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Abstract: A congruence of Jdnos Bolyai, discovered recently in scattered
manuscripts of Bolyai is analyzed, and its interesting connection with pseu-
doprimes and Fermat’s quotients is studied.

1. Introduction

From Bolyai’s manuscripts recently found in the Teleki-Bolyai
Library of Tg-Mures — Marosvésarhely (Romania) it is clear that the
famous geometer Janos Bolyai (1802-1860) was deeply interested also
in number theoretical problems. Specially, he tried to discover a gen-
eral formula for the primes. Once he thought that this is provided by
Fermat’s “little” theorem: if p is a prime, and a a positive integer such
that (a,b) = 1, then
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(1) a?~1 =1 (modp).

On suggestions of his father, Farkas Bolyai (1775-1856), he investigated
a search for a proof of the converse theorem. If this had been true,
then the desired formula for primes would be obtained. After some
experiences however he had realized that such a proof was impossible.
He found that

2340 = 1 (mod 341),
although 341 = 11 - 31 is composite.

The composite numbers p satisfying relation (1) are now called as
pseudoprimes (in base a). Jinos Bolyai discovered the pseudoprime 341
(and many other pseudoprimes [5]) by proving previously the following
theorem: If p and g are primes, a is a positive integer not divisible by p
and gq, further if a?~! =1 (mod q), a?~! =1 (modp), then

(2) aP?~! =1 (mod pq).

This theorem corresponds exactly to the theorem of J. H. Jeans
which he published in 1898, decades after the death of Janos Bolyai [4].

2. A new congruence

By letting ¢ = p in congruence (2), Bolyai deduced that
(3) a? ! =1 (mod p?)

([3], 1265/33). We have not found results by him on this relation,
though he noted the particular case 53 = 1 (mod4).

In what follows, our aim will be to determine (or to reduce to
known notions) all pairs (a,p) which satisfy relation (3).

By elementary arguments the following theorems can be proved:
Theorem 1. If p =2, then (3) is true iff

a =1 (mod4).
Theorem 2. If p = 3, then (3) is true iff
a = +1 (mod9).

Theorem 3. If p =5, then (3) is true iff
a = +1(mod 25) or a = 7 (mod 25).
Theorem 4. If p =7, then (3) is true iff
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a = +1 (mod49) or a = +£18 (mod 49).
We will present here only the proof of Th. 3, the other results
will follow on the same lines.
Let us consider therefore p = 5, i.e. the congruence

(4) a®* =1 (mod 25).
Let us write the identity

a**—1=(@a-Da+*—a+1)(a®+a+1)x
x (a2 + D(a* +1)(a* — a® + 1)(a® — a* + 1).

(5)

Clearly a =5k +7 (k> 0,r € {£1,+2}). fa =5k +1,thena—1=
= 0 (mod5). Then no other term of (5) is divisible by 5. Indeed, it is
immediate that a+1 = 2 (mod5), a?>—a+1=1 (mod5), a®>+a+1=3
(mod5), a®+1 = 2 (mod5), a*+1 = 2 (mod5), a*—a®+1 = 1 (mod 5),
a® —a* +1 =1 (mod5). Therefore a — 1 =0 (mod5), and from (4) it
results a — 1 =0 (mod 25), i.e. a =1 (mod 25).

For the case a = 5k —1 we proceed similarly, but not only a+1 =0
(mod 5) is possible, and this yields as above that a = —1 (mod 25).

Let now a = 5k + 2. Then from the terms of the right side of (5)
only a® + 1 is divisible by 5. Since a? + 1 = 25k? + 20k + 5 = 5(5k* +
+4k+1), we must have that 5k2 + 4k + 1 is divisible by 5, so 4dk+1 =0
(mod5). From 4k+1 = 5k—k+1 it remains k—1 = 0 (mod 5). Writing
k—1=5u,ie.a=5k+2=5bBu+1)+2=25u+7 wegeta="7
(mod 25).

In the case a = 5k — 2 we obtain in an analogous way that a = —7
(mod 25). ¢

We note that for the case p = 7 (Th. 4), the study of the above
presented method is slightly more difficult since then a linear diophan-
tine equation of type

Sk+1="Tl
will appear so k has the form k = 7t — 3 etc.

Now, let us consider the most general case! We will prove the
following result:

Theorem 5.
(6) af = (modpz) iff a1 =1 (mod p?).

Proof. Put a?~! = z. Since p? — 1 = (p — 1)(p + 1), one can write
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(%) ap2“1—1=a:p+1~1-—-(:c——1)(1+a:+---+:vp).

If a?~! = 1 (mod p?), i.e. p|z — 1, then by identity (*) one has clearly
also a? ~! = 1 (mod p?), so a part of the theorem is proved.
Conversely, let us suppose that the left-side congruence (i.e. (3))
is true. Then a cannot be divisible by p, so (a,p) = 1. From Fermat’s
theorem (i.e. (1)) one has p |z — 1.
Now we prove that

(7) Pl (L4 +aP).

Indeed, since 1+z+---+2P = (z—1)+ (2> —1)+-- -+ (zP - 1)+ (p+1),
where each of £ — 1,22 —1,...,2P — 1 is divisible by p (on base of (1)),
but p 4+ 1 cannot be divisible by p. Thus if (3) is valid, by (7), z — 1
must be divisible not only by p, but by p?, too. ¢

The following theorem generalizes Th. 5, and has a similar proof:
Theorem 6 Let k > 2 be a fized integer. Then

a® =1 (modp¥) iff aP =1 (modp?).

The proof is based on the identity a?* ~* = 2™+ —1 = (z—1)(1+
+z+- - -+2™), where z is defined as above, while m = p+p*+- - 4pk-l,
We omit the details. ¢

Finally, another generalization of Th. 5. is contained in the fol-
lowing:

Theorem 7.
" l=1 (mod p®) iff =1 (mod p*).

Proof. First remark that, if one of the above congruences is true, then
(a,p) = 1. Now, by Euler’s divisibility theorem applied to n = p* gives

o e =1 (mod p*).

From the identity

k—i k—1_1

I B S At (14 Mp*) - a? (M > 1 integer)

we get that

k—1

aP "l —1=aP "l -1+ M'p* (M’ > 1 integer).

Now this identity implies at once the result. ¢

Remark that for £ = 2 Th. 7 implies (with a new proof) the result
of Th. 5.

The following result can be proved similarly to Th. 7:
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Theorem 8. Letn > 1 be an arbitrary integer, and let p* be the highest

power of a prime p which divides n. Put N = 5’%. Then

a™ =1 (modn) iff a®* =1 (modn),
where
m=p* o(N) and s =p* " (N) (p(N) is Euler’s function).
Forn = p*, Th. 7 is reobtained.

We note that, by an extension of Euler’s theorem, due to R. T.
Hansen (see [7]):

a?™*! = g(modn)

where (a,n) = d, and (a,n/d) = 1, we can slightly extend Th. 8 as
follows (the notation is as above):

Theorem 9. Let (a,n) = d, and suppose that (a,n/d) = 1. Then

a* = a(modn) iff ¢’ = a(modn)
were

u=p*p(N)+1 and v=p" Lo(N)+1.
When d =1, i.e. (a,n) =1, Th. 8 is reobtained.

3. Remarks

1. Via Th. 5 a new proof can be offered for Ths. 1-4.
2. The history of mathematics attributes to Abel (1828) the ques-
tion of examples for the congruence

(8) a?~! = 1(modp?) (a > 2).
For p < 37 Jacobi found the following examples:
319 =1 (mod11?), 9°=1 (mod11?),
14%® =1 (mod 29?), 18%¢ = 1(mod 372).
For a =2, (8) gives
(9) 2P~ = 1(mod p?)

Such primes p are called as Wieferich primes. In 1909 Wieferich gave a
connection between the congruence (9) and Fermat’s last (or “great”)
theorem. The numbers p = 1093 and p = 3511 satisfy relation (9), but
the set of such primes seems to be very sporadic. These examples were
found by Meissner and Beeger in 1913, resp. 1922. In 1985 Crandall,
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Dilcher and Pomerance have shown that no other Wieferich primes
do exist under p < 4 - 10'2. Still, today it is believed that (9) (and
generally, (8)) has infinitely many solutions. This seems to be very
difficult (perhaps even unattackable at present) (see e.g. [6], [7]).

aP~1-1

The quotient gp(a) = is called also as the Fermat quotient

(in base a). This quotient has many interesting properties. E.g. if p
doesn’t divide ab, then

dp(ab) = gp(a) + gp(b) (modp).
Other properties: gp(p — 1) = 1(modp), gp(p + 1) = —1(mod p) etc.
For certain new properties and generalizations, with connections
to other number theoretical results, see [1], [2], [7], where further refer-
ences can be found.
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