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Abstract: In this note, it is proved that every member of a wide class of
Banach spaces supports a sequence (17, ) of operators with a hereditarily hy-
percyclic subsequence (75, ) such that (T7,) itself does not satisfy the so-called
Hypercyclicity Criterion and such that, in addition, the norms of the Ty,’'s are
controlled in a certain natural sense.

1. Introduction

Assume that X is an F-space (= completely metrizable topological
vector space) over the field K = Ror C. Let L(X) denote the space of all
operators on X, that is, all continuous linear mappings X — X. Then
an operator T' € L(X) is called hypercyclic whenever there exists some
vector z € X — called hypercyclic for T — such that the orbit {T"z : n €
€ N} of z under T is dense in X. The theory of hypercyclic operators
has recently been studied intensively. We refer to the comprehensive
survey [16], see also [12, Sect. 1], [17] and [22]. More generally, a
sequence (Ty,) of operators on X is called hypercyclic provided there
exists some z € X — called hypercyclic for (T,,) — such that its orbit
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{T,z : n € N} under (T;,) is dense in X. Observe that X must be
separable in order to support such a sequence. This more general notion
of hypercyclicity is also sometimes referred to as universality, see [16,
Sect. 1].

Moreover, the sequence (T,) C L(X) is called densely hypercyclic
whenever the set of its hypercyclic vectors is dense in X. It is called
hereditarily hypercyclic whenever each subsequence (T, ) is hypercyclic.
Finally, it is called densely hereditarily hypercyclic whenever each subse-
quence is densely hypercyclic. See [4] and [16, Sect. 2], but note that
Bés and Peris [7] use a different notion of hereditary hypercyclicity.
Corresponding concepts can be defined for a single operator T' € L(X)
by looking at its sequence of iterates.

The “Hypercyclicity Criterion”, which gives sufficient conditions
under which a sequence (7},) is hypercyclic, has turned out to be ex-
tremely useful in applications.

Definition 1.1. A sequence (T,,) C L(X) satisfies the Hypercyclicity
Criterion provided there exist dense subsets Xy and Yy of X and an
increasing sequence (ng) of positive integers satisfying the following
two conditions:

(i) Th,x — 0 (k — o00) for all z € Xo;

(i) for any y € Yp there is a sequence (ug) in X such that up — 0

and Tp,, ur — y (kK — 00).

Note that this is an equivalent reformulation of the Hypercyclicity
Criterion as stated in [7, Def. 1.2 and Rem. 2.6]. Earlier versions of it
are due to Kitai [19] and Gethner and Shapiro [11, Rem. 2.3], see also
[15] and [12, Cor. 1.4]. As before, an operator T is said to satisfy
the Hypercyclicity Criterion provided the sequence (T™) of its iterates
satisfies it. It is still unknown whether any hypercyclic operator must
satisfy the Hypercyclicity Criterion.

Bés and Peris [7, Th. 2.3] have recently shown that an operator
T satisfies the Hypercyclicity Criterion if and only if some subsequence
(T™#) is hereditarily hypercyclic, and if and only if the operator T®T :
: (z1,22) € X x X — (T'z1,Tz2) € X x X is hypercyclic. They have
generalized their result to sequences (7},) satisfying the condition that
each T, is an operator with dense range and the sequence is commuting,
that is, T, Ty = T Ty, for all m,n € N [7, Rem. 2.6(3)].

Inspired by this result, Grosse-Erdmann and the author have re-
cently proved [6] the statement contained in Th. 1.2, see below. Before
this, we recall that a sequence (T,) in L(X) is called almost-commuting
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[5] if and only if lim, 0 (TnTm — TmTn)z = 0 for every m € N and
every x € X.

Theorem 1.2. Let (T},) be a sequence of operators on X. Then the
following assertions are equivalent:

(A) (T,,) satisfies the Hypercyclicity Criterion.

(B) (Ty.) has a densely hereditarily hypercyclic subsequence.

(C) For every N € N, the sequence (I, ®- - ®Ty) (N-fold) is densely

hypercyclic on XV .

If, in addition, the sequence (Ty) is almost-commuting, then the
preceding assertions are equivalent to each of the following:

(D) (T, ®Ty,) is densely hypercyclic on X x X.
(E) (Ty) has a hereditarily hypercyclic subsequence.
(F) (T, @ Tn) is hypercyclic on X x X.

In view of Th. 1.2 one might believe that, even with no hypothesis
of commutativity, the assumptions of density in conditions (B) and
(C) could be dropped. This is not true: A concrete example on 2
is constructed in Rem. 2.3(c) of [6]. Here we will extend highly this
construction. In fact, we give in Sect. 2 a sufficient ‘soft’ geometric
condition for a Banach space to support a sequence (T,) of operators
having a hereditarily hypercyclic subsequence (Ty, ) but such that (T7)
itself is not densely hypercyclic, so not satisfying the Hypercyclicity
Criterion. For this, we introduce the concept of “shrinkable” Banach
spaces. In addition, a rather natural ‘control’ property of the norms of
the members of such sequence is obtained.

2. Norms of hypercyclic sequences of operators and
shrinkable spaces

In this section we shall study Banach spaces X. Since a hyper-
cyclic operator T' on X cannot be a contraction we have that ||T]| > 1.
On the other hand, Rolewicz proved in 1969 ([23], see also [12, Sect.
2]) that if B : (z1,%2,...) — (z2,23,...) is the backward shift on the
sequence space 12 = {(z,) € KN : 307, |zn|? < oo} then AB is hyper-
cyclic for every scalar A with |A| > 1. Evidently, [|AB|| = |A|. Hence, if
H is a separable infinite-dimensional Hilbert space then forany @ > 1
there is a hypercyclic operator T on H with ||T|| = o; T may even be
chosen to satisfy the Hypercyclicity Criterion because the AB do.

Turning to general separable infinite-dimensional Banach spaces
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X, we will show in the next auxiliary result that, again, any value o« > 1
may be attained as norm.
Lemma 2.1. Let X be a separable infinite-dimensional Banach space.
Given a > 1 there exists an operator T on X with the following prop-
erties:

(i) T satisfies the Hypercyclicity Criterion.

i) [Tl =a.
Proof. By [1] or [3] there exists an operator K € L(X) such that T} :
:= I+ MK is a hypercyclic operator for each A > 0, and by [20, p. 530]
each T) may even satisfy the Hypercyclicity Criterion. Now consider
the mapping

h: A ||Ta]] (A >0).

Since |h(A) — h(p)] < |X — p|||K|| we have that h is continuous. But
limy o h(A) = 1 and limy_,o A(A) = oco. Hence, given a > 1, there
must be at least one A > 0 with A(\) = «, that is, ||Th]| = «, as
required. ¢

Let us briefly consider the possible spectral radii of hypercyclic
operators, where we now assume that X is a complex Banach space. By
a result of Kitai [19] each component of the spectrum of any hypercyclic
operator 1" on a complex Banach space X meets the unit circle, hence
its spectral radius satisfies p (T") > 1. Now, on a Hilbert space any value
a > 1 can be attained as spectral radius because Rolewicz’ operators
satisfy p(AB) = |A| > 1, and by Chan and Shapiro [9, p. 1446] there
is a hypercyclic operator with spectral radius one. On the other hand,
there are complex Banach spaces on which each hypercyclic operator
has spectral radius one. Indeed, every hypercyclic operator on a Banach
space with hereditarily indecomposable dual has finite spectrum (see
the proof of [8, Th. 1]) and hence has spectral radius one by Kitai’s
result.

We now turn to sequences of operators. As we mentioned earlier
it is an open problem if every hypercyclic operator satisfies the Hyper-
cyclicity Criterion. On the other hand, it is not surprising that there
are hypercyclic sequences (7,) that do not satisfy the Hypercyclicity
Criterion. Indeed, it suffices to consider the following example bor-
rowed from [12]: If X = R?, (z,) is a dense sequence in R? and for
each n € N the vector y, is orthogonal to z, with norm n, then the
sequence 1y, : X — X given by Tn(a,b) = azy, + by, is hypercyclic
but not densely hypercyclic and, in addition, no subsequence (T, ) is
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hereditarily hypercyclic.

We shall show next that in ‘most’ separable Banach spaces there
is a hypercyclic sequence (T,,) that has a hereditarily hypercyclic sub-
sequence but that is not densely hypercyclic such that, in addition,
limy,— oo || Th||*/™ equals a prescribed number « € [1, 00]. This condition
was suggested by Gelfand’s formula by which p (T) = lim,, e || 77|}/
for operators T on complex Banach spaces, see [24]. Note that, trivially,
any hypercyclic sequence (T},) satisfies limsup,,_,o [|T5/*/™ > 1, and
if, more, (T,) is hereditarily hypercyclic then liminf, . | T l|¥™ > 1.

To specify the Banach spaces for which the result holds we have
to consider the following geometric concept. In the sequel, a subspace
always refers to a closed linear submanifold.

Definition 2.2. We say that a Banach space X is shrinkable whenever
it is isomorphic to some proper complemented subspace.

Clearly, such a space X must be infinite-dimensional. We now
establish an elementary characterization of shrinkable spaces: A Banach
space X is shrinkable if and only if there is a non-trivial subspace Y’ C
C X such that X is isomorphic to X x Y. Indeed, if X is isomorphic
to X x Y then it is shrinkable because X is a proper complemented
subspace of X x Y. Conversely, if X is shrinkable then X = Z®Y with
subspaces Z and Y # {0} of X such that Z is isomorphic to X. Hence
X is isomorphic to X x Y.

In the case K = R, we will consider in the proof of Th. 2.3 the
complexification of X and of an operator S € L(X). A thorough treating
of the complexification problem can be found in [21] and [18]. If X is
a general topological vector space over R then its complexification is
the product space X = X x X = X +iX = {(z,y) =z +iy: 5,y €
€ X}, endowed with the sum in each coordinate and with the scalar
multiplication

(a+if)(z +iy) = oz — By +i(Br +ay) (%,BER, z,y € X).

Then X is a topological vector space over C. Assume that S € L(X).
Then the complexiﬁcation S of S is defined as g(:z: +1y) = Sz +1Sy.
We have that S € L(X ). If X is normable and || || is a norm generating
its topology then . X is also normable and, in fact, there are plenty of
norms ||| - ||| on X generating its topology. If, in addition, (X, || - |) is
a Banach space over R then (X Il - ]) is a Banach space over C. One
of the most useful norms on X is the Taylor norm || - ||~ given by
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llz +iy|l- = sup |zcost— ysint|.
0<t<ar

If S € L(X) and ||S|| (||S]||) denotes the norm of S (of S) as a member
of L(X) (of L(X), respectively) — where X is assumed to be endowed
with | - .- — then 5] = [15].
Now we can state our main result in this section.

Theorem 2.3. Assume that X is a separable shrinkable Banach space
and let a € [1,00]. Then there ezists a sequence (Ty,) C L(X) with the
following properties:

(a) (Tn) has a hereditarily hypercyclic subsequence.

(b) For every Ne N, (T, &---®Ty,) (N-fold) is hypercyclic on XN .

(c) (Ty,) is not densely hypercyclic.

(d) limp oo [|Tn]|™ = .
In particular, (Ty,) does not satisfy the Hypercyclicity Criterion.
Proof. It follows from the hypothesis that X is a separable infinite-
dimensional Banach space.

Assume first that o € (1,00), and fix 8 € (1, ). Then by Lemma
2.1 there is an operator A on X with ||A|| = § that satisfies the Hyper-
cyclicity Criterion. Since X is shrinkable we can choose a non-trivial
subspace Y of X and an isomorphism
S: X - XxY, z+— (S1z,5).

We define the sequence of mappings T, : X — X as

(1) Thx=A"S1z+a"S2z (neN, z e X).

It is clear that (7,) C L(X). By continuity of Sy the set Ker Sy = {z €
€ X : Sz = 0} is a closed subset of X, and we have Ker Sy # X since
S2(X) =Y # {0}. Fix z € X \ KerS3. Since ||Szz| > 0 and a > G,
(1) implies that
[ Tnzll > ™| Saz|| — |A™[I1S1 1]
@ > o|Saal] ~ 4| [S:
= a"||Szz|| — B[ S1| ||| — oo

asn — oo. Thus z cannot be hypercyclic for (7,,). Hence all hypercyclic
vectors for (T},) are contained in Ker Ss, a proper closed subset of T
Consequently, (T,,) is not densely hypercyclic.

Next, since A satisfies the Hypercyclicity Criterion there is an

increasing sequence (ny) of positive integers such that (A™*) is hered-
itarily hypercyclic. Let (my) be a subsequence of (ng) and let z be
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a hypercyclic vector for (A™k). For the vector z € X with Sz =
= (512, S22) = (,0) we have that Tp, 2z = A™*z for all k¥ € N, which
tells us that z is hypercyclic for (T, ). Thus, (T, ) is hereditarily
hypercyclic.

Similarly, since A satisfies the Hypercyclicity Criterion we have
that, for each N € N,A@® --- @ A (N-fold) is hypercyclic on X. Let
(z1,...,zn) be hypercyclic for A@® --- @ A and choose z; € X with
Sz; = (S1zj,522;) = (2;,0) for 1 < j < N. Then it follows as above
that (z1,...,2n) is hypercyclic for (T, @ - - - @ Tr,).

As for the behaviour of the norms, consider any vector z € X \
\ Ker S5 with ||z|| = 1. By (2) we have

Tl 2 | Tnzll 2 @™||S2zl| — 8™ |51l
Since ||S2z|| > 0 and o > [ this implies that
lim inf HTn||1/TL > a.
n—oQ

By (1) we also obtain for all z with ||z|| = 1 that

Tzl < B™1S12ll + o™|| Szl < (81| + IS2l) o™ (n € N),
so that
limsup | To||*/™ <

T— 00
which gives part (d) of the theorem.

In the case & = oo we simply replace a™ by n™ in the above
reasoning.

As for the case a = 1, we have to distinguish the real and complex
scalar case. If K = C, we take an operator A on X that satisfies the
Hypercyclicity Criterion and such that p (A) = 1, cf. our remarks after
Lemma 2.1. By Gelfand’s formula we have lim,,_,c || A?||}/™ = 1. When
we define operators T, as in (1) with n(||A™|| + 1) in place of o™ the
result follows essentially as before.

Finally, if K = R, we take an operator A that is a compact
perturbation of the identity, that is, A = I + K, and that satisfies
the Hypercyclicity Criterion. Consider the complexification X of X
— endowed, for instance, with the Taylor norm — and the complexifi-
cation A of A. Then A satisfies the Hypercychclty Criterion [7, Cor.
2.8] and hence is hypercychc Since A is also a compact perturbation
of the identity I on X, we get o (A) = {1} (see again [9, p. 1446]),
which implies that limy, . H(A)"Hl/ " =1 by Gelfand’s formula. Thus,




228 L. Bernal-Gonzdlez

limy, o0 ||A™[|Y/™ = 1 because ||A™| = ||A"|| = |[(A)™| for every n.
Now the proof in the real case can be obtained as in the complex case.
This completes the proof. ¢

The result leaves open the possibility that every densely hyper-
cyclic sequence (T,,) satisfies the Hypercyclicity Criterion. We give a
simple example to show that this is not the case. Recall that a Fréchet
space is a locally convex F-space.

Proposition 2.4. Let X be a separable infinite-dimensional Fréchet
space. Then there ezists a densely hypercyclic sequence (T,,) C L(X)
so that no subsequence (T, ) is hereditarily hypercyclic. In particular,
(Ty,) does mot satisfy the Hypercyclicity Criterion.

Proof. Let (z,) be a dense sequence in X and f a non-trivial contin-
- uous linear functional on X. Define operators T, € L(X) by T,z =
= f(z)z, (z € X). Then, clearly, (T},) has the desired properties. ¢

Concerning Th. 2.3 one may wonder whether infinite-dimensional
non-shrinkable Banach spaces can exist. This is indeed so. In [13],
Gowers was able to construct an infinite-dimensional Banach space X
that is not isomorphic to any of its hyperplanes, and X even has an
unconditional basis. In fact, it turned out that X is not isomorphic
to any proper subspace and hence cannot be shrinkable. Moreover,
Gowers and Maurey showed that every (real or complex) hereditarily
indecomposable Banach space, whose existence they also demonstrated,
is not isomorphic to any proper subspace, see [14, Cor. 19 and Th. 21].

Next we provide a sufficient condition for a Banach space X to
have the desired property. Such condition is satisfied, for instance,
by the sequence spaces ¢g and P (1 < p < oo) with respect to their
canonical bases. We recall that two basic sequences (z,), (yn) in a
Banach space are called equivalent if, for every sequence (a,) of scalars,
the series ) oo ; anZ, converges if and only if the series ) oo | anyn
converges, see [2]. We have that X is shrinkable if it admits a Schauder
basis (e,) which is equivalent to the shifted sequence (eny1). For the
proof one need only to observe that by the Closed Graph Theorem
the mapping Zf;l Qn€n > Y oo | Gneént1 defines an isomorphism of X
onto the complemented subspace Y :=span {e, : n > 2}.

If the basis (e,) is unconditional one may replace the shift
> 1 Gnén = p oo Gnent1 in the last paragraph by > 7 anen —
— Z;'Ozl Gn€r(n) With an arbitrary one-to-one non-onto self-mapping
w on N. It should also be noted that a Schauder basis need not to
be equivalent to a shifted one: consider, for instance, the canonical
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basis (en) of the Hilbert sequence space X = {(A\,) € RY: ||(\,)|:=
= (%%, [An|?e™)/2 <co} and the sequence of scalars a, =1 e~ /2,

Finally, let us recall that an infinite-dimensional Banachnspace X
is said to be prime whenever every complemented infinite-dimensional
subspace is isomorphic to X. As for examples, the sequence spaces
o, lp (1 < p < oo) and Iy are prime, see for instance [10] and the
references contained in it. Hence, in view of Def. 2.2, one might believe
that there is a strong relationship between shrinkable spaces and prime
spaces. Obviously, any prime space is shrinkable. But that a shrinkable
space is prime is far from being true. For instance, the space X = l3®co
is clearly shrinkable but it is not prime since [ is reflexive while X is
not.
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