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1. Introduction

In the last decade several papers dealing with the generalization
of the notion of semilattice (or lattice) congruence to partially ordered
sets appeared. A common property of the congruence notions developed
in these papers was that all these “congruences” were defined as the
kernels of some particular isotone maps (see e.g. [6], [2], [3], [7] and
[14]). From here naturally arises the idea to define the kernels of all
isotone maps of a poset (P, <) as congruences of it. This idea appeared
already in the seventies and was developed in the papers of T. Sturm in
a more general context (see e.g. [21], [22] and [23]). The same notion,
in a different formulation, was also introduced by W. T. Trotter (see
[26]), who called the partitions corresponding to the above congruences
order-preserving partitions. Notice that in the case of a semilattice or
lattice L the kernels of isotone maps of (I, <) are not semilattice or
lattice congruences in general. An other related general notion in the
framework of ordered algebras was introduced by G. Czédli and A. Len-
kehegyi ([4], [5]). Their approach was related in some aspects to a
paper of S. L. Bloom[1l]. We note that both W. T. Trotter’s and our
congruence notion can be deduced from their definition.

In this paper we give several characterizations of these congru-
ences, showing that they are related with the interval decompositions in
partially ordered sets, investigated in several papers. (See e.g. [9], [17] or
[18].) We prove that the order-congruences of a finite poset (P, <) form
arelatively complemented lattice which satisfies the Jordan-Holder con-
dition, however it is not semimodular in general. We show that this
lattice is O-distributive if and only if (P, £) is either a chain or a two-
element antichain.

2. Preliminaries

The kernel Ker f of a function f : P — @Q is the equivalence relation
{(@y) € P? | f(z) = f(1)}. I (P,< p) and (Q,< g) are partially
ordered sets, f is called isotone (or order-preserving) if for any z,y € P,
z £ py implies f(z) £ of(y). If p C P? is an equivalence relation,
then p[z] denotes the equivalence class of an element z € P and P/p
the set of all equivalence classes of p. The partition induced by p on P
is denoted by m,. Conversely, if 7 is a partition of the set P, then p,
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stands for the equivalence relation induced by 7. We denote by w the
identity relation and by . the total relation (on a set P). The following
definition is inspired by [4].

Definition 2.1. Let (P,<) be a poset and p C P? an equivalence
relation on it.

(i) A sequence zp,Z1,...,Zn € P ( with n 2 1) is called a p-
sequence if for each ¢ € {1,...n} either (z;_1,2;) € p or T;_1 < T4
holds. If in addition zg = 2, then zg, z1,..., T, is called a p-circle.

(ii) p is called an order-congruence of (P, <) if for any p-circle
Z0,Z1,. .., Tn € P plzg] = plz1] = -+ = p[z,] is satisfied.

(ili) A partition 7 of P is called an order-preserving partition of
(P, 2) if pr is an order-congruence of (P, <).

Remark 2.2. Clearly, if the partial order R extends £ then any p-
sequence and p-circle of (P, £) is also a p-sequence and p-circle of (P, R).
Hence any order-congruence of (P,R) is also an order-congruence of
(P, 5).

Lemma 2.3. If p is an order-congruence of the poset (P, <), then it
induces a partial order <, defined on the set P/p = {p[z] | z € P} as
follows:

plz]< ply] if there ezists a p-sequence To,T1,...,Tn € P, with
o =2 and Tp, = Y.

Proof. Clearly, < o is reflexive and transitive by its definition. In order
to prove that < is antisymmetric, assume p[z|< ply] and ply|< plz],

for some z,y € P. Then there exists a p-sequence xg,z1,...,Tn € P,
with zp = z and z, = y and a p-sequence vo,%1,---,Ym € P with
Yo =y and y,, = z. Clearly, x = zg,Z1,. .-, Zn, Y0, Y1, - -+ Ym = T 1S &

p-circle, hence we obtain p[z] = plzo] = plzn] = ply].
Remark 2.4. Consequently, any order-congruence p determines a
factor-poset (P/p, §p). We note that the canonical projection f, : P —
— P/p, fp(z) = plz] maps isotonly the poset (P, =) into (P/p,<,).
Indeed, take any z,y € P with £ £ y. Then z,v is a p-sequence, and
hence we get p[z]< plyl, e folz) = foly).

By a (partially) ordered algebra we mean a triple (4, F, <), where
(A, F) is an algebra, (A, <) is a poset and all the operations f € F' are
isotone with respect to the partial order < (see [4]). By a homomorphism
of (partially) ordered algebras we mean an operation preserving isotone
map from an algebra (4, F, < 4) to an algebra (B, F, < g).
Definition 2.5.([4]) A relation § C A2 is called an order-congruence of
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an ordered algebra (A, F, £) if it is a congruence of the algebra (4, F)
and in the same time an order-congruence of the poset (4, £).

Clearly, if the set F' of the (term) operations of the above algebra
is empty, we remain with the notion of an order-congruence of a poset.
This observation makes possible to valorize the results of [4] and [5] in
our paper. For instance, [4, Prop. 2.1] asserts that § C A? is an order-
congruence of the partially ordered algebra (A, F, < 4) iff there exists a
partially ordered algebra (B, F,< g) and a homomorphism f: A — B
such that 8 =Kerf. As a consequence we obtain
Corollary 2.6. § C A? is an order-congruence of a poset (A, < 4) iff
there exists a poset (B,< g) and an isotone mapping f : A — B with
0 =Kerf.
Definition 2.7. (i) A nonempty set 7 C P is called an interval (or
modul, or autonomous set) of a poset (P, <) if for any elements a,b € I
and z,y € P\ I < o implies z < b and a < y implies b < y.

(i) A partition m = {A; | 7 € I'} of the set P is called an interval
decomposition of (P, <) if each block A; of it is an interval of (P, £).

For instance, in the case of a linearly ordered set (P, <) its inter-
vals are the usual intervals, all the singletons {a}, a € P, P and @. We
note, that this interval notion goes back to Hausdorff [15] and it can be
generalized for an arbitrary n-ary relation R (see [11]), even more, the
system of all intervals can be defined as a particular closure system on
P (see e.g. [9], [10] or [17]).
Lemma 2.8.(1) If 7 = {A; | i € I} is an interval decomposition of
the poset (P,<) and xg,%1....,Tn € P 5 a pr-sequence, then for all
i €{1,...,n} either (zo,z;) € pr or zo < z; holds.

(i) Any interval-decomposition m = {A; | 1 € I} of the poset
(P, £) is also an order-preserving partition of (P, <).

Proof. (i) Take a p.-sequence zg,z1,...,7, € P, n>1. We prox}e (i)
by induction. Clearly, the assertion is satisfied for 7 = 1. Now suppose
that either (zg, ;) € pr or 2o < z; holds for some 7 € {1,...,n — 1}.

As we have either (z;,2;41) € pr Or z; < T;41, we get four possible
cases: (%o,Ti) € Pr,(Ti, Tit1) € Pr; To < Tiy Ty < Tiy1; (To,Ts) €
€ pm,Zi < Tip1 and zg < 4, (T4, Tiy1) € pr. In the first two cases
(%0, Zix1) € pr OF g < Ti41. As each pr[z;] is an interval of (P, £), in
the last two cases we obtain zg < z;11, completing the proof.

(i) Assume by contradiction that there is a p,-circle
To,Z1,...,Tn € P, zp = z, whose elements do not belong to a sin-
gle class of p;. Then there exists an z; with (zo,z;) ¢ pr. Hence
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zo < z;, according to (i). As z;,T;11,..., %, is also a p,-sequence, (i)
and (z;,Zn) & pr imply z; < T, = 20, a contradiction. ¢

3. Main properties of the order-congruences

The following lemma will be used in several proofs of our paper:
Lemma 3.1. Let (P,= p), (@Q,< @) be two posets, f : P — Q an
isotone mapping and define a relation RY C P? as follows:

(1) zRIy &z < py or f(z) < of(v).

Then the following assertions are true:

(1) RY 1s a partial order on P which extends < p, [ is an isotone
mapping of the poset (P,RY) into (Q,< o), and the partition induced
by Kerf is an interval decomposition of (P, RS).

(ii) If £ g is a linear order and L is a linear extension of RY,

then f is an isotone mapping of (P, L) into (Q,< g) and the partition
induced by Kerf on P is an interval decomposition of (P, L).
Proof. (i) R’ is reflexive and extends < p by its definition. As
f(z) < of(y) excludes y £ pz and f(y) < gf(z), the relations 2Ry
and yR7z together imply =z < py and y < px,ie z =y Hence RS
is antisymmetric. Take a,b,c € P with ¢ R'b and bRfc. Then using
(1) we obtain f(a) < of(b) £ gf(c). Now f(a) < gf(c) implies aR /<,
while f(a) = f(c) gives f(a) = f(b) = f(c) and a £ pb < pc, hence
we get aRfc again. Thus RS is transitive as well, hence it is a partial
order. Clearly, if < p is a linear order then R/ is equal to < p.

As by (1) Ry implies f(z) < of(y), f maps isotonly (P, Rf)
into (@, =< ). Let A be an equivalence class of Ker f and take a,b € A,
z,y € P\ A with zR7a and aRfy. Then f(z) # f(a) # f(y) implies
7(@) < of(a) < af (). As f(a) = £(5), we get

f(z) < of(b) < of(y), and this implies zR b and bRSy. Thus A
is an interval and the partition induced by Kerf is an interval decom-
position of (P, RY). ,

(ii) Take u,v € P with (u,v) € £ and u # v. We prove that
f(u) £ of(v). Indeed, assume by contradiction f(v) < gf(u). Then
using (1) we get vRSu, whence (v,u) € L. Now (u,v), (v,u) € £ implies
u = v, a contradiction. Hence f maps isotonly (P, L) into (Q,< o).
Define now the relation 7?,£ for the posets (P, L), (@, < @) and for

the map f, using (1). Then Rj; = L and (i) imply that the partition
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induced by Kerf is an interval decomposition of (P, L). O

A reflexive transitive binary relation  C P? is called a quasiorder
on the set P. Clearly, if 6 is a quasiorder, then its inverse 87! is also a
quasiorder and 6N 6! is an equivalence on P.

Theorem 3.2. Let (P,< p) be a poset and p C P? an equivalence on
P. Then the following are equivalent:

(i) p is an order-congruence of (P, < p).

(ii) There ezists a poset (Q,< @) and an isotone map f: P — @
such that p =Kerf.

(iii) £ can be extended to a quasiorder  such that p = 6N 671,

(iv) = can be ertended to a linear order L C P? such that w, is
an interval decomposition of (P, L).

(v) £ can be extended to a partial order R C P? such that 7, is
an interval decomposition of (P, R).

Proof. The equivalence of (i), (ii) and (iil) was established in [5].
(Take F' = @ in theorems 1.1, 1.2 and Prop. 1.4. from [5].) We note
that (i)<>(ii) also follows from [23] (see sections 45 and 47).

(ii)=(iv). Let (@, < @) be a poset, f : P — Q an isotone mapping
with p =Kerf and Lg a linear extension of £ g on Q. Then f is an
isotone mapping of (P, = p) into (@, Lg), too. Now, by Lemma 3.2(ii),
there exists a linear extension £ of £ p such that 7, is an interval
decomposition of (P, L).

(iv)=>(v) is obvious. (v)=-(i). Let m, an interval decomposition

of (P,R). Then in virtue of Lemma 2.8(ii) p is an order-congruence of
(P,R). Since R is an extension of <, in view of Remark 2.2, p is an
order-congruence of (P, < p), too. ¢
Corollary 3.3. Let (P, L) be a linearly ordered set. Then the interval
decompositions of (P,L) and the order-preserving partitions of (P, L)
are the same. )
Proof. In view of Th. 3.2(iv) any order-preserving partition of (P, £)
is an interval decomposition of (P, £). Conversely, according to Lemma
2.8(ii), any interval decomposition of (P, L) is also an order-preserving
partition of (P, £). ¢

Let (P,<) be a poset and € C P? an equivalence relation. We
define two binary relations ¢. and € on P as follows:

(2) (z,y) € g- & there exists an e-sequence zg,Z1,...,Z, € P with

o=z and z,=1y.
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Clearly, g. is a quasiorder which extends < by its definition. De-
note the lattice of all quasiorders of P ordered by set inclusion by
(Quord(P),N, V). Then, according to (2), ¢ = eV <, ie. ¢ is the
smallest quasiorder containing both & and <. In view of Th. 3.2(iii) &
is an order-congruence of (P, <). Now let L be a lattice and a,b,c € L.
(a,b,c) is called a dually distributive triple if (a Ab)Vc= (aVc)A(bVe)
(see e.g. [20]).

Proposition 3.4. Let (P,<) be a poset and € an equivalence relation
on P. Then:

(i) € is the smallest order-congruence of (P, <) which contains

£, and g s the smallest element ¢ €Quord(P) which contains < and

satisfles€ = qMNqt.

(ii) € is an order-congruence of (P, <) if and only if the relations
<,2 and € form a dually distributive triple in the lattice Quord(P).
Proof. (i) Clearly, e C g. N ¢! = €. Take any order-congruence v of
(P, =) with € C v. In view of Th. 3.2(iii) v has the form v = gn g1,
where ¢ is a quasiorder on P containing <. Now, ¢ C q implies ¢. C ¢
and so ¢;* C ¢g7'. Hence € = ¢. Ng-! € gNg~! = v. Further, take
a g €Quord(P) such that ¢ contains < and € = ¢gNg~'. Thene C g
implies that g. = eV < is included in g.

(i) If (£,2,¢) is a dually distributive triple, then ¢ = A Ve =
=(EN2)Vve=(SVe)N(Z Ve) = ¢. Ng-! = & Hence ¢ is an
order-congruence of (P, <). Conversely, let € be an order-congruence
of (P,=). Then the relations e =€ =¢g.Ng;! = (£ Ve) N (= ve) >
> (=N 2)Ve =eimply (£ Ve)N(Z Ve) = (£ N =) Ve, hence (£, 2, ¢)
is a dually distributive triple in Quord(P). ¢

A family § = {L£; | i € I'} of linear orders on P is called a realizer
of the partial order < on P if N{£; | ¢ € I} is equal to <. (Such a
family always exists — see [25]. Our terminology is similar to [24].)
Theorem 3.5. Let (P,X) be a poset and p an equivalence relation on
P. Then the following assertions are equivalent:

(i) 7, is an interval decomposition of (P, <).

(ii) pU £ is a quasiorder on P.

(iii) p is an order-congruence of (P, <) and the partial order Rf»
corresponding to the canonical projection f, : P — P/p by relation (1)
is the same as <. '

(iv) There ezists a realizer § of < on P such that p is an order-
congruence of each linearly ordered set (P, L), L € 3.
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Proof. (i)=(ii). If 7, is an interval decomposition of (P, <) then, in
virtue of Lemma 2.8(1), we have ¢, = pU <. Hence pU < is a quasiorder
on P.

(ii)=(iii). If ¢ = pU < is a quasiorder, then we have gN g~ ' =
=(pU )N (pU 2) = pU (S N 2) = p. Hence, by Th. 3.2(iii), p is
an order-congruence of (P,<). Clearly, the quasiorder pU < is equal
to g, = pV <. As RF is an extension of <, to prove (iii) we have
to show that R’ is included in <. Take (a,b) € R'» and assume
by contradiction a ;{: b. Then, relation (1) gives f,(a) < , f,o(b), i.e.
pla] < ,p[b]. Thus there exists a p-sequence zg,z1,...,T, € P with
zo = a and z, = b. Then (a,b) € g, = pU <. As (a,b) ¢ p, we obtain
a < b, a contradiction.

(iii)=(iv). Let us consider the factor-poset (P/p,< ,) and a re-
alizer § = {L; | ¢ € I} for £ ,. Clearly, f, is an isotone mapping of
(P, Z) into each (P/p, L;), i € I. Further, let 7?,,{”,1' € I be the partial
orders on P corresponding to f, and to the posets (P/p,L;), 1 € I by
relation (1). We claim that ﬂ{’/?,{" | i € I} is equal to £. Indeed, as
< is extended by each RJ?,i € I, < is included in N{R* | i € I}. To
prove the converse inclusion, take any (a,b) € ﬂ{Ric ° |4 € I} and as-
sume by contradiction a ;é b. Since (a,b) € R,{", forallie I and a 7$_ b,
by using relation (1) for f, and (P/p, L;), we get ( fo(a), fo(b)) € L;,
for all i € I and fy(a) # fo(b). As {L£; | € I} is a realizer for <, we
get fo(a) <, fo(b). Now, applying relation (1) for f, and (P/p, §p),
we deduce (a,b) € R/». As by assumption R/ coincides with <, we
obtain a < b, a contradiction. Further, take a realizer family J; for each
7?,,{ ?,4 € I. In view of Lemma 3.1(ii), 7, is an interval decomposition of
each (P,L), L€ F;, i€ 1. Let F=U{F; | i € I'}. In view of Cor. 3.3,
p is an order-congruence of each linearly ordered set (P, L), £ € F. As
NHL|LeF}r=n {R{” | 2 € I'} is equal to <, the family F is a realizer
of L on P.

(iv)=-(i) Assume (iv) and take any block A of 7, and arbitrary
a,be A, z,y € P\ Awithz £aanda=y. Asany member of §is an
extension of <, we get zLa and aLly, for each £ € F. As by assumption
A is an interval in each ordered set (P, L), we obtain that £b and bLy
hold for all £ € §. Since § is a realizer of < on P, these relations imply
Tz = band b < y, proving that A is an interval in (P, <). Hence 7, is
an interval decomposition of (P, <) ¢
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The following proposition, essentially also present in [22], will be
useful in the next section.

Proposition 3.6.(1) Ifr = {4, | i € I'} is an order-preserving partition
of the poset (P, <), then each block A; of it is a convez set in (P, <).

(ii) If A is a conver set in the poset (P, <) then ma = {AYU{{z} |
| z € P\ A} is an order-preserving partition of (P,<).

Proof. (i). In view of Th. 3.2(iv) there exists a linear extension £ of
< such that each A; is an interval in (P, £). As now A; is a convex set
in (P, L), it is also a convex set in (P, ).

(ii). Let pa be the equivalence relation induced by 74 on P.
Assume by contradiction that (P, <) contains a pa-circle zg, 1, ..., Zn
such that not every element of it isin A. If none of these elements belong
to A, then we get zp < z1 < .-+ < z, = zg, a contradiction. Clearly,
without loss of generality we can assume n > 2 and g = z,, € A. Then
obviously there exist 4,7 € {1,...,n} with ¢ < j such that z;_; € A,
Ti,...,2j-1 & Aand z; € A. As all the blocs of 74 different from A are
singletons, we get 7,1 <z; < ... £ z;_1 < z;. Since z;_1, z; € A and
since A is convex, we obtain z;,...,z;-1 € A, a contradiction. Hence

A is an order—conoruence and A is an order-preserving artition of
(<) (=} p

4. On the lattice of the order-congruences of a poset

Denote by O(P) the set of all order-congruences of a poset (P, <)
and by op(P) the set of all order-preserving partitions of it. Clearly,
O(P) with the set-theoretical inclusion of the order-congruences and
op(P) with the partitions’ ordering are isomorphic partially ordered
sets. From [4] one can also deduce that (O(P), C) is a complete lattice,
moreover, [22], Sect. 30 gives the following
Proposition 4.1. (O(P),<Q) is an algebraic lattice with the greatest
element 1, where inf{6; | i € I} = ({0; | 1 € I} for any system §; €
e O(P),ie 1.

Consequently, (op(P),<) is also an algebraic lattice, where the
meet operation is the intersection. As (O(P),C) & (op(P),<), we
denote the meet and join operations in these lattices with the same
symbols N and L, respectively. According to [10] and [18] the interval
decompositions of a poset (P, <) form a complete semimodular sublat-
tice of the partition lattice (Part(P),N,V) which will be denoted by
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(D(P),N,V) (shortly D(P)). We note that op(P) in general is neither
a sublattice of Part(P) nor semimodular. In fact we will prove (in Cor.
4.7) that whenever one of these conditions hold (P, <) is a so-called
interval order.

In [17] and [18] it is proved that for a finite chain (P, <) D(P)
is a Boolean sublattice of Part(P). (An equivalent formulation of this
result can be also found in [21].) It was also shown, that any atom of
D(P) has the form v, = {a,b} U{{z} | z € P\ {a, b}}, where a,b € P
and a < b. Here we add:

Proposition 4.2. (i) If (P,X) is a chain, then the lattices op(P) and
D(P) are the same. If in addition F is finite and ¢ < 0 holds in O(P)
then m, < mg holds in Part(P), too.

(ii) If (P,S) is a poset and L 1is a linear extension of < then

O(P, L) is a sublattice of O(P, ).
Proof. (i) In view of Cor. 3.3, the underlying sets op(P) and D(P) are
the same. As the partial order is also the same in these lattices, they
are identical. Thus we obtain O(P) = D(P), as well. Hence, to prove
the second assertion of (i), it suffices to show that m; < 7 in D(P)
implies m; < 7y in Part(P). As now D(P) is a finite Boolean lattice,
it is atomistic, too. Hence, my = m1 V 1,3, for an atom v, € € D(P),
where a,b € P, a < b. Clearly, w < v, holds in Part(P), too. As
m1 Nvep = w and since Part(P) is a semimodular lattice, we obtain
T < T1V Vg p, 1.6. T < 72 in Part(P).

(ii) Clearly, it is enough to show that op(P, L) is a sublattice of
op(P,<). Since, in view Remark 2.2, op(P,£) Cop(P,<) and since
the meet operations in these lattices coincide with the intersection,
op(P, L) is a subsemilattice of op(P,<). Now take 71,72 €op(P, L).
As op(P, L) = D(P, L) and since D(P, L) is a sublattice of Part(P), we
get m V my €op(P, L) C op(P, ). As for any v €op(P, <) v > 7y, m
implies v 2 1 V g, the join 7 Ums of w1 and we-in O(P, £) is the same
as m1 V ma. Thus 7 Uy €op(P, L), and hence op(P, L) is a sublattice
of op(P, £). 0

Let ¢ and 6 be two equivalence relations on the set P # @ and
@ € 0. As for any z,y € P ¢[z] = ¢[y] implies §[z] = 6[y], the map
f:PJ/o— P/, f(p[z]) = 0]z] is well-defined and surjective.

Now the equivalence 8/ on P/ is defined as

0/ =Kerf = {(¢lal, ¢[t]) € (P/¢)* | (a,b) € 0}.

If v and @ are order-congruences of the poset (P, <) with ¢ C 8 then



Congruences and isotone maps on partially ordered sets 49

it is easy to see that f is an isotone mapping of (P/p,< ) into

=
(P/0,% o). Indeed, take a,b € P with ¢la] < ,p[b]. Then there is
a (p-sequence o, 1,...,Tn € P with 29 = a and z, = b. As ¢ C 6,
T0,%1,---,%n 15 also a f-sequence in (P, <), hence we get 0[a] < 46[b]

i~ o~

Le. f(pla]) < of(p[b]). Since 8/¢ =Kerf, as a conclusion we obtain
that 0/¢ is an order-congruence of the factor-poset (Plo, < o).

Using the above notion and the results of [5] (Th. 1.6 and the note
after Prop. 1.9) it follows:

Proposition 4.3. If (P, <) is a poset and ¢ is an order-congruence
of it then the principal filter [¢) of O(P) is isomorphic to the lattice
O(P/¢).

The following lemma will be used in the proof of Th. 4.5.

Lemma 4.4. Let ¢ and 6 two order-congruences of the poset (P, )
with ¢ C 0. Then there exists a linear eztension L. of £ on P such that
@ and 0 are both order congruences of (P, L).
Proof. As /¢y is an order-congruence of the poset (P/@, = ), in virtue
of Th. 3.2(iv) there exists a linear extension Ly of £ , on P/ such that
0/¢ is an interval decomposition of (P/, Ly,). Let fp : P — P/p stand
for the canonical projection of P in P/p. Since f,, is an isotone mapping
of the poset (P, <) into (P/e, §Lp), 1t is also an isotone mapping of
(P, =).into (Pfp, L,). Now, denote by R* the partial order defined by
f and the latter two posets via relation (1) and take a linear extension
L of Rf¢ on P. Then Je is an isotone mapping of (P, £) into (P/y, L),
according to Lemma 3.1(ii). As ¢ = Ker fe, @ is an order-congruence
of (P, L), too. Further, to show that 8 is an order congruence of (P, L)
it is enough to prove that the partition mg = {B; | j € J} induced by 6
on P is an interval decomposition of (P, £). For this purpose take any
B; € mp and any elements a,b € Bj, z,y € P\ B; with zLa and aly.
Then we get f,(z)L, fo(a) and fo(a)Ly, fo(y), ie. wlz]L,ypla] and
la]Loply]. Since (a,b) € 9, we have (]al, ©[b]) € 8/p. As the classes
of 0/ are intervals in (P/y, L), we get plz]Loplb] and p[b]L,p[y], i.e.
fo(@)Ly fo(b) and fi,(b)L, fo(y). Moreover, f,(z) # fo(d) # foly)
since ¢[b] C 0[b] and z and b, as well as b and y, are in different classes
of . These relations imply zR%¢b and bR¥y, according to (1). As Rfe
is extended by L, we get z£b and bLy, proving that B; is an interval
in (P, £). Hence 7y is an interval decomposition of (P, £). ¢

We say that a lattice (L, <) satisfies the Jordan—Holder (chain)
condition if for any elements a,b € L, a < b, all the maximal chains




50 P. Kortesi, S. Radeleczki and Sz. Szildgyi

between a and b have the same length.

Theorem 4.5. Let (P,<) be a finite poset. Then the lattice O(P) is
relatively complemented and satisfies the Jordan—Hoélder condition. If
the relation v < 0 holds in O(P) for some v,0 € O(P), then 7, < 7y
holds in Part(P), too.

Proof. As any interval [p, 0] in O(P) is isomorphic to the principal
ideal (8/¢] in the lattice O(P/yp) corresponding to the factor-poset
(P/w,= ), it is enough to prove that for any poset (P, <) every prin-
cipal ideal in O(P) is complemented.

Take any v,0 € O(P, <) with v C §. Then, in view of Lemma 4.4,
there is a linear extension £ of < on P such that ¢,0 € O(P,£). As in
view of Prop. 4.2 and [18] O(P, L) is a Boolean sublattice of O(P, <),
there exists an order-congruence v* € O(P, <) such that v Nv* = w
and v Uv* = §. Thus the principal ideal (8] is complemented. Now,
suppose that v < 6 holds in O(P, <). Then v is covered by 6 in O(P, L)
as well, and hence using Prop. 4.2 again, we obtain that 7, < 7 holds
in Part(P).

Now take any ¢, € O(P) with ¢ < 1. As O(P) is a finite
lattice, all the maximal chains between ¢ and ¢ are finite. Let » =
=0y <0 < ... <0, =%and o = vy <1v; < ... < v, be two
such maximal chains (where m,n > 1). Then, in view of the previous
result, m, = Mg, < My, < ... <X Wy, = My and T, = Wy, < T, =<
< ... % m, = my are also two maximal chains connecting T, and
Ty in Part(P). Since Part(P), as a semimodular lattice, satisfies the
Jordan-Hélder condition, we obtain n = m. Hence O(P) satisfies the
same condition. ¢
Corollary 4.6. Let (P, <) be a finite poset. Then O(P) and op(P) are
atomistic and dually atomistic lattices. All the atoms of op(P) have the
form vap = {a,b} U{{z} | z € P\ {a,b}}, where a,b € P, and either
a <bora andb are incomparable in (P, <).

Proof. Since any finite relatively complemented lattice is in the same
time atomistic and dually atomistic and since O(P) Xop(P), the first

assertion is obvious. Further, if a,b € P with a < b or a and b incom-
parable then {a,b} is a convex set. Hence vap = {a,b} U {{z} | = €
€ P\ {a,b}} €op(P), according to Prop. 3.6(ii). As v, is an atom in
Part(P), it is also an atom in the lattice op(P). Conversely, let v be an
atom in op(P). Then w < p, in O(P) implies 0 < v in Part(P), i.e. we
get that v is an atom in Part(P). Hence v has the form v = {a,b} U
U{{z} |z € P\ {a,b}, where a,b € P, a # b. As by Prop. 3.6(i) {a, b}
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is a convex set in (P, <), we obtain that either a < b or a and b are
incomparable in (P, ). ¢

A poset (P, £) is called an interval order if there is a function F
assigning to each point z € P a nondegenerate closed interval F'(z) =
= [ag, bz] on the real line R such that z <y in P & b, < ay in R. In
view of the result of Fishburn[8], a poset is an interval order iff it does
not contain Ss (see Figure 1) as a subposet.

Corollary 4.7. (i) If op(P) is a sublattice of Part(P), then it is a
semimodular lattice.

(ii) If op(P) is semimodular then (P,<) is an interval order.
Proof. (i) Assume that op(P) is a sublattice of Part(P) and take
71, Mg €0p(P) with m N7 < 7 in op(P). Then, in view of Th. 4.5,
m1 Nmy < 79 holds in Part(P). As Part(P) is a semimodular lattice,
T < 71V 1g = w1 Uy is true in Part(P). Since 71 is covered by my Us
in op(P) as well, op(P) is a semimodular lattice.

(i) Assume by contradiction that (P, <) is not an interval order.
Then (P, <) contains as a subposet Sy (shown in Figure 1) and, in
view of Cor. 4.6, vfe,q) and v(.p} are atoms in op(P). As op(P) is
semimodular, v{, gy N Vicp} =w and w < vicpy iMply vig a1 < Via,qp U
U vy in op(P). Hence v, g < Via,a} U V{cp} holds in Part{P), too.
On the other hand, we have vig g1 Vviepy = {a,d}U{c, b} U{{z} |z €
€ P\ {a,b,¢c,d}}. Let p be the equivalence induced by via .43 V Ve s}
As now a,b,c,d,a is a p-circle in (P, <) with pla] # p[b], v{a,4} V V{c,b}
is not an order-preserving partition of (P,<). Thus we get v{g 4 <
<V{a,d} V V{c,b} <V{a,d} U V{c,p}, contrary to vig gy < Via,q} U Vicpy- O
Remark 4.8. We note that even for an interval order, op(P) is not a
sublattice of Part(P) in general. Indeed, assume that (P, <) contains
as a subposet Ns in Figure 1.

b d b d
]: I
a c a c
SZ NZ
Figure 1.
As any usual interval [u,v] = {z | v £ =z < v} is a convex set in

(P, £), by Prop. 3.7(ii), 7. €op(P) and {a,d} N[c,b] = @ implies
Viaay V Tep) = 16, dY U e, )] U {{z} | z € P\ ({a,d} U[c,b])}. Let p*
stand for the equivalence induced by v(q,q} V 5. Then a,b,c,d,a is
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a p*-circle in (P, =) with p*[a] # p*[b]. Hence, vyq gy V 7[cp is not an
order-preserving partition of (P, <).

We say that a lattice L with 0 is weakly O-distributive if, for any
different atoms a,b,c € L (aV b) A c= 0 holds.

Theorem 4.9. For a finite poset (P,<) the following conditions are
equivalent

We note that (i)« (iil) is essentially contained in [21], Sect. 19:

(i) O(P) is a weakly 0-distributive lattice,

(ii) O(P) is a Boolean lattice,

(iii) (P, £) is either a chain or an antichain with two elements.
Proof. (iii)=-(ii). If (P,<) is a finite chain then by [18] O(P) is
a Boolean lattice. If (P, <) is a two-element antichain then O(P) =
= {w,}, hence O(P) is a Boolean lattice again. (ii)=>(i) is obvious.

(i)=-(iii). Let O(P) be weakly 0-distributive. Then op(P) satisfies
the same property. If | P |< 2,.then (P, <) is either a chain or a
two-element antichain, thus (iii) is trivially satisfied. Now assume by
contradiction that | P |2 3 and (P, £) is not a chain. Then (P, <)
contains at least two incomparable elements a,b € P. Take any element
c € P\ {a,b}. If {a,b,c} would be an antichain, then, according to
Cor. 4.9, v{a s}, V{b,c}> V{a,c} Would be atoms in op(P) with (V{ap} U
U ib,ey) N Viac} = Viac} 7 0 and hence op(P) would not be weakly
O-distributive. Hence, c is comparable either with a or with b. Without
loss of generality we can assume a < c. As P is finite, there is an
element d € P with a < d < ¢. If b and d would be incomparable, then
V{a,b}> V{b,d} and vfg 43 would be atoms in op(P) which satisfy (V{apy U
Uvipay) NViaa) = Y{a,a} 7 0, in contradiction to (i). Hence b and d
are comparable. Clearly, we have b < d, otherwise a £ d and d £ b
imply a £ b, a contradiction. As P is finite, there is an z € P with
b < z < d. Obviously, a and z are incomparable. Hence Via,z} Y{z,d}
and v{, 4} are atoms in the lattice op(P) and satisfy (v(q,z} Uviza1) N
NV{gd} = V{a,q} 7 0, contradicting our assumption again. Therefore,
if | P |2 3 then (P, £) is a chain. ¢

Order-congruences with a linearly ordered factor-poset have im-
portant applications in Queuing theory (see e.g. [16]). Using Th. 4.9
we give a characterization of these order-congruences. A poset (P, <)
is called connected if for any elements a,b € P there exist elements
€1,€2,...,¢n € Psuchthat a S c¢; 2 ¢ £ ... 2 ¢, S b. It is not hard
to see that in this case any factor-poset O(P/p, <)) of (P, <) (where
p € O(P)) is connected, as well."
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Corollary 4.10. Let (P, <) be a finite connected poset and p an order-
congruence on it. Then the factor-poset (P/p, < p) is linearly ordered if
and only if the principal filter [p) of O(P) is a Boolean lattice.

Proof. The “only if” part is clear. To prove the “if part” suppose [p)
a Boolean lattice. As now, in view of Prop. 4.6, the lattice O(P/p, §p)
is also Boolean, Th. 4.9 gives that (P/p, < p) is either a chain or a two-
element antichain. The latter case can be excluded since O(P/p, < o)
as a factor-poset of (P, ), is connected. ¢

5. Closing remarks

Finally, we note that the order-congruences of a poset can be
studied by the methods of Formal Concept Analysis, as well. A formal
context is triple K = (G, M, I) where G and M aresets and I C G x M
is a binary relation. For any A C G and B C M define

A'={me M| glm, for all g € A},

B'={g€ G| glm, for all m € B}.

A concept of the context K is defined as a pair (4, B) with A’ =
= B and B’ = A. The concepts of K together with the partial order
defined by (Al,Bl) < (Ag, Bg) <~ 441 Q Ag (Ol‘ equivalently B1 2 Bg)
form a complete lattice £(G, M, I), which is called the concept lattice
of the context (G, M, I). For instance, the concept lattice L(P, P, <) is
identical to the Dedekind-McNeil completion of the poset (P, <).

Now let (P, <) be a poset. Denote by Equ(P) the set of the
equivalence relations defined on the set P and by Q=(P) the set of
those quasiorders on P which contain as a subrelation the ordering <.
We define a relation I CEqu(P)xQS(P) as follows:

elqg & € C g, for e eEqu(P),q cQS(P).

We remark that the concept lattice L£(Equ(P),Q=(P),I) is iso-
morphic to the lattice O(P). Recall that ¢. stands for the smallest el-
ement of Q=(P) containing e €Equ(P), (¢] denotes the principal ideal
of ¢ in (Equ(P), C) and [q) the principal filter of a ¢ €QS(P). Now it is
not hard to see that any concept (A4, B) € L(Equ(P),QS(P),I) has the
form ((p], [gp)), where p=V{e|e € A} and p =D =¢,N g, ", ie pis
an order-congruence of (P, <) (according to Prop. 3.4). Conversely, it
is easy to check that for any p € O(P), the pair ((p],[g,)) is a concept
of the above context.




54 P. Kirtesi, S. Radeleczki and Sz. Szildgyi

From here it follows also that the mapping ¥ : O(P) —QS(P),
p — g, is an order-embedding. Indeed, for any p;, p2 € O(P) we have:

p1 C p2 & (p1] € (p2] & 1dp,) 2 [9p2) & 2o, € G-

We note that the context (Equ(P),Q=(P), I) has remarkable prop-
erties. For instance, it is a so called quasiordered context, defined in
[12]. Let OI(P) denote the order ideals of (P, <) and Sub(OI(P)) the
complete sublattices of the lattice OI(P). In view of [12, Cor. 2] QS(P) .
is dually isomorphic to Sub(OI(P)).

Further, a binary relation R C G x M is called a Ferrers relation if
for any elements a,c € G and b,d € M, (a,b),(c,d) € R and (a,d) ¢ R
imply (c,b) € R (see e.g. [19]). In view of [13, Prop. 103] R is a Ferrers
relation iff the concept lattice L(G, M, R) is a chain. Now consider a
poset (P, <). Then, using the argument of Cor. 4:7(ii), we can deduce
that < is a Ferrers relation, whenever the lattice op(P) is semimodular.
Therefore, if O(P) is a semimodular lattice then the concept lattice
L(P, P, <) is a chain.
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