PERIODIC SOLUTIONS OF A HIGH ORDER EQUATION WITH DEVIATING ARGUMENTS

Wen-Xian Lin

Department of Mathematics, Hanshan Normal University, Chaozhou, Guangdong 521041, P.R. China

Received: October 2002

MSC 2000: 34 K 15; 34 C 25

Keywords: High order Rayleigh equation, deviating argument, periodic solution.

Abstract: In this paper, by using the coincidence degree theory, sufficient conditions are given for the existence of periodic solutions of the high order Rayleigh equation with deviating arguments

$$x^{(n)}(t) + f(x'(t-\sigma)) + \beta(t)g[x(t-\tau(t))] = p(t).$$

In this paper, we will be concerned with a high order Rayleigh equation with deviating arguments

(1)
$$x^{(n)}(t) + f(x'(t-\sigma)) + \beta(t)g[x(t-\tau(t))] = p(t),$$

where $n \geq 2$ is a positive integer; σ is a constant; f, g, β, p and τ are real continuous functions defined on \mathbb{R} such that f(0) = 0, β, τ and p are periodic with period 2π , $\min_{t \in \mathbb{R}} \beta(t) > 0$ and $\int_0^{2\pi} p(t) dt = 0$. Using coincidence degree theory, we establish a theorem for the existence of 2π -periodic solutions of Eq. (1). When n = 2, $\sigma = 0$ and $\beta(t) = 1$, Eq. (1) has been studied in [2]. We also hope to extend the results in [2].

E-mail address: linhubox@163.net

Theorem 1. Suppose there are positive constants K, D and M such that

(i) $|f(x)| \leq K$ for $x \in \mathbb{R}$;

(ii) xg(x) > 0 and $\beta(t)|g(x)| > K$ for $t \in \mathbb{R}$ and $|x| \ge D$,

(iii) $g(x) \ge -M$ for $x \le -D$.

Then there exists a 2π -periodic solution of Eq. (1).

Example. Consider the equation

$$x^{(5)}(t) + \exp\{-(x'(t-1))^2\} - 1 + e^{\sin t + 1} \arctan(x(t-\pi)) = \sin t.$$

Take $f(x) = \exp\{-u^2\} - 1$, $g(t, x) = \arctan x$, $\beta(t) = e^{\sin t + 1}$, $\sigma = 1$ and $p(t) = \sin t$, $\tau(t) = \pi$. It is then easy to verify that all the assumptions in Th. 1 are satisfied with K = 1, $D > \pi/4$, and $M = \pi/2$. Thus this equation has a 2π -periodic solution.

For the proof we want some preliminaries. Set

$$X := \{ x \in C^{n-1}(\mathbb{R}, \mathbb{R}) \mid x(t + 2\pi) = x(t) \},\$$

and $x^{(0)} = x$; define the norm on X as follows

$$||x|| = \max_{0 \le j \le n-1} \max_{0 \le t \le 2\pi} |x^{(j)}(t)|;$$

and set

$$Y := \{ y \in C^{n-1}(\mathbb{R}, \mathbb{R}) \mid y(t + 2\pi) = y(t) \}.$$

Define the norm on Y by $||y||_0 = \max_{0 \le t \le 2\pi} |y(t)|$. Thus both $(X, ||\cdot||)$ and $(Y, ||\cdot||_0)$ are Banach spaces. Define the operators L and N by

$$L: X \cap C^{n}(\mathbb{R}, \mathbb{R}) \to Y, \quad x(t) \mapsto x^{(n)}(t), \quad t \in \mathbb{R},$$

and

$$N: X \to Y$$
, $x(t) \mapsto -f(x'(t-\sigma)) - \beta(t)g[x(t-\tau(t))] + p(t)$, $t \in \mathbb{R}$, respectively.

Let Im L and Ker L be, respectively, the image and kernel of the operator L. Clearly, Ker $L = \mathbb{R}$. Define the projections $P: X \to \operatorname{Ker} L$ and $Q: Y \to Y/\operatorname{Im} L$ by

$$(Px)(t) = \frac{1}{2\pi} \int_0^{2\pi} x(t)dt, \quad t \in \mathbb{R},$$

and

$$(Qy)(t) = \frac{1}{2\pi} \int_0^{2\pi} y(t)dt, \quad t \in \mathbb{R},$$

respectively, then $\operatorname{Ker} L = \operatorname{Im} P$ and $\operatorname{Ker} Q = \operatorname{Im} L$. Consider the equation

(2)
$$x^{(n)}(t) + \lambda f(x'(t-\sigma)) + \lambda \beta(t)g[x(t-\tau(t))] = \lambda p(t),$$

where $\lambda \in (0,1)$. We have

Lemma. Suppose that all conditions of Th. 1 are satisfied, then there exist positive constants D_j $(1 \le j \le n-1)$, which are independent of λ , if x(t) is any 2π -periodic solution of Eq. (2), such that

(3)
$$|x^{(j)}(t)| \le D_j$$
 and $|x(t)| \le D + 2\pi D_1$ $(t \in [0, 2\pi], 1 \le j \le n-1)$.

Proof. Let x = x(t) be a 2π -periodic solution of Eq. (2). Since $x^{(n-2)}(0) = x^{(n-2)}(2\pi)$, there exists $t_1 \in [0, 2\pi]$ such that $x^{(n-1)}(t_1) = 0$. In view of (1), we see that any $t \in [0, 2\pi]$,

$$|x^{(n-1)}(t)| = \left| \int_{t_1}^{t} x^{(n)}(s) ds \right| \le \int_{0}^{2\pi} |x^{(n)}(s)| ds \le$$

$$\le \lambda \int_{0}^{2\pi} |f(x'(s-\sigma))| ds +$$

$$+ \lambda \int_{0}^{2\pi} \beta(s) |g[x(s-\tau(s))]| ds + \lambda \int_{0}^{2\pi} |p(s)| ds \le$$

$$\le 2\pi K + \int_{0}^{2\pi} \beta(s) |g[x(s-\tau(s))]| ds + 2\pi \max_{0 \le s \le 2\pi} |p(s)|.$$

We assert that

(5)
$$\int_{0}^{2\pi} \beta(t) |g[x(t-\tau(t))]| dt \leq 2\pi K + 4\pi \beta_1 M_1$$

for some positive number M_1 , where $\beta_1 = \max_{0 \le t \le 2\pi} \beta(t)$. Indeed, integrating Eq. (2) from 0 to 2π , and noting condition (i), we see that

$$\int_{0}^{2\pi} \{\beta(t)g[x(t-\tau(t))] - K\}dt \le$$

$$\leq \int_{0}^{2\pi} \{\beta(t)g[x(t-\tau(t))] - |f(x'(t-\sigma))|\}dt \le$$

$$\leq \int_{0}^{2\pi} \{f(x'(t-\sigma)) + \beta(t)g[x(t-\tau(t))]\}dt = 0.$$

Thus letting

$$E_1 = \{t \in [0, 2\pi] \mid x(t - \tau(t)) > D\}, \quad E_2 = [0, 2\pi] \setminus E_1,$$

we have

$$\int_{E_2} \beta(t) |g[x(t-\tau(t))]| dt \le 2\pi \beta_1 \max \Big\{ M, \sup_{x \in [-D,D]} |g(x)| \Big\},\,$$

and

$$\begin{split} \int_{E_1} \{\beta(t)|g[x(t-\tau(t))|-K\}dt &\leq \int_{E_1} |\beta(t)g[x(t-\tau(t))]-K|dt = \\ &= \int_{E_1} \{\beta(t)g[x(t-\tau(t))]-K\}dt \leq \\ &\leq -\int_{E_2} \{\beta(t)g[x(t-\tau(t))]-K\}dt \leq \\ &\leq \int_{E_2} \beta(t)|g[x(t-\tau(t))]|dt + \int_{E_2} Kdt. \end{split}$$

Therefore,

$$\int_0^{2\pi} \beta(t) |g[x(t-\tau(t))]| dt \le 2\pi K + 4\pi \beta_1 \max\Big\{ M, \sup_{x \in [-D,D]} |g(x)| \Big\},$$

as required. Combining (4) and (5), we see that

(7)
$$|x^{(n-1)}(t)| \le D_{n-1}, \quad t \in [0, 2\pi]$$

for some positive number D_{n-1} . Next, since $x^{(n-3)}(0) = x^{(n-3)}(2\pi)$, there is some $t_2 \in [0, 2\pi]$, such that $x^{(n-2)}(t_2) = 0$. In view of (1), we see that for any $t \in [0, 2\pi]$,

(8)
$$|x^{(n-2)}(t)| = \left| \int_{t_0}^t x^{(n-1)}(s) ds \right| \le \int_0^{2\pi} |x^{(n-1)}(t)| dt \le 2\pi D_{n-1}.$$

Similarly, we conclude for any $t \in [0, 2\pi]$,

(9)
$$|x^{(n-1-i)}(t)| \le (2\pi)^i D_{n-1}$$
 $(i=1,2,\ldots,n-2).$

Let $D_{n-1-i} = (2\pi)^i D_{n-1}$ (i = 1, 2, ..., n-2). By (7) and (9), implies that

(10)
$$|x^{(j)}(t)| \le D_j, \quad t \in [0, 2\pi] \quad (j = 1, 2, \dots, n-1).$$

Further, note that last equality in (6) implies

$$f(x'(t_0)) + \beta(t_0)g(x(t_0 - \tau(t_0))) = 0$$

for some t_0 in $[0, 2\pi]$. Thus in view of condition (i),

$$|\beta(t_0)g[x(t_0-\tau(t_0))]| = |f(x'(t_0))| \le K,$$

and in view of (ii),

$$|x(t_0 - \tau(t_0))| < D.$$

Since x(t) is 2π -periodic, we may infer that $|x(t^*)| < D$ for some t^* in $[0, 2\pi]$. Finally, we see that

(11)
$$|\dot{x}(t)| = \left| x(t^*) + \int_{t^*}^t x'(s)ds \right| \le D + \int_0^{2\pi} |x'(t)|dt \le$$

$$\le D + 2\pi D_1, \ t \in [0, 2\pi].$$

The proof is complete. \Diamond

Proof of Theorem 1. Suppose that x(t) is any 2π -periodic solution of Eq. (2). By Lemma, there exist positive constants D_j $(1 \le j \le n-1)$, which are independent of λ such that (4) is true. For any fixed positive constant $\overline{D} > \max\{D_1, D_2, \dots, D_{n-1}, D + 2\pi D_1\}$, set

$$\Omega = \{ x \in X \mid ||x|| < \overline{D} \}.$$

We know that the operator L is a Fredholm operator with index zero, and the operator N is L-compact on the closure $\overline{\Omega}$ of Ω (see, e.g., [1, p. 176]).

For any $\lambda \in (0,1)$ and any x=x(t) in the domain of L is which also belongs to $\partial \Omega$, we must have $Lx \neq \lambda Nx$. For otherwise in view of (4), we see that x belongs to the interior of Ω , which is contrary to the assumption that $x \in \partial \Omega$. Next, note that a function x=x(t) in the intersection of Ker L and $\partial \Omega$ must be the constant functions $x(t) \equiv \overline{D}$ or $x(t) \equiv -\overline{D}$. Hence

$$(QN)(x) = \frac{1}{2\pi} \int_0^{2\pi} (-f(x'(t)) - \beta(t)g[x(t - \tau(t))] + p(t))dt =$$

$$= -\frac{1}{2\pi} g(\pm \overline{D}) \int_0^{2\pi} \beta(t)dt \neq 0.$$

Finally, consider the mapping

$$H(x,s) = sx + \frac{1}{2\pi}(1-s)g(x)\int_0^{2\pi} \beta(t)dt, \quad 0 \le s \le 1.$$

Since for every $s \in [0,1]$ and x in the intersection of Ker L and $\partial \Omega$, we have

$$xH(x,s) = sx^2 + \frac{1}{2\pi}(1-s)xg(x)\int_0^{2\pi}\beta(t)dt > 0,$$

thus H(x,s) is a homotopy. This shows that

264Wen-Xian Lin: Periodic solutions of an equation with deviating arguments

$$\begin{split} \deg\{QNx,\Omega\cap\operatorname{Ker}L,0\} &= \\ &= \deg\left\{-\frac{1}{2\pi}g(x)\int_0^{2\pi}\beta(t)dt,\Omega\cap\operatorname{Ker}L,0\right\} = \\ &= \deg\{-x,\Omega\cap\operatorname{Ker}L,0\} = \deg\{-x,\Omega\cap\mathbb{R},0\} \neq 0. \end{split}$$

By Mawhin continuing theorem [1, p. 40], we find that equation Lx = Nx has a solution in dom $L \cap \overline{\Omega}$, that is to say that there exists a 2π -periodic solution of Eq. (1). The proof is thus complete. \Diamond

References

- [1] GAINES, R. E. and MAWHIN, J. L.: Coincidence degree and nonlinear differential equations, Lecture Notes in Math. No. 568, Springer-Verlag, 1977.
- [2] WANG, G. Q. and CHENG, S. S.: A priori bounds for periodic solutions of a delay Rayleigh equation, *Applied Mathematics Letters* 12 (1999), 41–44.