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Abstract: The aim of this paper is to study a modified Pél-type interpolation
problem on Laguerre abscissas. We prove the regularity of the problem and
we give the explicit formulae of the interpolation. As an application we obtain
Birkhoff-type quadrature formulae which have higher degree of precision than
the precision of the interpolational quadrature formulae in general.

1. Introduction

The (0,2)-interpolation and the Pal-type interpolation, as special
(lacunary) Birkhoff-interpolation problems were studied by several au-
thors when the nodes are the zeros of the classical orthogonal polyno-
mials. On the infinite interval [0, co) with Laguerre abscissas the (0,2)
interpolation (cf. [1], [2], [3]), and the Pal-type interpolation (cf. [4])
were of special interest.

In this paper we study the following interpolation problem: On
the interval [0,00) let {z;}_, and {z*;}]~; be two sets of interscaled
nodal points:
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(1) 0<zp <z <1< < Tp1 < T*p < zpy, < 00.

For £ > 1 fixed integer, find a polynomial R,,(z) of minimal degree
satisfying the (0;1) interpolation conditions

(2) Ro(zi) =y, Rn(z%)=v, (i=1,...,n)
with Hermite-type boundary conditions
(3) RP(zo) =y§”  (j=0,...,k),

where y;, ¥, and y(gj ) are arbitrary real numbers.

In Sec. 2 we show that, if {z;}?_, and {z*;}}~, are the zeros of the
Laguerre polynomials Lg,,k) (z) and Lg“—l) (z), respectively, and zg = 0,
then the problem is regular (there exists a unique polynomial R,,(z) of
degree 2n + k satisfying the above conditions). (Here Lgf)(a:) denotes
the Laguerre polynomial of degree n with the parameter k.)

Using the identities (cf. (5.1.13) and (5.1.14) in [5])

(4) L¥ (z) = LED (z) — LD ()
and

(5) zLP' (z) = nL®) (z) — (n + k)L (z)
we obtain

(6) 2 LP@)] = (0 + Kb LG ().

It is known that L™ (z) (o > —1) has n distinct real roots in (0, c0),
hence applying the Rolle theorem and (6) we obtain that the zeros of
¥ (z) and Lgc_l)(:n) form the interscaled system (1). In Pél-type
interpolation the function values are prescribed at the zeros of wy,(z) =
= (z—x1)...(z—zy), while the derivative values are prescribed at the
zeros of w! (z). Hence the interpolational polynomial R,,(z) is a mod-
ified Pél-type interpolational polynomial with wp4x(z) = :ckL%k)(a:).

In Sec. 2 we construct the fundamental polynomials and we prove
the existence and uniqueness of the interpolational polynomial. In Sec.
3 we derive quadrature formulae for the integration of f(z) on [0, c0)
with respect to the weight function g(z) =e™%.
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2. The fundamental polynomials

Let
(7) O=zo<z"1 <21 < < Tp_1 <z%, < T, < 00.
be given, where {z;}%; and {z*;}; are the zeros of the Laguerre
polynomials L) (z) and LD (z), respectively. Let us denote by £;(z)

and £*;(z) the fundamental polynomials of Lagrange interpolation on
these nodal points, that is

Lgﬁ) T . Lgc_l) T
(8) e](x) = (k) ( ) ’ ¢ ](.’E) = (k—1) ( ) .
Ly” (z)(z — z;) Ly, (z*5)(z — z*5)
and so
i (i) = i, (%) = 615

Lemma 1. For k and n positive integers, on the nodal points (7) the
fundamental polynomials of the interpolational problem in (1)—(3) are

1

j = k+1p. (k—=1) () _
AJ () $?+1L7(1k—1) (933) [IL‘ ¢; (Ji)Ln (:C)
9 _ N 4
- /. e (t)“mng”_”(t)dt] G=1....,n)
L%k)’(zj) . —a, e, ),
ka(k)(m) z
10 Bj(z) = = /E*-tdt j=1,...,n),
(10) () (m*j)’“Lg”)(x*j) 5 (1) ( )
Cj(w) = p;(2)2’ LI (@)L () + 2" L) (z)
(11) < [es- ® L&Y (0)p; (1) +a;()LE D (1) i
7 Jo th—1
(jzoi"'yk;—].),
and
(12) Ch(z) ;x’“Lg“) (z),

~ BLE(0)

where pj(z) and g;(z) are polynomials of degree at most k — j — 1,
determined by (19) and (22), and the constants c; are defined in (20).
The polynomials A;(z), Bj(z) and C;(z) are of degree at most 2n+k.
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Proof. From (4) and

(13) LE (@) = =Ly (2)

(cf. (5.1.14) in [5]) we get by substituting z = z;

(14) L (@) =L¥D(zy)  (G=1...m),

hence the integrand in (9) is a polynomial and A;(z) is of degree 2n+k.
On using (6) and (8) it is easy to verify that the polynomials A;(x)
(7 =1,...,n) satisfy the equations

1) { Az-l()wi) =0i5, Ai(z*) =0 (i=1...,n),
AP0 =0 (=0,...,k),

the polynomials B;(z) (j =1,...,n) satisfy the equations
Bj(z;) =0, Bj(z*:) =6, (t=1...,n),

16) {B§”(o) =0 (1=0,...,k),

and the polynomial Cy(z) fulfills the equations

{Ck(:ci) =0, Ci(z*)=0 (i=1...,n),

(17)
cP) =64 (@=0,...,k)

Now for fixed j € {0,1,...,k — 1} we will find the polynomial
C;(z) in the form
(18)  Cj(x) = p;(2)2’ LY (z) LE (2) + 2" LY (2)gn (),

where p;(z) and gn(z) are polynomials of degree k — j — 1 and n,
respectively. It is clear that C’J(-l) (0) =0forl =0,...,7—1, and

because of LY (z;) = 0 we have Ci{z;)=0fori=1,...,n.
The coefficients of the polynomial p;(z) are determined by the
system
(19)
l d ; i .
cP(0) = — [ (@I LP@LED (@) =8 (=4 k-1)

From the equation C§k) (0) = 0 we get
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N

20 i — Jn O N —

Pi@I LP@LE D ()]

Using (6) and L&’“‘l) (z*;) = 0, from the condition C}(z*;) = 0 we
get

gn(@*i) = = (@) LY (2" (")

and we can define g/,(z) as it follows

E=1)"( N (o (A LED (g
(21) g (z) = _Ln” 7 (z)ps( ik—l:yqj( )Ln " (z)

where ¢;(z) is a polynomial of degree k—j — 1. The function g;,(x) will
be a polynomial if and only if

ds .
(22) = [LEY @)ps(2) + a5 (@) LE (@) =0 (s =0, hmj=1).
The coefficients of g;(z) are determined uniquely by these equations.

Now integrating (21) we get gn(z) = gn(0)+f; g, (t)dt, where substitut-
ing (20) we obtain (11). Hence the polynonuals C’ () (1 =0,...,k-1)
satisfy the equations

OJ(HIZ) :0, C;(.’L’*z) =0 (z'=1...,n),
{ cO) =6,  (=0,...,k),

which completes the proof. ¢

Theorem 1. For k and n > 1 fized integers, if {yi}i—1, {¥}}; and
{y(J )}’“:O are arbitrary real numbers, then on the nodal points (7) there
exists a unique polynomial R, (x) of degree at most 2n + k satisfying

the equations (2) and (3). The polynomial Ry (z) can be written in the
form

(23)

(24) Ry (z) = ZA (z)y; + ZB (z)y; + Z C; m)y(J)

where the fundamental polynomzals A;(z), B; (a:) and C;(z) are defined

in Lemma 1.

Proof. By Lemma 1 the polynomial R.,(z) in (24) satisfies the condi-

tions (2) and (3), hence the existence part of the statement is proved.
For the uniqueness let us consider the homogeneous problem: Find

a polynomial @, (z) of degree at most 2n + k satisfying the conditions
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Qm(xz) =0, Q;n(x*z) =0 (z:l,n),
Do)y =0 (1=0,...,k).
Due to these equations it is clear that
Qm(IL‘) = kagzk) (CL‘)qn(:ZI),
where g, (z) is a polynomial at most n. Furthermore by (6)
Q. (z*5) = LB (z*)(z*)*d,(z*:) =0  (i=1,...,n),

from which q,’z(m*z) =0 for i = 1,...,n, that is ¢, (z) = 0, hence
gn(z) = c. S0 Qu(z) = cz*LE (z), but

d*Qm
dxk

As LP (0) # 0 it follows ¢ = 0, hence Q. (z) = 0, which completes the
proof of the uniqueness. ¢

(0) = ck!LM (0) = 0.

3. Birkhoff-type quadrature formulae with Laguerre
abscissas

Theorem 2. For k > 1 fized integer let {x;}}—, and {z*;}7_; be the
zeros of the Laguerre polynomials L (z) and LY (x), respectively.

Then there ezist the coefficients A;, B; and C; such that the quadrature
formulae

oo n n k-1
(25) /0 flz)e %dx ~ Z A;f(zz) + Zij’(m*j) + Z C;79(0)
J=1 j=1 j=0

are exact for the polynomials of degree at most 2n + k.

Proof. Integrating (24) on the interval [0,00) with respect to the
weight function e~ we obtain

oo n n k
(26) /O R(z)e™%ds = > A;f(z;)+ Y Bif'(@*5) + ) Cif(0),

with
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Aj =/0 Aj(a:)e_md:c j = 1, ey Ty
(27) B; :/ Bj(z)e *dx i=1,...,n,
0
Cj :/ Cj(x)e—mda: ] ‘—‘0,1,...,1{;,
0

where the polynomials A;(z), Bj(z) and C;(z) are defined in Th. 1.
Hence the quadrature formula (26) is exact for the polynomials of degree
at most 2n + k.

Furthermore, by the orthogonality

L / L") (z)z*e>dz =0,

28 C’:/ Cr(x)e ™ ®de = ————

which completes the proof. §

Lemma 2. For k > 1 fized integer the coefficients of the quadrature
formula (25) are

2n+Ek)(n+k— 1)

(29) 7T —1[L,(1k—1) (z;)]*nnl(n+ k)’
o —(n+k)!

(30) By = (cc*j)k[Lsmk) (z*;)]?nn!

forj=1,.

Proof. It is known that (cf. (5.1.6) in [5))

(k:) _ e n -+ k (—CL')U
(51) wWe =3 ()5
Let

LP (z)
xr — .'Ej

n—1 n—2 .
= a’j)‘n‘—lm + a’])n_zx + e + a.710

and comparing the coefficients in

(@5m-13""" + ajn—2z™ % + . aj0) (2 — 25) = L (2)

we get
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-1 n

{ aJ’n_l B : n!) )
—_1)™
Ujn—2 = ( n!) [z; —n(n+ k)].
Comparing the coefficients of z terms in the linear combination

Lgc) T n+1 _
72 (z) _ Zvjﬂ;L?“ 1)(3:)

T — T
J i=0

we have Vjn+1 = —(n+ 1) and vj» = z; +n+ k. Hence by (5.1.1) in

[5]

o0 (k)
/ 2 Ly (x) L%k:—l) (x)xk—le——mdm —_
0 T —Tj

(32) = ’yj,n/ [Lg“_l)(a:)f:ck—le—zdm =
0

In a similar Way we get

oo ooy (E=1) 1 7 (k=1)
/ [/ tn (t)—z5Ln () dt] L) (z)zFe dz =
0 0
. !
. (1_ :_E_J_> (n+ k)!

- n
and from (9), (32) and (33) we obtain
* 2 E— 1)
Aj = / Aj(z)e™"dz = ((Z——ll_)k)(n _'(_k:)’ LR
0 cv;?Ln (z;)Lr’ (zj)nn!
_ 2n+k)(n+k—1)!
m?”l_[L%k—l) (z;)]?Pnnl(n+ k) ’
where we used
(34) 2§ LY (25) = (n + K)o~ LI (wy),

which follows from (6).
Following the same idea we get

z e 1 ;
| st = 3w @) = —pmy L @) +
0 v=0 J

and so

(33)
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Bj - /) Bj(m)da: =

- ” L®) (z)2gkedz = -
n(z* )t L) (275 LE ™ (z*j>/o Lol

(n+k)! B —(n+k)!
T @ LP @)L @t (@)L (@) Pt

| where we used L&Y’ (z*5) = — ) (z*;), which follows from (4) and
(13). ©
Example. For k = 1, if the nodes {z;}{-; and {z*;}]., are the ze-

ros of the Laguerre polynomials L%)(x) and Ly (), respectlvely, the
quadrature formula

e ez N2n—i—l = i
[, S n<n+1>?:L<m]> @)=

n+1 1 7
~ le I (z*5) (0)

is exact for the polynomials of degree at most 2n + 1.
Thus, substituting n = 1 into (35), the quadrature formula

* —x 3 , 1
| r@e=ie ~ S50 ~27/0) - 5500)

is exact for cubic polynomials, and for n = 2 we obtain the quadrature
formula

(35)

/f(m ‘““d:a~—[(9+\/_)f(3 V3) + 2—V3) (3 + V3] -

_§[(2+\/—)f(‘)—\/—)+(2 \/_)f(2+\/—)]-—f(0)

which is exact for the polynomials of degree at most 5.
For k=2 and n = 1 from (25) we have

[ H@etan ~ G = 3510) + 57O 550,

which is exact for the polynomials of degree at most 4.
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