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Abstract: We provide V3-axiom systems for n-dimensional hyperbolic geom-
etry over Euclidean fields in terms of (i) points and the binary operation of

point-reflection, and, for n # 3, in terms of (ii) lines and binary relation of
line-orthogonality.

1. Introduction

Hyperbolic geometry has so far been axiomatized in various ways.
Hilbert [3], [4] axiomatized it in the same language he used to axioma-
tize Euclidean geometry, and so did Tarski and Szmielew [24]. Menger
[11] showed that it can be axiomatized in terms of points and the ternary
relation of collinearity, and an axiom system for the two-dimensional
case has been provided in [22]. In [18] it was shown that plane hy-
perbolic geometry can be axiomatized by means of universal axioms
in a language containing only individual constants and ternary opera-
tions, all axioms containing at most 4 variables. It can also be axiom-
atized in terms of lines and the binary relation of line-perpendicularity
for all finite dimensions n # 3 (cf. [21], [19], [9], [10], [16]), and in
the 3-dimensional case planes and plane-perpendicularity can serve as
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primitive notions (cf. [12]). Spheres and the binary relation of sphere-
tangency can also serve as single primitive notion for all finite dimen-
sions > 2 (as shown in [17]; cf. [13] for a survey of other axiomatiza-
tions).

Given that in hyperbolic geometry of any dimension three points
a,b,c are collinear if and only if the composition of the reflections in
them, 0,040, (where by o, we have denoted the reflection in z), is a
point-reflection (cf. [5], [6]), one obtains as an immediate corollary of the
axiomatizability of hyperbolic geometry in terms of the collinearity re-
lation that hyperbolic geometry of any dimension (even the dimension-
free version, cf. [24, I1.4.62]), is axiomatizable in terms of the binary
operation of point-reflection. This is in stark contrast to Euclidean ge-
ometry, which, as shown in [2], cannot be axiomatized by means of any
finite set of binary operations. However, if one were to obtain an axiom
system for hyperbolic geometry in terms of point-reflections starting
with an axiom system based on collinearity alone, and replacing ev-
ery occurrence of the collinearity predicate with its definition in terms
of o, one would obtain an axiom system of quantifier complexity at
least as high as that of the original axiom system. It was shown in
[24] that there is no V3-axiom system for hyperbolic geometry in terms
of collinearity, and in [pambnew] that there is a VIV axiom system
for it, but no V3V one.A plane hyperbolic geometry whose models are
Kleinian inner-disc models in affine planes over arbitrary ordered fields
(to be referred to in the sequel as Klingenberg's generalized hyperbolic
planes), the notions of betweenness and equidistance being interpreted
just like in the standard hyperbolic case — betweenness coincides with
affine betweenness, and equidistance is given by ab = cd if and only if
U(a,b) = ¥(c,d), where ¥(x,y) = (1-x-x){(1-y-y)(1—-x-y)"2, and
u - v is defined as ujv1 + ugva, where u = (u1, uz) and v = (v1,vz), all
points x = (z1,z3) satisfying z3 + 3 < 1 — has been axiomatized by
Klingenberg [7]. Klingenberg’s axiomatics has been later simplified by
Bergau (cf. [1]). The purpose of this note is: (i) to provide a V3-axiom
system for both Klingenberg’s generalized hyperbolic planes and for
hyperbolic geometry over Euclidean ordered fields of arbitrary finite di-
mension based on point-reflections alone, and (ii) to provide a V3-axiom
system in terms of lines and line-orthogonality for both Klingenberg's
generalized hyperbolic planes and for hyperbolic planes over Euclidean
ordered fields. Thus, in every axiom, when written in prenex form, all
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universal quantifiers (if any) precede all existential quantifiers (if any).

We shall obtain these axiom systems for plane hyperbolic geome-
try by using the axiom system provided by Klingenberg [7], with some
changes due to Bergau (cf. [1]). For (i), we shall use as axiom system for
non-elliptic metric planes (i.e. metric planes in which the perpendicular
from a point outside of a line to that line is unique (cf. [1, §3,4, Satz
5])) the one provided in [15].

Given that no finite set of binary relations with individual vari-
ables to be interpreted as points can axiomatize hyperbolic geometry
(cf. [20], [24]), (i) is, from the point of view of the minimal arity of
the notions involved, the simplest possible axiom system for hyperbolic
geometry.

The significance of point reflections in both absolute and hyper-
bolic geometry has been studied in [5] and [6].

With (ii) we solve the open problem stated in [16].

2. The reflection based axiom system

The language £ in which the axiom system will be expressed has
only one sort of individual variables, to be interpreted as points, and a
binary operation symbol o, with o(ab) to be interpreted as the reflec-
tion of b in a. We shall also write o, (b) for o(ab), and for improved
readability and to reduce the number of parentheses, we shall write
04,0z, - - - 0z, (a) instead of o(z1(o(z2(. .. o(zna))...).

In order to formulate the axioms in a more readable way, we shall
use the following abbreviations:

2
L(z1z223) & /\ Oy 02302505, Ony Ogg (Ti) = Ti,
i=1
cd L. ab & L(abd) A L(cde) A o(eo(bc)) = o(o(db)c),

Rumn(uvaa') > (L(uva) A’ =a)V (~L(auv)Aan Ly, uv Ad’ = o(na)).

Here L(abc) stands for the points a, b, ¢ are collinear (but not neces-
sarily distinct), cd L. ab stands for d is the footpoint of the perpendicular
from c to ab (e being an auxiliary point used in the construction), to
be used only for ¢ not collinear with a and b, and Ry, (uvaa’) stands
for a and o’ are symmetric with respect to the line determined by u and v
(m and n designating auxiliary points used in the construction), to be
used only for u # v.
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For the definition of L, we have used the fact that an involutory
product of three point symmetries must be a point symmetry ([1, §3,7,
Satz 16, 17]), and the fact that a motion which fixes two different points
z1 and zo will have to fix all the points of the line determined by them,
so it has to be either a reflection in that line or the identity. Since a
product of six point symmetries is equal to a product of twelve, i.e. an
even number of line symmetries, it cannot be a line symmetry, so it has
to be the identity if it fixes two different points.

For the definition of the perpendicularity relation 1 we have used
the following
Proposition 1. In any Hilbert plane (i.e. in every model of plane ab-
solute geometry, which is a geometry satisfying the azioms A1-A9 from
[24], or the azioms I 1-8, II, III from [3]) with non-Euclidean met-
ric (i.e. in which there is no rectangle) we have: If the median ce to
the side o(bc)o(o(db)c) of a triangle co(bc)o(o(db)c) passes through the
midpoint d of the line joining the midpoints b and o(db) of the other
two sides, then the median ce is the altitude of the triangle, and thus
perpendicular to the midline bo(db) as well.

C

b d o(db) a

o(bc)

© o(o(db)c)
N M

o(dc)
Fig. 1. The definition of perpendicularity in terms of o

Proof (due to Jarostaw Kosiorek, see Fig. 1). Given that the metric
is non-Euclidean the point o(dc) is different from e. The triangles
bo(bc)o(dc) and o(db)o(dc)o(o(db)c) are congruent by side-angle-side,
as bo(bc) = be = o(db)o(dc), bo(de) = o(db)c = o(db)o(o(db)c) and
the angles at b and o(db) are congruent given that their supplements
are the sum of two congruent angles. Given that the two triangles are
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congruent, we have o(bc)o(de) = o(dc)o(o(db)c), thus o(dc)e is the

perp
chb =

endicular bisector of o(bc)o(o(db)c). Thus co(be) = co(o(db)c), so
co(db) as well, and cd is perpendicular to bo(db). ¢
We are now ready to state the axioms, in which we will omit

universal quantifiers for universal axioms.

Al.
A2,
A3.
Ad.
A5.
A6.
AT.
AS.
A9.
A10
All
Al2
A13
Al4
A1l5

Al6.

A17.

A1l8.

A19.

A20.

o(aa) =a

o(ac(ab)) =b

olaz) =o(bz) - a="b

L(abc) — L(cba) A L(bac)

a # b A L(abc) A L(abd) — L(acd)

L(abo(ab))

o(o(za)o(zb)) = o(zo(ab))

(Vabc)(3de) ~L{abc) — cd L, ab

—L(abz) Azd L, ab A —L(aby) Ayd L; ab — L(zyd)

. ~L(abx) Ac # dAL(abc) AL(abd) Azu L abAzv Ly cd - u=wv

. L(abz) Azu Le abA L(zyu) Ny #uAyv Ly ab—u=v

. ~L{abc) Aca Le abAbu Lfac—u=a

. =L(azy) ANyz Le zaAo(ay)u Le za — u = o(ax)

. = L(abc) Au#VARmn (uvaa’ )ARpg (wvbb' )ARs(uvee’) — —L(a'b'c’)

. =L(abe) Au#vAca Lo ab A Ry (uvaa’) A Rpg(uvbb')A

ARys(uved )Nz Ly o'V —xz=4a

—L(oab) Az # oA—=L(0bc) A Rmn(0azy) ARpq(obyz) ARys(oczt) A

A((=L(zto) Aod' L xt)V (o =0 AL(zto) Nz #t)) = o(d'z) =1

- L(oab) A ~L(obc) A /\?zl(Rmini (0aziy;) N Rp,q, (0by; 2: )\

AR.,s,(oczit;) A o(giz;) = t;) — L(0g1g2)

(i) L(abc) Aa # bAb # cA-L(aba’) Aa'a Ly ab A —~L(abd’)A
Ab'b Ly, abA-L(abd) Ac'c L, ab A —L(abz) A Reg(aa’zy)A
ARgn(bb'yz) A Ryi(cc zt) A L(abu) — ~L(ztu)

(ii) L(abc) Aa # b A b # c A—=L(aba’) Ad'a Ly ab A —~L(abb’) A
Abb L, abA=L(abcd) Ac'c L, ab A o(oa) = o(co(ba))A
A-L(abz) A Res(aa’zy) A Rgn(bb'yz) Aou Lg zt Auw L, ab—
—t=oc(ur)\w=o0

(i) (Yabe)(Fo) L(abc) Aa #bAb#cANcF#a—

— o(oa) = o(co(ba))

(ii) a # bA b # cAc+# a A L(abc) A L{abz)A
Ao (oa) = o(co(ba)) — o(co(bo(az))) = o(oz)

(Yoabpypep3)(Fzymn) —L(oab) A /\?=1 -(o=p;) —

VL (Z{opiz) A L{aba))V |

V(=L({op;y) Ayz Ly op; A=L(abz) Azy Ly ab) V L(opipit1))
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A21. (3abcdeovvwzy) = L{abd)Aab L, bdA—L(oab)Aoa L, abA-L(oca)A
oc Ly ca A—L(odb) Aod 1y dbAce 1y oal
AL(aeo) A L{ced)

A22. (Vab)(Im) o(ma) = b.

-
b d
Fig. 2. Bergau’s criterion for parallelism

The axioms make the following statements: Al: the point a is
a fixed point of the reflection o4, A2: reflections in points are invo-
lutory transformations (or the identity); A3: reflections of a point in
two different points do not coincide; A4: collinearity of three points is a
symmetric relation; A5: if ¢ and d are collinear with a and b, then a,c,d
are collinear as well; A6: the reflection of b in a is collinear with a and
b; A7: reflections in points preserve midpoints; A8: from every point
outside of a line there is a perpendicular to that line; A9: if the foot-
points of two perpendiculars to a line coincide, then the perpendiculars
themselves coincide; A10: the footpoint of the perpendicular from z to
the line ab does not depend on the particular choice of points a and b
that determine the line ab; All: if z is a point outside of the line ab,
and y is a point on the perpendicular from z to ab, then the footpoints
of the perpendiculars of x and y to the line ab coincide; A12 states that
perpendicularity is a symmetric relation (if ca is perpendicular to ab,
then ba is perpendicular to ac); A13: if yz is perpendicular to za, the
s0 are 04(y)o.(z) and oq(z)a; Al4 and Ald state that reflections in
lines preserve the non-collinearity and the orthogonality relation; A16
and A17: the composition of the reflections in three lines oa, ob, oc that
have the point o in common is a reflection in a line through o; A18 and
A19 state that the composition of three reflections in the lines aa’, b¥/,
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cc’ perpendicular to the line ab is a reflection in a line perpendicular to
ab as well; A20: from a point o not on line ab there are at most two
different lines that have neither a point nor a perpendicular in common
with ab; A21: There are two lines, ac and bd, which are hyperbolically
parallel according to Bergau’s criterion (cf. [1, §14,3, p. 224, Kriterium],
see Fig. 2); A22: every segment has a midpoint.

With ¥ = {A1-A21} and ¥’ =, {A1-A22}, we have the following
Theorem 1. X and ¥’ are aziom systems for Klingenberg’s generalized
hyperbolic planes and for hyperbolic planes over Euclidean fields. In
every model of ¥ or ¥’ the operation o has the intended interpretation.

Proof. The axioms A1-Al8, as well as the existence of three non-
collinear points, which is part of the statement of A21, imply — with
the obvious definitions of the footpoint operation F' and of the fourth
reflection point operation 7 (w(abc) will be u(ac(co(ba)))), where u(zy)
stands for the midpoint of the segment zy) which are part of the lan-
guage in which the axiom system from [15] is expressed — the axioms
given therein for non-elliptic metric planes. Thus ¢ has the desired
interpretation. By Bergau’s lemma [1, §14,3], the two lines ac and bd
from A21 have neither a point nor a perpendicular in common, so the
non-elliptic metric plane that satisfies the axioms of 3 satisfies the two
axioms V* and H of [1, §14,1], making it a generalized hyperbolic plane
in the sense of Klingenberg [7]. Thus ¥ is an axiom system for them. In
the case of ¥/, since every segment has, by A22, a midpoint, the coordi-
nate field of the generalized hyperbolic plane must be a Euclidean field,
as proved in [7, p. 352], and thus is the regular hyperbolic plane, with
Kleinian inner-circle models over Euclidean ordered fields as models. ¢

3. The orthogonality based axiom system

We now turn to the axioms of a V3-axiom system for plane hy-
perbolic geometry with individual variables to be interpreted as lines
and with the binary relation of line-orthogonality as the only primitive
notion.

To both express the axioms in a more readable manner and to sig-
nificantly shorten them, we shall introduce a number of abbreviations.
We write # (a1 ... an) for Ajc;cjcn @i # a5, as well as (@ L by, ... ,bn)
for Ai—, a L b;, and we use the following abbreviations:
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a(abc) :& (3h) # (abe) A (b L a,b,c)
3
m(a1a203) 14 (Jop1p2psqigags) [\ (@(aspipiss)A

i=1
A a(aigigi+1) A oopigs))
T(abc) & wlabc)Ve=aVe=1D
2
o(g1hgalmimaninap) < h L I Aw(mimah) A /\(gi LIAT(gimil)A
A m(giming) A (n; _LG’;,p))
((g1hgal) & (Imimaningp) o(g1hgalmimaninap)
Clgrhgal) 1= C(g1hgal) V(g1 =hAga=h Al Lh)
v(abetlt'w'e) & (Fuu'vv'wmn) (taul) A (r(ulm) V m = w)A
A w(lun’) A C(u'bum) A m(mov’)A
A (m(vmn) V n = v) A (v cwn)A
AT(tI) AT(wnw') AT(tle) AT (wne)A
Ae Lt',w") A=(T(w) AT(tlw))
w(abetl) & (Fuu'vv'wmn) ¢ (taul) A (r(ulm) V m = u)A
A m(lun’) A C(u'bum) A w(mov')A
A (m(vmn) Vn = v) A {(v' cwn) AT(tw)A
AT (tlw).

Here a(abc) stands for a,b,c are three different lines which have
a common perpendicular (or equivalently which have the same pole),
7(abc) stands for a, b, ¢ are three different lines which meet in a point (see
[19] or [21] for a proof that this is indeed the case), T(abc) for a, b, c are
three concurrent lines or ¢ € {a, b}.

We shall think of pairs of orthogonal lines (a,b) as a point, and
we shall say that the line [ passes through the point (a, b) if and only if
7(abl), and that points (a,b) and (c,d) are equal if and only if T(abc) A
A T(abd). In particular the point (a,b) is always equal to the point
(b, a).

Of the remaining defined notions, g(g1hgalmimaningp) and
¢(g1hgal) stand for g1,g2, and h are three different lines which are per-
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pendicular to I, and g5 is the reflection of ‘g in k, {(g1hgal) stands for g,
is the reflection of gy in h and [ is their common perpendicular — an we
shall denote for the purpose of explaining the above abbreviations the
reflection in a line h by op, y(abetlt'w’e) stands for e is the line joining
the point (I,t) with its image (v, e) under o.0404, (W', e) being a point
different from (I, ¢), and [ being perpendicular to a, to be used only when
a,b,c have a point or a perpendicular in common, and in the latter
case | must be different from the common perpendicular, and finally
w(abctl) stands for (¢,1) is a fixed point of 0,050,, to be used only in
the cases mentioned above.

g1 g2

Ty =

Fig. 3. The definition of g

To see that the definition of ¢ does imply that the point of inter- -
section of h and [ is the midpoint of the segment formed by the points
of intersection of g1 and g, with [, let A, B, C, D, M, N, and E de-
note the points of intersection of h and [, h and p, p and ngy, | and ns,
[ and ny, p and ny, and h and my respectively. Suppose that AD is
not congruent to AM. W. 1. 0. g. we may assume that AM is greater
than AD. Let D’ and C' be the reflections of M and N in h. Since
/ADE > Z/AD'E and both ZEDC and ZED'C’ are right, we must
have ZADC < £AD'C’, which implies that the sum of the angles of
the convex quadrilateral DCC’'D’ exceeds 360°, a contradiction.
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h
E
N
!
A ! D] D
L)
B 1 p I
c c

Fig. 4. The sum of the angles of DCC’D’ would be greater than 360°

Given g1, h, g2, [, such that gs is the reflection of g; in h, it is easy
to show that one can indeed find m;, n; for ¢« = 1,2 and p such that
o(g1hg2lmimaninaep) holds. If A, D, M denote the same intersection
points as above, then by choosing the point E close enough to A we
can always ensure that the perpendiculars ne and n; raised in D and
M to ED and EM respectively do not intersect h, and thus h and n;
must have a common perpendicular p, which must be perpendicular to
ng as well, given that ny is the reflection of ny in A.

Consider the following axioms:

Ol.glh—hlyg
02. (/\?:1 /\?:1 ilg)—li=kbva= 92)
03. (Vg1hl)(3gamimaningp) (( Lg1,R)Ag1 # h— g2 L IAT(mimah)A

AN (r(gimil) A m{gimans) A (ma,p L i)

O4. ((g1hg2l) A C(g1hg3l) — g2 = g5

05. (Vabce)(3d)(a L bV w(abc)) — d L e AT(abd)

06. (m L nV n(mno)) A®(mnp) AT(mnp') A (p,p’ L1) —p=9p
O7. (Yabed)(Fm)a L b Ac L dA—m(abc) — T(abm) AT (cdm)

08.a L bAc L dA—-7w(abc) A /\?zl(ﬁ(abmi) AT (edm;)) — m1 = ma
09. (Yg192039} ghgslalalahm)(3m’) Ai_, (C(gihgils) AT (gslim)A

A= (giligi+1)) — Ny 7 (gilim’)

010. (A;_; {(gshgili) A= (giligir1)) AT(grlam) AT (galam) AT (g1lam) A

AT(gslan) Am L n AT(gilim’) AT(ghlam') AT(gilan’)A

AT (ghlsn') — m/ L n/
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O11. 7(abe) AT(abd) Aa L bAc L d— (F(abz) « T(cdz))

012. w(abc) A y(abetlt'w'e) AT(abd) AN d L e — ((t'dw'e)

013. 7(abc) A y(abctlt'w'e) AT (abd) Ad L e A p(abemn) — T(mnd)

014. w(abc) AT (abd) A y(abctlt'w'e) Avy(abezjz'z'eYANd Le—d L e

015. (Vabe)(3dtit'w'e) w(abe) — T(abd) A y(abetlt'w'e) Ad L e

016. (Vabea'a"l)(3d) (I L a,b,c)A # (abc) A ((aba’l) A ((a’ca’l) —
— ((ada”l)

017. (I L a,b,c)A # (abe) A ((aba’l) A ((a’ca”l) A ¢(ada”)) Aw LIA
A C(wazl) A C(zbyl) A L(yezl) — C(wdzl)

018. (I L a,b,c)A # (abc) A y(abetmt'w'e) A ((aba’l) A ((a'ca’l) A
A ¢(ada"l) — ((t'dw'e)

019. ¢(abcl) A y(abetmt'w'e) — ((t'bw'e)

020. (Jabmnpgr)a # bA(m L a,n)Ax(bmn)Ap L aAg L bAw(npg) A
Am#pAr LnAn(brqg) An(arp)

021. (¥p1papsl) (Fu) (p1paps) — (Vioy (u L pi, 1) V w(pilu)))

022. (Yabl)(3c) (I L a,b) Aa # b — ((achl).

Notice that structures satisfying the above axioms must be non-
elliptic metric planes, which can be expressed in terms of points, lines,
point-line incidence, line-orthogonality, and line-reflections — defined as
bijections of the collection of all points and lines, which preserve inci-
dence and orthogonality, are involutory, and fix all the points of a line
— by means of the following axioms:

MP1. There are at least two points.

MP2. For every two different points there is exactly one line incident with
those points.

MP3. If a is orthogonal to b, then b is orthogonal to a.

MP4. Orthogonal lines intersect.

MP5. Through every point there is to every line a unique perpendicular.
MP6. To every line there is at least a reflection in that line.

MP7. The composition of reflections in three lines a, b, ¢ which have a
“point or a perpendicular in common is a reflection in a line d.

To see that the models of the axioms O1-022 are metric planes,
we use the interpretation of pairs of orthogonal lines as points together
with the corresponding notion of point equality defined earlier, and
define, for any line A and point P = (a,b), the reflection of P in h to
be the point (I, go) such that ((g1hgal), where | and go are defined by
#(abl) Al L h and T(abg1) Ag1 L . By O1, 03-06 this is a well-defined
function, which, by O11, is independent of the particular choice of lines
(a,b) representing the point P.
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The axioms make the following statements: O1: orthogonality is
symmetric; O2: there is no rectangle (this axiom’s function is to ensure
that, in case a and b are two lines with a common perpendicular [, the
line PP’ joining P, which is not incident with [, with its reflection P’ in
a, is different from line P’ P”, which joins P’ with its reflection P” in b;
this property is needed in O19 and 020, without it, we wouldn’t know
whether the s in their antecedents ever hold!; O3 states the existence
of a reflection of the point (I, g1) in the line A whenever the point does
not lie on h and O4 states the uniqueness of the reflection; O5 states
the existence of a perpendicular to a given line e passing through the
point (a,b) (or concurrent with or equal to one of two lines (a,b) for
which there is a ¢ with n(abc)) and O6 states the uniqueness of that
perpendicular; O7 states the existence of a line m joining two different
points (a,b) and (c,d) and O8 states its uniqueness; O9 states that
reflections in h preserve collinearity and O10 states that they preserve
orthogonality; O11: if two orthogonal lines ¢ and d pass through (a, b),
then a line = passes through (a,b) if and only if it passes through
(c,d); 012 and O13: if the lines a,b, and ¢ are concurrent and the
image R = (w', e) of the point P = (I,t), with [ L a, under o.0p0, is
different from P itself, then the perpendicular d, which is concurrent
with (or equal to one of) the lines a and b, to the line e = PR is also
the perpendicular bisector of the segment having these two points as
endpoints; and if (m,n) is a fixed point of 0,004, then it lies on d; O14:
under the same hypotheses as above, the line d is the perpendicular
bisector of any segment joining a point and its image under o.040;
015: if @, b, and ¢ and three concurrent lines, then there exists a point
P = (l,t) which is not a fixed point of o.040, and there exists a line d
concurrent with (or equal to one of) a and b, which is perpendicular to
the line joining P with its image under o.0,0,; O16: if a,b, and c are
three different lines, which have a common perpendicular [, such that ¢
is not the reflection of a in b, and a” is the image under o0} of a, then
the perpendicular bisector d of the segment whose endpoints are (a,[)
and (a”,[) exists; O17 and O18: if a,c, and ¢ are three different lines,
which have a common perpendicular [, such that c is not the reflection
of a in b, w is any line perpendicular to [, and z is the image of w under

1That this axiom may be redundant, as may be the case with other axioms,
doesn’t quite matter, since we are not concerned with the independence of the axiom
system, but only with the V3 nature of its axioms.
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0:0p0,, then z is the image of w under o4, where d is the line stated
to exist in O16; and if P = (¢,m) is not equal to its image R under
0004, then d is the perpendicular bisector of PR; O19: if ¢ is the
reflection of o in b, and [ is the common perpendicular of these three
lines, P = (t,m) is a point which does not lieon [, and R = (w', €) is the
image of P under o.0,0,, then R is the reflection of P in b: O20: a and
b are limiting parallel lines according to Bergau’s parallelism criterion;
0O21: given a line [ and three concurrent lines p;, p2, p3s, we can find a
line u which is either a common perpendicular of p; and [, or which is
concurrent with p; and [, for some 7 € {1,2,3}; 022: for any two lines
a and b which have a common perpendicular [, there is a line ¢, such
that b is the reflection of a in c.

It is now plain that with the notion of point and point-line in-
cidence defined above, models of O1-021 are models of Klingenberg’s
generalized hyperbolic planes, and those of 01-022 of hyperbolic planes.

Notice that all the axioms, when written in our official language,
without the use of any abbreviation, are V3-sentences, as all the de-
fined notions appearing in them have only existential quantifiers in
their definiens, which turn into universal quantifiers whenever that no-
tion appears in the antecedent of an axiom, and which appear after all
universal quantifiers whenever it appears in the succedent of an axiom.
Thus
Theorem 2. {01-021} is a V3-aziom system for Klingenberg’s gener-
alized hyperbolic planes. Adding 022 we obtain a V3-aziom system for
hyperbolic planes over Euclidean ordered fields.

4. Higher dimensions

To get a V3-axiomatization in £ for n-dimensional hyperbolic ge-
ometry with n > 3 over Euclidean ordered fields, we need to:
(i) add the axiom

—~L(abc) A P(abcz) A P(abey) A L(zyz) Az # y — P(abcz)
where P(abex) i< (3b'c’) L{abb') A L{acc’) Na # b Aa # ¢ A L(b'd'z),
which ensures that = belongs to the plane spanned by three non-collinear
points a, b, ¢ if and only if P(abcz);

(ii) add to the hypothesis of those axioms, for which it is possible
that the points involved are not in same plane, conditions that ensure

that all points are in the same plane. For example, for A16, we need
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to add P(oabc) and P(oabz) to the antecedent (hypothesis) to ensure
that the points involved are all in one plane. This introduces existential
quantifiers only in A21, which is a purely existential statement. All
other axioms that require these added hypotheses stay purely universal;

(iii) add lower- and upper-dimension axioms, the lower one
stating that there are o, z;, u;; with 4,5 € {1,2,... ,n} such that
Ai<icij<n(@io Lu,; ozj A =L(oz;z;)), and the upper one denying this
statement with 4,7 € {1,2,... ,n+ 1}

(iv) With M (zyz) standing for o(yz) = 2, and Sy(abc) standing
for a = cVb=cV (=L(abe) A ac L, cb), add the following axiom: If
a # b, M(akc), M(o(kb)sd), Sy(cds), M(ale), M(c(lb)ymf), Sy(efm),
M(cne), M(o(nd)pf), M(c(fe)go(o(nd)e)), then e = p or f = o(nd)
or L(epg) A —~L(epf).

This axiom is precisely the statement that the congruence relation
=, defined by

ab = cd & (Fklu) M(akc) A M (o(kb)ld) A Sy(cdl),

is transitive, i.e. that ab=cd Aab =ef — cd = ef. Given that we can
define an order relation for three collinear points by means of (cf. [24])

B(abc) < (3duv) L{abc) Aa #bAbF# cAc# aNad Ly deA
Adb L, ac A —L{acd)

which says that b is between a and c if and only if it is the footpoint of
the altitude to the hypotenuse in a right triangle, and this order satisfies
all the usual properties required of it, it now follows from the theorem
proved in [8] that the axiom system described above is an axiom system
for n-dimensional hyperbolic spaces over Fuclidean fields.

Similar adjustments are needed for producing an axiom system in
terms of lines and L for all dimensions n > 4, for which the notion of
point-line incidence 7, with points defined in the same manner as in
the 2-dimensional case as pairs of perpendicular lines, can be defined
as in [16, p. 58].

We first show how we can express in a purely existential manner
the fact that a point (g, h) lies in the plane determined by two orthog-
onal lines a and b. Notice that the notions 7’ and @, with «'(abl) and
7' (abl) standing for [, a line different from both a and b, goes through
the intersection point of two perpendicular lines a and b, and a and b are
orthogonal and [ passes through their intersection point, is defined in [16,
p. 58] purely existentially as well. For improved readability, we shall
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use the defined notion x, with x(gh) :& (3a)a L g A 7 (agh), to be
read as g intersects h.

Let {(abmnpgr) denote the sentence in 020 without the quantifier
prefix. To state that the point (g, k) lies in the plane determined by a
and b with a L b, we shall ask that there is a line u passing through
(g,h), which intersects a and b in points different from the intersection
point of a and b. Since we are not allowed to use the universal quantifier,
we cannot state that the points are different, as this would involve -7,
thus introducing universal quantifiers. What we shall do instead is
to state that through the point of intersection of the line u with b
there exists a line ¢ such that a and ¢ are hyperbolically (or limiting)
parallel, i.e. such that (Imnpgrv)€&(acmnpgr) A 7’ (bgv) A =’ (amv) A
A x(vn), a formula which will be denoted by A(ac). Here we have
added to £(abmnpgr) the condition that there exists a line v which
passes through the intersection points of m and a, and of ¢ and b, and
intersects m. This ensures that all the lines involved are in the plane
determined by the two orthogonal lines n and 7.

We can now state that the point (g, k) lies in the plane determined
by a and b with a L b by stipulating that

(uc) (x(au) A x(bu) A’ (buc) A Mac)) V (7 (abg) AT (abh)) VT (gha),
a formula we shall denote by II(abgh).

We can now define the notion w, to be read w(abc) if and only
if a,b,c are three different lines that line in the same plane and are
concurrent, in terms of 7’ by

m(abc) : < (Fuvbibacica) # (abc) A a L un
2

A /\ (bLb; AcLc; ANI(aubb;) A(auce;)) AT (aub) AT (auc).

i1

We then need to make sure that in the definitions of ¢ and v all
the lines that need to be coplanar are so, and that in every axiom in
which the antecedent (hypothesis) needs to have all lines coplanar, we
add conditions ensuring that. This is no longer a problem, for given
two orthogonal lines a and b (in case they don’t already exist in the
antecedent of an axiom, we can always add a line orthogonal to one
of the already existing ones), to say that a line [ is in the plane they
determine is to say that two points on [ lie in that plane. Thus [ is in
the plane determined by a and b with a L b if and only if
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(Ighm) (g, h L 1) A7’ (Igm) A A(mh) ATI(ablg) A TI(ablh).

This allows the V3-formulation of an axiom system for hyperbolic
planes inside the space of dimension > 4. By adding appropriate di-
mension axioms, as well as an axiom expressing (iv) in our language
(this is possible, since we can define segment congruence for points that
are pairs of perpendicular lines (given that the 2-dimensional variant of
o and ¢ allows the definition of the notion of a midpoint)), we obtain
an axiom system for n-dimensional hyperbolic space with n > 4.

5. Concluding remarks

The L-axiomatization could have been phrased in a language with
the ternary midpoint relation M or with the binary midpoint operation
p as well, and the axiom system would have remained V3. This is in
stark contrast to Euclidean geometry, whose M-theory is very weak (cf.
[23]). Most axioms being universal statements, we notice that the uni-
versal o-theory of hyperbolic planes is very rich, and ask the following
questions: Is the universal o-theory (the set of all universal sentences
formulated in £, i.e. by means of ¢ alone) of hyperbolic planes finitely
axiomatizable? How about the universal theory of both operations p
and 0?7 The same question asked for Euclidean planes produces a very
weak theory, namely the theory axiomatized by means of the three
axioms for o and u from [25], as well as axioms stating that the char-
acteristic is 0. What are the hyperbolic equational theories of o, of L,
and of o and pu?

I use this opportunity to point out that the axiom (C5’) on p. 107
of my paper “On the planarity of the equilateral, isogonal pentagon”,
Math. Pannon. 14 (2003), 101-112, could be weakened by asking not
that lines M N and M’N’ meet in a point P, but only that they are
coplanar, as this was all that was used in the proof of Th. 2.
Acknowledgment. This paper was written while the author was at the
University of Bialystok with a Fulbright grant. I thank the Polish-U.S.
Fulbright Commission for the grant, Professor Krzysztof Prazmowski
for having pointed out to me the possibility of an axiomatization in
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Proposition, and Ewa Walecka for drawing the figures.




Hyperbolic geometry in terms of point-reflections or of line-orthogonality 257

References

[1]

7]
(8]

BACHMANN, F.: Aufbau der Geometrie aus dem Spiegelungsbegriff, 2. Au-
flage, Springer-Verlag, Berlin, 1973.

ENGELER, E.: Metamathematik der Elementarmathematik, Springer-Verlag,
Berlin, 1983.

HILBERT, D.: Grundlagen der Geometrie, 12. Auflage, B. G. Teubner, Stuttgart,
1977 (1. Auflage 1899).

HILBERT, D.: Neue Begriindung der Bolyai—-Lobatschefskyschen Geometrie,
Math. Ann. 57 (1903), 137-150.

KARZEL, H., KONRAD, A.: Reflection groups and K-loops, J. Geom. 52
(1995), 120-129.

KARZEL, H., WEFELSCHEID, H.: A geometric construction of the K-loop of
a hyperbolic space, Geom. Dedicata 58 (1995), 227-236.

KLINGENBERG, W.: Eine Begriindung der hyperbolischen Geometrie, Math.
Ann. 127 (1954), 340-356.

KROLL, H.-J. und SORENSEN, K.: Hyperbolische Riume, J. Geom. 61 (1998),
141-149.

LIST, K.: On orthogonality-preserving Pliicker transformations of hyperbolic
spaces, Abh. Math. Sem. Univ. Hamburg 70 (2000), 63-75.

LIST, K.: Harmonic mappings and hyperbolic Pliicker transformations, J. Geom.
70 (2001), 108-116.

MENGER, K.: A new foundation of noneuclidean, affine, real projective, and
Euclidean geometry, Proc. Nat. Acad. Sci. U.S.A. 24 (1938), 486-490.
PAMBUCCIAN, V.: Binary relations as single primitive notions for hyperbolic
three-space and the inversive plane, Indag. Math. (N. S.) 11 (2000), 587-592.
PAMBUCCIAN, V.: Fragments of Euclidean and hyperbolic geometry, Sci.
Math. Jpn. 53 (2001), 361-400.

PAMBUCCIAN, V.. Axiomatizations of hyperbolic geometry: a comparison
based on language and quantifier type complexity, Synthese 133 (2002), 331—
341.

PAMBUCCIAN, V.: Constructive axiomatization of non-elliptic metric planes,
Bull. Polish Acad. Sci. Math. 51 (2003), 49-57.

PAMBUGCIAN, V.: Aufbau der hyperbolischen Geometrie aus dem Geraden-
orthogonalititsbegriff, Acta Math. Hungar. 101 (2003), 51-61.
PAMBUCCIAN, V.: Sphere tangency as single primitive notion for hyperbolic
and Euclidean geometry, Forum Math. 15 (2003), 943-947.

PAMBUCCIAN, V.: The simplest axiom system for plane hyperbolic geometry,
Studia Logica 77 (2004), 385-411.

PAMBUCCIAN, V., PRAZMOWSKI, K., SAKOWICZ, K.: Defining co-punctu-
ality in terms of line-orthogonality in plane hyperbolic geometry, Acta Math.
Hung., submitted.

ROBINSON, R. M.: Binary relations as primitive notions in elementary geom-
etry. In Henkin, L., Suppes P. and Tarski, A. (eds.), The axiomatic method,
pp. 68-85. North-Holland, Amsterdam, 1959.

SAKOWICZ, K.: Axiomatizability of the dual external hyperbolic plane, Mas-
ter’s Thesis, Warsaw University, Bialystok Section, 1938.




258 V. Pambuccian: Hyperbolic geometry in terms of point-reflections

[22] SKALA, H. L.: Projective-type axioms for the hyperbolic plane, Geom. Dedicata
44 (1992), 255-272.

[23] SCHWABHAUSER, W.: Modellvollstandigkeit der Mittelpunktsgeometrie und
der Theorie der Vektorgruppen, Abh. Math. Sem. Univ. Hamburg 48 (1979),
213-224.

[24] SCHWABHAUSER, W., SZMIELEW, W, TARSKI, A.: Metamathematische
Methoden in der Geometrie, Springer-Verlag, Berlin, 1983.

[25] VAKARELOYV, D.: Algebraic foundations of central symmetry, of rotation and
of homothety (Bulgarian), Annuaire Univ. Sofie Fac. Math. 63 (1968/1969),
121-166.





