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Abstract: Some theorems are proved for oq r+1(n).

1. Introduction. Let P be the set of primes, p, ¢ with or without suf-
fixes denote general elements of P, w(n) = the number of distinct prime
divisors of n, P(n) = the largest and p(n) the smallest prime divisor

of n. We shall write 21 = logz, 2 = logzi,..., and e(a) := e'°.
Let ¢(n) = Euler’s totient function, ¢y its k-fold iterate.
Let ogry1(n) = > d$-d3®...dr® Then

dodldg...drzn

(1.1) ZM@— ¢(s)¢(s—a)...¢(s—ra).
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The special case r = 1 gives: g42(n) = >, df which is the same
dll’l’L
as 0,(n) in the usual notation.
We may assume that o > 0. Let us observe that

12) et S g g o (),
dody...dr=n
and so
(1.3) > U;n_“(i) = (s +ra)l(s+ (r—1a)...C(s).
Let Fr(s) = ((s+ra){(s+ (r—1)a)...{(s). Since
(1.4) Fr(s) =C((s+ra)F._1(s),
therefore
(1.5) O_grt1(n) = — Za_a ~(d) - d™.
d|n

Since 0_4 r+1(n) is multiplicative, therefore

(1.6) _ _ Z Oq, 7~+B18Pﬁ .
11 (l— _"a> p=0 P
v=0 p*

1
Let ( = 1/p°, A = —. From (1.6), by writing it as partial
p

fractions,
(1.7)
1 ' Ag Ay n A,
(1-2)1—-Az)...(1-Arz)

J

—m+1—A:1:+”' 1—-Arg’

1
= Z (AO -+ 4411\]‘”' -+ ATATk) xk

k=0
where
(1.8) Aj=—— _ !
ne-w 0 (-()7)
V—O v=0 P
v#j v£]

Thus
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(1.9) { O_gr+1(p%) = Ag + A1A® + ApAP* 4 4+ A, - A™e,
. A= p-a
m 1
Let nm(p) = 11 (1 — W) By easy calculation we have
I=1
. aj{i+1)
-1V -pT 7=z —
(1.10) A = (=1)'-p

Nr—3(0)75(p)

whence especially

1 1
L1l O—a,r :1+—+O<——>
( ) , +1(P> e p2a

follows.

There exists a lot of interesting and important theorem for the
function o_4(n):

a. The mean-value of o_,(n) with good remainder term.

b. The mean-value of o_, on some special subsets of integers.
c. The distribution of o_4(n).

d. The maximal order of o_,(n).

2. Let f(n) = logo_,(n) Assume that N is a “champion” in the sense
that f(n) < f(N) if n < N. From (1.9) it is obvious that f(p*) <
< f(p) if k¥ > 2, therefore N should be a square-free integer. Since
f is monotonically decreasing on the set of primes, therefore N =

= p1P2...Px (P1 < p2 < ...,Pk) is the product of the first k& prime
numbers, consequently

o e — P
log N =logpy + ... +logpy =pr + O ((logpk)A)’
log N
=logN + 0| ————

P =108 N <(log10gN)A>’
f(N) = f(p1)+ ...+ f(pr)-
1 1

Since f(p;) = logo_or(p;) = — + O | == |, therefore
P; Pj
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log

Pk " °pke—v(a,——1)
L an( _ [
O(1)+ F(N) = pj / r( /u“logu / ——
2

Thus f(N) = (1) ifa>1 Ifa=1, then f(N) =loglogp, + O(1) =
= logloglog N + O(1), while in the case 0 < a < 1:

6(1_0') loglog N 1
N) = 140 —— ) ).
J() (1 —a)loglog N < * (loglogN>>
Hence we obtain the following

Theorem 1. We have
(a) oarii(n) =O(1) a1,

. O_1,r+1 (n)
b 1 Zohra N
(5) H,ffﬁlp loglogn
(c)

(log N)i=e 1
X0 _gri1(n) = e 140 —— ),
nen 0 e 1(n) = exp <(1 —a)loglog N © (loglog N)4
holds for every fized A.

=c, where < c < oo,

3. A. S. Fajnleib [5] proved the following theorem which is referred
now as

Lemma 1. Let Y(m) be an additive arithmetical function for which:
oF

ers p¥,

< oo, the summation is extended for all prime pow-

1
2. |Y(n)—v(m)| > ——=% if n # m, for square-free integers n, m,
(nm)?®

where b 15 a suitable constant.
Then uniformly in u,

1
#4n<aly(n Z - Fu) =
—0 loglog1/p,

<10g p%) <log log log ;%) 7

where I is the distribution function, the corresponding characteristic
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function of which is

Let () = 10g0—1,r41(n). Then p(n) = log 22 (b (1.9))
furthermore o1 ,1(n) is an integer. Let n,m < z, n and m be square
free, n # m. '

We would like to estimate from below the quantity

(3.1) 1w<n>—w<m>|:log<“““<”)- u )

n’ o1,r+1(m)

We may assume that (n,m) = 1, n,m > 2. Let P(v) denote the
largest prime factor .of v.

Let P(mn) = p*, and p*|n say. Then p* { m, p* t o1 ,41(n),
therefore the argument on the right hand side of (3.1) is # 1, and so
(3.1) is larger than > W’ say.

Therefore the condition 2 of Lemma 1 holds.

The fulfilment of condition 1 is obvigus._

1
From (1.11) we have ¢(p) = » +0 <]712->, and so

-2z - Ta
pz = (1+0z(1)) Z 1/p3, = exp < L 3> : ,

T T1T3
p>exp(—-i"—3-)

and by an easy computation

0 loglog1/py :O( :1:§2>
<locr ——-) (1og log log —) L1Z3
From Lemma 1 we obtain

Theorem 2. Let ¢(n) =logo_1 r1(n). Let H.(u) be the distribution
function the characteristic function ¢,(t) of which is defined by

s =

p

Then
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%#{n <z |b(n) <u)—Ho(u)=0 (ml m3> |
Remark. If —1 < a < 0, then it is not known, whether the condition
(1) in Lemma 1 holds for 9(n) = logo_s,+1(n) or not. Naturally,
the limit distribution exists, since the conditions of the Erdés—Wintner
theorem [4] are satisfied.

According to the Erdés—Wintner theorem an additive arithmetical

function g(n) has the limit distribution F if and only if the series

3 g9(p) 3 9%(p) 3 1
p p p

la(p)l<1 lg(p)I<1 lg(p)I21
are convergent, Furthermore,

1 i .
pr(t) =] (1 - —> (1 +> p ’“e(tg(p’”))> ,
p o
P k=1
(@r(t) is the characteristic function corresponding to F).

F' can be interpreted as the distribution function of the random
variable n = ) (p, where (, are independent random variables with the
purely discrete distribution, and

e, (t) = (1 - %) <1 + Zp‘ke(tg(p’“))> -
k=1

P. Levy [7] proved: If ) (, = 7 is a convergent sum, then F(= F,)
is continuous (everywhere) if and only if

(3.2) > PG #0) = oo

If (3.2) holds, then Fy, is of pure type, either absolutely continuous
or singular (Lukécs [8]).
For some distribution function F let

(3.3) Qr(h) := sup(F(z + h) — F(z)),

the concentration function of F. It was proved that

(3.4) o) < —— (t>2)
' (logt) F (log t)

holds for the following additive function g(n):

21 (Djan 10]),

a. g(n)=log =
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b. g(n)=log o(n) (Erdss [2]),
n
c. ifgis strongly additive and

> Bl v, lote) — ot > 1,

p>ta

if p; # py < °, (p1, P2 Tun over the primes) hold with suitable positive
constants A and § for every large ¢ (Erd6s and Katai [3]).

Easy to see that the assertion remains valid if the “strongly addi-
tiveness” is changed to additiveness.

The last conditions are clearly satisfied for g(n) =logo_q r+1(n),

1 1
thus the following assertion is true, since g(n) = — 40O < — >
p b=

Theorem 3. Let F' be the limit distribution function oflogo_, r+1(n),
and QF be defined by (3.3). Then (3.4) holds true.
A similar theorem can be proved for logo_g,+1(P(n)),

10g 0—q r+1(P(p)), where P is an integer valued polynomial, and p runs
over P.

These follow from a theorem of Indlekofer and Kétai [6].

4. Let A(n) = o1 r4+1(n) and Ag(n) be the k fold iterate of A(n). We
can estimate w(Ag(n)).
Theorem 4. Let k,r be fized positive integers. Then

w(Ag(n)) —ap - zE+t
lim sup |z ?#<{n <z (Ax(n)) A+1k/‘> 2 <y — ®(2)| =0,
T—C0 z€R - bk . 1:2
where
1 1
ar =

CESRR

The assertion with w(pr(n)) instead of w(Ag(n)) is proved in the
paper of Bassily, Kétai and Wijsmuller [1]. Th. 4 can be proved on the
same way. We omit the proof.

5. Assume that 0 < a < 1,

(5'1) ar—.—l ZU_Q r—l—l

n<x

Since
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daa@) =Y [5] =+ <<(1 +a) ~ m;) L0 (%) =

d<z
=((1+a)z+0(z'7%)

and
1 T
Aa,r+l($) = Z ‘Cﬁl‘Aa,r (E) )
d<z
by induction on r, we can deduce that
Agrii(z) =C(1+a)---(1+ra)z+ 0 (xl—a) -

The error term can be reduced, by using some more complicated method.
We hope to return to this question in our forthcoming paper.
We consider only the case a = 1. It is known that

A1q(z Za- 9):1:——locrsc+A( )y

n<z
where
A(z) < (log )3,
From the obvious identity

Aar(z) =D diTA ()

we obtain that

We can prove by induction that

(52) Asa(@) =C(2) . C(t+1)a—5(2) . (D) loga+0 ((1og2)/?)

(t=1,2,...).
This is clear:



On the function ((s)¢(s —a)...{(s —ra) =3 Ta,r+1(n)

27
nS
' 1
Arpa(z) =) Tt Ael@) =
d<z
_ 5 ‘41 1 1 5 : 1 oz =
=2 ((2). -+ 1) D = = 5C) ) D Sy log
a<z d<z

+ 0 <(1og m)1/3> =

1 .
=z((2)... C(t+1)C(E+2) — 5¢(2) .. .£(t+ 1) logz + O{(logz)*/?).
Thus the assertion (5.2) holds for every fixed t.
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