has
a multiplicative right identity 1, and 1, € N#. This finally shows that
N = Z, cannot happen in case (IV, *) is O-simple and our theorem is
proved. ¢

Corollary 3.2. Let N be a zero-symmetric near-ring with DCCN such
that (N, *) is a 0-simple semigroup. Then (N, *) is completely 0-simple.
Proof. By Th. 3.1, N is a 2-primitive near-ring with DCCN. So, by [7,
Th. 4.46] N has a right identity 1,. Since N is integral and 2-primitive
on yN, Nn = N for any non-zero n € N. So, any non-zero idempotent
e in N is a right identity and therefore, any non-zero idempotent is a
primitive idempotent. By Lemma 1.4, N is completely O-simple. ¢

At least for the class of finite O-simple (hence, completely 0-simple)
semigroups we can say that most of them do not admit a near-ring struc-
ture. If a finite completely 0-simple semigroup (S, *) is not a union of
isomorphic groups (observe Rem. 2.6), then there is no zero symmetric
near-ring N with (IV, %) = (S, *).

In the following we sort of extend Cor. 3.2 to a larger class of
semigroups which we can use later for proving a result on regular near-
rings.

Definition 3.3. A semigroup with zero 0 is said to be a O-direct union
of semigroups S; (¢ € I, I an index set) if S = UjerS; and §; NS5 =
= SZSJ - SJS.L - {0} for 1 # _7

Definition 3.4. A regular semigroup is called primitive if each of its
non-zero idempotents is primitive.

Lemma 3.5. [3, Th. 6.39.] Let S be a semigroup with zero. Then S
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s a primitive reqular semigroup if and only if S is a 0-direct union of
completely 0-simple semigroups.

We now describe near-rings with such multiplicative semigroups:
Theorem 3.6. Let N be a zero-symmetric near-ring with DCCN such
that (N, %) is a 0-direct union of completely 0-simple semigroups. Then
N is integral and acts 2-primitively on yN.

Proof. Clearly, N? # {0}. Since N is regular by Lemma 3.5 and has
the DCCN, N is a 2-semisimple near-ring by [7, Th. 9.164 c] (see also
Cor. 6.3). By [7, Th. 5.32], N has a right identity 1, and yN = 3% L,
is the (finite) direct sum of minimal left ideals of the near-ring N, all
being N-groups of type 2. Suppose k > 1. By [7, Th. 3.43] each left ideal
L; has a right identity. Since y N is supposed to be the direct sum of at
least two different left ideals, say L1 and L, there exist two different
idempotents e; € L1 and ey € Lo, being right identities of L; and Lo,
respectively. Now, since the sum is direct and hence also distributive
(see [7, Th. 2.30]), e1ea = ege; = 0 (see [7, Th. 3.43]) and ey(e; +e2) =
= eje; + ejes = e;. This shows that ej(e; +ez) = (e1 + ea)e; = e
and consequently e; < e; + ey, where < is the partial order relation
of Def. 1.2. Hence, e; + e is a non-primitive idempotent, in contra-
diction to Lemma 3.5. Consequently, K = 1 and N is a minimal left
ideal of the near-ring and y N is an N-group of type 2. Consequently,
N is a simple near-ring, and therefore, (0 : N) = {0}. So, N acts 2-
primitively on yN. It is now easy to show that N is integral: Suppose
ab =0, a,b € N and b # 0. Since N is regular, there exists z € N
such that bzb = b. bx cannot be zero, since otherwise 0 = b. Hence, bz
is a non-zero idempotent. Therefore, N(bz) # {0} and consequently,
N(bz) = N since y N is of type 2. It follows that bz is a multiplicative
right identity of N. This means that 0 = (ab)z = a(bz) = a, which
shows that Va,b € N : (ab=0= (a =0V b=0)) and N is integral. ¢

Finally, we can establish the following equivalences:

Corollary 3.7. Let N be a zero symmetric near-ring with DCCN. Then
the following properties are equivalent:

(1) (N, %) is 0-simple.

(2) (N, *) is completely 0-simple.

(3) (IV, %) is a O-direct union of completely 0-simple semigroups.

(4) N is integral, acting 2-primitively on yN.

(5) (N, =) is a left 0-simple semigroup. .
Proof. (1) = (2) follows by Cor. 3.2. (2) = (3) follows by definition.
(3) = (4) follows by Th. 3.6. For establishing (4) = (5) note that by
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integrality and 2-primitivity on y N we have Nn = N for any non-zero
n € N. Hence the semigroup clearly must be left O-simple. (5) = (1) is
clear. ¢

The results in the next two sections now will be easy consequences
of our observations made so far. We can generalize a well known ring
theoretic result to near-rings and we can also generalize a well known
result on regular near-rings.

4. Near-rings with distributive elements on 0-simple
semigroups

Rings on O-simple semigroups have been studied for example in [8],
where the author studies when a 0-simple multiplicative semigroup of
a ring R is completely 0-simple. It is well known (see [8] for references)
that a completely 0-simple multiplicative semigroup of a ring is a group
with zero, which means that such a ring is a skew field.

Since our results in the last section are also valid in the ring case
(a ring is a near-ring, respectively), we can contribute to this theme:
Theorem 4.1. Let N be a zero-symmetric near-ring with DCCN, hav-
ing a non-zero distributive element, where (N,*) is a 0-simple semi-
group. Then N is a near-field and in the case that N is a ring, N is a
skew field.

Proof. By Th. 3.1, N is an integral near-ring acting 2-primitively on
~nNN. Hence, for all 0#n€ N, Nn=N. Since N has a non-zero distribu-
tive element, N is a near-field by [7, Th. 8.3]. The rest is clear. ¢

5. Integral regular near-rings

We will apply Th. 3.6 to get some information on regular near-
rings. A near-ring N is called regular if (IV,*) is a regular semigroup.
In particular, in case of near-rings with DCCN we can generalize the
following theorem of [1] to near-rings without identity.

Theorem 5.1. [1] A zero symmetric reqular near-ring with identity is
integral iff it is a near-field.

If we do not require an identity, we get the following result:
Theorem 5.2. Let N be a zero symmetric reqular near-ring with DCCN.
Then the following are equivalent:

(1) N is integral.
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(2) Every non-zero idempotent is primitive.
Proof. If N is a regular zero symmetric near-ring with DCCN such that
every non-zero idempotent is primitive, then Lemma 3.5 and Th. 3.6
show that N is integral. Conversely, suppose NN is a zero symmetric
regular and integral near-ring with DCCN. Then, as shown in the proof
of Cor. 3.2, every non-zero idempotent in N is a primitive idempotent. ¢

Note that Th. 5.2 is indeed a generalization of Th. 5.1 in the
case of near-rings with DCCN. Let N be a zero symmetric near-ring
with DCCN and with identity which is integral and regular. Then every
non-zero idempotent is primitive by Th. 5.2. Suppose e is a non-zero
idempotent. Then el = le = e, showing that e < 1 and therefore e =
= 1. Hence, 1 is the only non-zero idempotent. So, N \ {0} is a regular
semigroup with just one idempotent and hence a group by ([3], Chapter
1.9, Exercise 4). Consequently, N is a near-field.

For any near-ring N we can define an equivalence relation = on
N as follows: Let a,b € N. Then a = b :& Vn € N : na = nb. Using
this notation we can introduce an important class of near-rings.
Definition 5.3. A near-ring N is called planar if |N/=| > 3 and if for
all a,b,c € N with a # b the equation za = zb+c has a unique solution
in N.

By [7, Th. 9.50] a finite zero symmetric and integral near-ring N
is planar as long as |[N/ = | > 3. So, Th. 5.2 gives us a source for planar
near-rings:

Corollary 5.4. Let N be a finite zero symmetric regular near-ring with
|N/ = | > 3. If every non-zero idempotent is primitive, then N is a
planar near-ring.

6. Near-rings whose multiplicative semigroup is
semisimple

With methods very similar to that used in the proof of Th. 3.1
we can generalize results on regular near-rings and on near-rings with
0-simple multiplicative semigroups to a larger class of near-rings (how-
ever, observe Rem. 6.4).

Regular semigroups R and also 0-simple semigroups, for exam-
ple, have the property that given an ideal I of R, then I? = I. Such
semigroups are called semisimple.

Definition 6.1. [3, Chap. 2.6, Exercise 7.] A semigroup S is semisimple
iff I? = I for every ideal I of S.
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It is well known that a regular near-ring is semisimple in the near-
ring theoretic sense. This means that given a regular zero symmetric
near-ring N with DCCN, then Jo(N)={0}, i.e. N is 2-semisimple (see
[7, Th. 9.164 c]). By Th. 3.1, the same holds for near-rings with 0-simple
multiplicative semigroups since they are 2-primitive near-rings. In the
following we will see that this result extends to near-rings whose multi-
plicative semigroup is not necessarily regular or 0-simple but semisim-
ple.

Theorem 6.2. Let N be a zero symmetric near-ring with DCCN. Sup-
pose (N, *) is a semisimple semigroup. Then J2(N) = {0}.

Proof. As in the proof of Th. 3.1 we consider the left ideal J; /2(IV) of
the near-ring N and we can show that I := Jq/2(N) * N UJy/2(N) is
a nilpotent ideal of (N, %), say I* = {0}. Since (IV, x) is assumed to be
semisimple, I? = I, so we must have I = {0} and Jy,2(N) = {0}. By
[7, Th. 5.39] we get that N has a multiplicative right identity.

Suppose M is a nilpotent N-subgroup of yN, so M k= {0} for
some natural number k. As an N-subgroup, M is also a left ideal of
(N, ). Using the same arguments as in the proof of Th. 3.1, one can
show that S:=M % N U M is a non-zero ideal of (N,*) and S* ={0}.
Again by the semisimplicicty of (V, *) we get S={0} and consequently,
M ={0}. Hence, N is a near-ring with right identity having no non-zero
nilpotent N-subgroups. The result now follows from [7, Th. 5.49]. ¢

We now can easily re-prove that a zero symmetric near-ring with
DCCN which is regular is a 2-semisimple near-ring (see [7, Th. 9.164c]).
Corollary 6.3. Let N be a zero symmetric near-ring with DCCN. Sup-
pose (N, *) is reqular. Then J2(N) = {0}.

Proof. By Th. 3.2 it suffices to show that (IV, ) is semisimple. Let [
be an ideal of (N, ). Clearly, I? C I. Let ¢« € I. Since N is regular,
there exists € N such that i = i(zi) € I%. ¢

A short note should be in order whether the converse is also true,
that is, if semisimplicity of a near-ring implies that the multiplicative
semigroup of the near-ring is semisimple. The answer is no: Take a
planar near-ring N for example and consider the set A := {n € N |
| Vm € N : mn = 0}. Suppose N is not integral, that means A 5 {0}
(see [7, Cor. 8.92]). It is easy to see that any proper N-subgroup of yN
must be contained in A and that y N is a faithful, strongly monogenic
N-group. So, if A contains no non-trivial subgroup of (N,+) (see the
example below), then N acts 2-primitively on yV, so Jo (V) = {0} but
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A% = {0}, so (N, *) is not semisimple (it is easy to see that A is an
ideal of (IV, %)).

We give an example of a planar near-ring N on the cyclic group of
order 9, where A # {0} and A does not contain non-trivial subgroups
of (N,+). So J2(IV) = {0} but (N, %) is not semisimple. The near-ring
was constructed using the construction method for planar near-rings
which can be found in [2, Chap. 4.1] (we use the group of fixedpointfree
automorphisms ® = {id, —id} acting on (N,+)). We only show the
multiplication table of N (note that A = {0,1,2,4,5,7,8}):

* 1012345678
0/j000000O0CO0CO
11000800100
2000700200
31000600300
41000500400
51000400500
6000300600
71000200700
831000100800

Remark 6.4. The following question remains open: Let N be a zero
symmetric near-ring with DCCN such that (V, %) is a semisimple semi-
group. Is (IV, %) regular?
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