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Abstract: In [4] a tensor product of near-ring modules has been defined. But
it turned out to be an abelian group. In order to avoid this special situation,
this concept is generalised further in this paper. Now there are two tensor
products for the same pair of modules. This situation fits better in the theory
of near-rings and their modules. It has been seen in [2] that there may be two
duals for a pair of modules.

1. Introduction

We write maps on the right and hence use left near-rings and the
traditional near-ring modules are right modules. Let (R, +,-) be a left
near-ring. A group (G, +) is called an R-module (traditional one) if
there is a near-ring homomorphism 6 from R to Map(G). As usual,
we write gr to mean g(rf) for ¢ € G and r € R. In this case the
group elements distribute over the near-ring elements. G is called a
complementary R-module or R-comodule, for short, if there is a semi-
group homomorphism 6 from (R, +,-) to (End(G), o). In this case the
near-ring elements distribute over the group elements and the action of
R is usually written on the left of the elements of G.

Let R and S be two left'near-rings. A group G is called an (R, S)-
bimodule if:
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i) G is an R-comodule,

ii) G is an S-module,

iii) (rg)s =r(gs),Vge G,r € R,s € S.

G is called a left strong R-module if the action of R is defined on
the left of G satisfying the following conditions Vr,r’ € R and g,¢’ € G:

i) (rr')g =r(r'g),

i) r(g+g')=rg+rg,

iii) (r+r)g=rg+rg.

A right strong R-module is defined similarly. (R, +) is an (R— R)-
bimodule for a left as well as a right near-ring R. If R is a distributive
near-ring then (R, +) is a left as well as a right strong R-module. Many
more examples of these structures are given in Grainger [2].

Let G and H be two R-modules (R-comodule. A group homo-
morphism 6 from G to H is called an R-homomorphism if Vg € GG, and
r € R, (gr)0 = (¢g0)r, ((rg)f = r(gb)). An (R — S)-homomorphism for
(R — S)-bimodule are defined in a similar way.

We refer to Clay [1] for definitions and results about near-rings
and to Hungerford [3] for groups and tensor products of ring modules.

2. Tensor product

Let R be a left near-ring, A an R-module and B an R-comodule.
Let F be the free group on Ax B. Let L and K be the normal subgroups
of F' generated by:

{(a+ad’,b) — (a’,b) — (a,b), (ar,b) — (a,Tb)|a,a’ € A,b € B,T € R}
and

{(a,b+b") — (a,b') — (a,b), (ar,b) — (a,rb)|a € A,b,b’ € B,r € R}
respectively.

We call F/L the left tensor product of A and B and denote it
by Ar ® B and call F//K the right tensor product of A and B and
denote it by A ® gB. The coset (a,b) + L is denoted by a; ® b and
(a,b)+ K by a®,b. The coset L is denoted by 0 in both cases. Since F’
is generated by Ax B, F//L = ArR®B and F'/K = AQ rB are generated
by {a; ® bla € A,b € B} and {a ® ,bla € A,b € B} respectively.
An element of Ar ® B (A® rB) is a finite sum of the form ) &;(a; ;1 ®
®b;) O ei(a; ® +b;)), where each g; = £1.

The following result is a direct consequence of the definition of
tensor products.
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Theorem 2.1. 1. Va,a’ € A,b € B,r € R, the following are satisfied
in Arp ® B:

i)(a+d)®b=a;®b+a;®Db,

i) ar, ® b=a; @b,

iii) 04, ® b= 0,

iv) (—a);®@b=—(a; ®D).

2. VYa € A,b,b' € B,r € R, the following are satisfied in A ® rB:

i) (a)@B+bV)=a®@b+a® b,

ii) ar ® rb = a ® ,1b,

iii) a ® rgb =0,

iv) a®,(~b) = —(a ® ,b).
Remarks. 1. In general (a+a')r # ar+a'rin A, as Aisan R-module
But we have

(a+a)r®b=(a+ad)®rb=a;®rb+a;@rb=
=ar®b+ar@b=(ar+ad'r), @b

This shows that in Agp ® B, with b # 0.

2. Tt is possible that a ® b is zero in A ® rB, with b # 0.

Later on we will show these by examples (Ex. 4 and Ex. 1 respec-
tively).

We generalize the definition of a middle linear map.
Definition. Let R, A and B be as before and let C' be any group with
amap f: Ax B — C. Then we call f:

1. a left R-middle linear map if:
(a+a’,b)f = (a,b)f+(a’,b)f, (ar,b)f = (a,7b)f, Va,a’ €A, bEB, TER;

2. a might R-middle linear map if:
(a,b+b)f = (a,b)f+(a, ) f, (ar,b)f = (a,7b)f, Va€ A, b,b'€B, r€R.

From now on we will write LRMLM and RRMLM for a left and
a right R-middle linear map respectively.

It is easy to see that

0, =jn,: AxB— AR® B=F/L, (a,b) — a; ®b
and
0, = jrx: Ax B — A®Q rB=F/K, (a,b)—a® rb
are LRMLM and RRMLM respectively. Here j : A x B — F is the
inclusion map, and
n;,: F— F/L and 7g: F — F/K

are the natural homomorphlsms We call 6,(6,.) the canonical LRMLM
(RRMLM).
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Now we prove the universal property of the tensor products.
Theorem 2.2. Let R be a left near-ring, A be an R-module and B an
R-comodule. Let C be a group with a function f: Ax B — C, and
6, (6,) be as above.

1. If f is a LRMLM, then there exists a unique group homomor-
phism g : Ap ® B — C, such that 0,9 = f.

2. If f is an RRMLM, then there exists a unique group homo-
morphism g: A® rB — C, such that 0,9 = f.

Proof. We prove only (1) as the proof of (2) is similar. Consider the
following diagram
J L
AxB — F — F/L=ARr®B

N hl /g

C

where h is the unique homomorphism extending f, as F' is the free
group on A x B. Since f is an LRMLM, L C Kerh. This gives us a
unique group homomorphism g : F/L — C, such that 7pg = h. It
follows then 0,9 = jmrg = jh = f. Now for the uniqueness let g’ be
another homomorphism from F/L to C with 6;,¢' = f. Then:

(Cl. 1 ® b)gl = (a’7 b)@lg/ = (a" b)f = (a7b)jh = (CL, b)j"rLg =
= (a,b)0,g = (a1 ® b)g.

Therefore g and ¢’ agree on the generators of A g ® B and hence are
equal. ¢
Corollary. Let A, A’ be R-modules and B, B’ be R-comodules,
f:A— A" and g : B — B’ be R-homomorphisms of R-modules
and R-comodules respectively. Then there are unique group homomor-
phisms

$:ArR®B—A Rr®B andy: AQ gRB — A’ @ rB’
such that (a 1 @ b)d =af 1 ®bg and (a ® b)Y = af ® rbg.

The homomorphism ¢ and % in the above corollary are denoted
by f 1 ® g and f ® g respectively.

If A,A’, A” are R-modules, B, B’, B” are R-comodules with R-
homomorphisms f : A — A, f/: A — A" g: B — B’ and
g :B— B", then (f 1®9)(f' 1®¢) = ff 1®gq and (f ®,g)(f'®
® rg/) = ff/ ® rgg/'
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Moreover, if f and g are isomorphisms then f ;® g and f ® g are
isomorphisms.

Next we consider some special cases.
Theorem 2.3. Let R and S be left near-rings, A an (R — S)-bimodule
and B an S-comodule. Then A ¢ ® B and A ® gB are R-comodules.
Proof. For each r € R, define o, : AX B — A s ® B by

(a,b)ar =ra ; ®b,Y(a,b) € Ax B.
We claim that ;. is a LSMLM. Va,ad’ € A, b € B and s € S we have:
(a+ad,b)ar=r(a+d) , ®b=(ra+rad)  ®b=ra ; @b+ra; Qb=
= (a,b)a, + (d,b)a
(as,b)a, =7(as) | ®@b= (ra)s | ®b=ra; ® sb=(a,sb)a,

By Th. 2.2 there is a unique endomorphism [, of As ® B such
that 6,08, = o, where 6; is the canonical LSMLM: Ax B — A s ® B.
The action of R on Ag ® B is now defined by ru = uf,, for r € R
and © € Ag ® B. We claim that this action defines As ® B as an
R-comodule. For all u,u’ € As ® B and r,r’ € R we have:

rlu+u) = (u+u)br = ubr + /B =ru+ru.

In order to prove that (rr')u = r(r'u), it is enough to prove that B =
= BBy, ¥r,r" € R. Welook at their action on the generators of A g®B.
(@ ®b)Brr = (a,0)08rr = (a,b)0rr = (r')a ; ®b=1r(r'a) 1 ®b=
= (r'a,b)a, = (r'a ; ®b)Gr = (a,b)o Br = (a1 @ b)Br Br.

This completes the proof of the fact that A ¢ ® B is an R-comodule.
Similarly it can be proved that A ® gB is an R-comodule. ¢
Corollary. Rg®B and RQgrB are R-comodules for any R-comodule B.
Remark. Let R be a left near-ring with 1, and B be any unital R-
comodule. Then for r€ Rand b€ B, wehaver ;®b=1,;®rb and
r®.b=1® ,rb.

Therefore we have:

i) R g ® B is generated by {1 ; ® b|b € B}.

ii) R® rB is generated by {0 ® »b,1® rb|b € B\{0}}.

ili) 6 : R — R p ® B defined by rf, = 7, ® b is a group
homomorphism.

iv) 8, : R — R ® rB defined by rf, = r ® ,-b is not a group
homomorphism in general.
Theorem 2.4. Let R and S be left near-rings, A an R-module and B
an (R— S)-bimodule. Then Ar® B is an S-comodule with S acting on
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the right. If in addition B is a right strong S-module then A® grB is
also an S-comodule with S acting on the right.

Proof. For s € S define a; : Ax B — Ar® B by (a,b)as; =a | ®
® bs. It is easy to see that a; is a LRMLM. This gives us a unique
endomorphism Bs of Ag ® B such that §;8; = s, where §;: Ax B —
— Ag ® B is the canonical LRMLM. For all (e ; ® b) € Ag ® B, we
have:

(a1 ®b)Bs = (a,0)0,8; = (a,b)as =a 1 ® (bs).
As in Th. 2.3, we define an action of S on Agp ® B by us = ufs,
Vu € Agp ® B. Clearly (u+u')s =us +u's, Yu, v € Ap ® B.

For the other condition we need to show that Bss = (58, Vs, s’ €
€ S. It is enough to look at their behavior on the generators.

(@ 1®b)Bss = a 1®b(ss") =a ;®(bs)s' = (a8 (bs))Bs = (a 1 ®D)BsPs -

The second part is proved similarly. ¢
Corollary. Ag ® R is an R-comodule with R acting on the right. If
R is distributive then A ® grR is an R-comodule with R acting on the
right.
Remarks. 1. Let R be a left near-ring with 1 and A be a unital
R-module. Then we have: Agr ® R is generated by {a ;®1, a ;®0|a €
€ A\{0}} and A ® grR is generated by {a® ,1l|a € A}.

2. If A is any group and B is an abelian group then Az ® B and
A ® zB are right Z-comodules and hence are abelian groups.

3. If R is a ring and A is an R-module in the near-ring sense,
i.e (A,+) is not necessarily abelian, then Agp ® B and A ® grB can be
constructed, which may be different. An example of this will be given
in the next section.

3. Examples

Example 1. By Remark 1 following Th. 2.4, (S3)z ® Z; and S5 ®
® z(Zs) are abelian groups. We look into their structure further. S3
has presentation:

(a,b| a3, b2, (a+b)2).

Using Th. 2.1 and the definition of (S3)z ® Z2 we see that it is generated
by {a 1®0, b;®0, a ;®1, b;®1}. These generators satisfy the following:
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(al®0)2:a2l®0=al®2(0)=al®0,(al®1)2=a2l®1:
=az®2=al®0,(al®l)3:a3l®1:01®1=0.

This shows that ¢ ; ® 0 =0 and a ; ® 1 = 0. Hence we have the
following presentation:
(S3)Z®Z2 = (bl®0, b, ®1 I (bl®0)2, (bl®1)2>.
Therefore (S3)z ® Zo =2 Z3 @ Zs.

On the other hand a set of generators of S3® z(Z3) is {z®,1 |z €
€ S3}. Moreover (z®,1)2=2®,2 = z®,0 = 0. Therefore S3® z(Z>)
is an abelian group generated by six elements each of which is of order
2. Hence S3® 2(Z2) X Zo® Zo D Zo ® Z2 B Z2 ® Zs.

We note that a2 # 0 in Abut a2® ;1 =a®,2 =0 in S3® z(Zs).
Example 2. By the corollary to Th. 2.4, (S3)z ® Z and 53 ® zZ are

Z-comodules with Z acting on the right and hence are abelian groups.
A presentation of (S3)z ® Z is:

(al®0, b;®0, a;®1, b;®1 l (al®0)3, (al®1)3, (bl®0)2, (bl®)2>.
Therefore it is isomorphic to Zg ® Zg, a presentation of which can be:
(6 1®0+b;®1, a1 ®14+b,;®0]| (a:®0+b,;®1)6, (a;®1+b,®0)6).

On the other hand the order of 0 ® 1 in S3 ® zZ is infinite.
Therefore S5 ® zZ is an infinite abelin group with a presentation (z ®
Q,1 ‘ T e S3>
Example 3. Consider the dihedral group Dg of order 8 with a pre-
sentation (a,b | a4, b2, (a +b)2) R = {0,I, f,g} is a semigroup of
endomorphisms of Dg defined by the following table:

a(z)|0| a {a2]a3| b | a+b |a2+b|a3+b
0 |0j]0]0}0]0 0 0 0
I |0]a]a2ja3|b | atb {a2+b|ad+b
f [0]a2]| 0 |a2la2] O a2 0
g |0|a3la2]| a|b|ad3+bja2+b]| atb

It is easy to verify that (R,®,0) & Z4, is a ring, where & and o are
given by the tables:
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® |0 |I |f|g o |0 I |f|g
00| |f]|g 0|0 (0]0]O0O
I |I|f|g]|O I{0|I |f|g]
f1f|g |01 f104(f|0]f
g |lg |0 | |f g |0 g |f I

For details about this ring we refer to Ex. 3.3.10 of [5]. Here we just
mention that @ is not the ordinary pointwise addition of mappings,
because:
F(0) +g(b) =a2+b#b=I(b) = (f ©g)(b)

Dg is a unitary R-comodule, because every element of R is an endo-
morphism of Dg. Since (f @®g)(b) # f(b)+g(b), Ds is not a left strong
R-module. As R is an (R — R)-bimodule, by Th. 2.3, Rg ® Dg and
R ® rDg are R-comodules.

Rp ® Dg is generated by {I ; ® z | z € Dg}, with each generator
of order 4. But I; ® a + I; ® b is of infinite order. Hence R ® Dsg is an
infinite non abelian group.

R ® rDsg is generated by I ® ra, I ® b, 0® ra, 0® b, of orders
4, 2, 4 and 2 respectively. In this case also I ® .a + 0 ® ,a is of infinite
order. Hence Rr ® Dg is an infinite nonabelian group.

Example 4 (Ex. 14 of [2]). Let V = {0, a, b, a + B} be the Klein
4-group and let R = {00, 1, B2, B3} be the set of four endomorphisms
of V given by the following table:

B(z) |0 | a b |a+b

Bo 0 la+b |a+b

,61 0 a b a+b

Bg 0 b a a+b

Bz |0 {a+tb 0 a+b

@ and o are defined on R by the following tables:

® |Bo |B1 B2 |6 o |Bo |B1 |Ba | B3
Bo |Bo |Br | B2 | Bs Bo |Bo |Bo | B3 | B3
B1 |61 |Bo |Bs | B2 B1 {Bo |B1 | B2 |Bs
B2 |B2 |Bs |Bo | B Bo |Bo |B2 |P1 |Bs
Bs |Bs | B2 |51 | Bo B3 |Bo |Bs |Bo | B3

Bo is the zero for @ and F; is the identity for o. We note that Fp is
not the zero endomorphism. It is easy to see that (R, ®, o) is a left near-
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ring with identity. It is not a ring, since: (83 ® B1) 0 B2 = B2 0 B2 = S,
whereas, (53 0 82 @ B1 0 f2 = Bo @ P2 = P2

Moreover, V is a unitary R-comodule with R acting on the left.
Therefore we can construct Rr®V and R® gV which are R-comodules
by the corollary of Th. 2.3. By the remark after that corollary we have
the following:

Rr®V is generated by {8, ;®z | z € V} and R®RV is generated
by {61 ®rz, 0@,z |z €V}

Moreover, each generator of R ® V and R ® rV is of order 2.
We consider the two cases seperately.

Easy calculations show that the generators of Rp ® V' commute.
Also

Br1®(a+bd)=01®pFo(b) =P10oPo 1 ®b=0o 1 ®b=0.
Therefore Rg ® V is an abelian group generated by the following ele-
ments:

Br:1®0, f1:1®a, B1:1®D,
each of which is of order 2. Hence RRQ V =2 Zy @ Z3 P Zs.

We note here that even though 31 # Og, 81 1 ® (a+b) =01in
Rr®V.

R® gV is an infinite non abelian group because the elements 8; ®
® ra, Bo ® ra of R® gV do not commute and 81 ® ra + o ® ra is of
infinite order.

The structure of tensor products of near-ring modules can be ex-
plored further. These examples suffice here to show the importance of
this concept.
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