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Abstract: Necessary and sufficient conditions are presented for the existence
of a continuous and additive real-valued function representing a (not nec-
essarily total) preorder defined on a semigroup. The main purpose of this
paper is that of providing a characterization of the existence of a continuous
and order-preserving real-valued function defined on a preordered topological
semigroup such that it also preserves the binary operation. The approach fol-
lowed to obtain this characterization is based on the existence of particular
scales that behave well with respect to the semigroup operation and that we
call additive scales. A scale is a device that consists of a nested family of sets
indexed by a dense subset of a suitable part of the reals.

1. Introduction

The main purpose of this paper is that of providing a characteri-
zation of the existence of a continuous and order-preserving real-valued
function F' defined on a preordered topological semigroup (S, x, 7, X)
such that F' also preserves the binary operation (ie: F: 8 — Ris
a semigroup homomorphism into the additive real numbers). The ap-
proach followed to obtain this characterization is based on the existence
of particular scales that behave well with respect to the semigroup op-
eration and that we call additive scales. A scale is a device that consists
of a nested family of sets indexed by a dense subset (e.g.: the dyadic
numbers, the positive rationals, the whole set Q of rationals, etc.) of a
suitable part of the reals (e.g.: I=1[0,1] ; (0,4c0) ; the whole R, etc.).
These kinds of devices occur in one form or another in almost every
metrisation theory of topological spaces and topological groups. For
instance, there is a clear correspondence between continuous functions
into (0,4c0) and scales (see Lemma 2.2 below). The use of a scale
can be understood as a generalization of the Urysohn approach (see
[19]) to get continuous functions on a topological space. This fruitful
idea was already used by Nachbin (see [16]) to provide results about
the existence of continuous order-preserving functions on preordered
topological spaces (see also [3] and [12]). We go further by extending
the previous approach to the algebraical context of preordered topo-
logical semigroups. It should be also noted that the existing literature
concerning this representability problem deals with totally preordered
topological semigroups (see e.g. [11] or [7]). Here, we drop the assump-
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tion of the preorder being total.

The mathematical statement of the underlying problem, namely
the numerical representation of preordered structures, is quite simple:
We are given a nonempty set X with a preorder = (i-e.: atransitive and
reflexive binary relation). We are looking for order-preserving functions
F: X — R. If additional topological or algebraic structures, or both
are given then one hopes to find functions which also preserve the ad-
ditional structure. Surveys on the numerical representations of ordinal
structures continue to appear (see e.g. [2], or else [15]). It is well under-
stood that there are intimate relations between order and topology (at
the latest since Nachbin’s monograph [16]). There is some remarkable
interdisciplinary aspect in this issue. On the one hand, this kind of
results is of particular importance in mathematical econormics related
to constant returns to scale economies (see, e.g., [22], Ch. 2). Also,
measurements that are often encountered in the social or biological sci-
ences (see e.g. [17], [15] or [18]) are usually based on data that can be
“compared” but not a priori “quantified”. One obtains a scale but not
a yardstick. All quantification a posteriori is based on the hypothetical
possibility to map the set of data into the set R of real numbers un-
der preservation of order and, where appropriate, of topology. In the
economic and social science contexts such a mapping is called a utility
function. Additional steps toward a more sophisticated quantification
are possible if the supply of data has more structure, for instance if
data can be “added” (like objects scaled by “mass” or “length”); then
the question arises whether a function into R can be found in such a
fashion that addition of data is mapped to addition of numbers as well.

2. Notation and preliminaries

A preorder 3 on a nonempty set X is a reflexive and transitive
binary relation on X. If, in addition, 3 is antisymmetric, then it is said
to be an order.

The asymmetric part < of a preorder Jisdefined as z <y <«
= (3 YAy 3 3) (z,y € X) and the symmetric part ~ is
defned by z ~y <= z 3y, v 3z (z,y € X). A preorder 3 on X is
said to be total if for any two elements z, y € X eitherz Syory 3z
A pair (X, ) consisting of a nonempty set X endowed with a preorder
< will be referred to as a preordered set.
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If in addition X is endowed with a topology 7 then the triple
(X, 7,3) is said to be a topological preordered space.

Suppose now that there is also a binary operation * defined on X.

We shall use the notation (X, *,7,3).
Remark 2.1. Notice at this point that for a topological preordered
space we just understand the mere juxtaposition of a preordered set
(X,3) and a topology 7. The reason is that we will deal with pre-
orders that are not necessarily total. However, we must point out that
in the classical “topology and order” framework a “topological pre-
ordered space” it is usually understood to be something more restric-
tive, specially when the preorder considered is total. Thus, a preordered
topological space it is often asked to satisfy the condition that the graph
{(z,9) 12 3y (z,y € X)} is closed in the product topology of X x X.
When the preorder X is total, this is equivalent to say that the contour
sets U(a) ={z € X :a <z} (a€ X)and L(a) = {z € X : z < a}
(a € X) are T-open. In such case, this is also equivalent to say that the
sets {z€ X :b 3z} (be X)and {z€ X :23b} (be X) are 7-closed
(see e.g. [2], pp. 19-20).

The order topology can be defined on any kind of preordered set
(even if the preorder is not total) as the topology whose subbasis is
given by all sets U(a) (¢ € X) and L(b) (b € X). Then, a natural
topology 7 on (X, 3) is defined (see [8]) as a topology that is finer than
the order topology on (X, X). In other words, most people in “topology
and order” usually start from a natural topology.

Unless otherwise stated, we will not ask a priori the topology 7 to
be natural. [J

A semigroup is a nonempty set S together with an associative
binary operation %. A topological semigroup (S,*,7) is a semigroup
together with a topology 7 on S such that the function ® : Sx S — §
defined by ®(z,y) =z *y (z,y € S) is continuous with respect to the
topology 7 on S and the corresponding product topology 7x7 on Sx S.

Let (X, 2) be a preordered set. A real-valued function u is said
to be order-preserving if it satisfies the following two conditions:

1) 23y = u(z) <uly) (z,y€X).
(i) z <y = u(z) < u(y)(z,y € X).

It is clear that if the preorder on X is total, then a real-valued
function u on the preordered set (X, 3) is order-preserving if and only
fz 3y <= ul@) < uly) (z,y € X). In this case u is called a
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numerical isotony (also known as “utility function” in the economics and
social sciences literature) representing the total preorder =3 on X.

A real-valued function u on a set X endowed with a binary oper-
ation x is said to be additive if u(z *xy) = u(z) + u(y) (z,y € X). In the
sequel we shall be interested in the existence of a continuous additive
order-preserving function u on a structure (X, *, 1, 3).

When (X, 3) is a preordered set endowed with some binary rela-
tion * it is usual to ask the binary relation * to satisfy some additional
condition of compatibility with the ordering 3. In this direction, (X, *)
is said to be monotone (or, equivalently, * is said to satisfy the property
of monotonicity of the translations) if z Sy <= Txz I ys*xz <
= zxr 3 zxy (z,y,z € X).

Let X be a nonempty set endowed with a topology 7. Let T' be
a dense subset of the Euclidean real line R (respectively: of the set
(0,40c0) CR). A family F = {X; : t € T} of subsets of X is said to be
a scale (respectively: a positive scale) on the topological space (X T) if
the following conditions hold:

(i) X is a 7-open subset of X for every t € T
(ii) X, C X; for every s,t € T such that s < ¢, where ¥ stands for
the 7-closure of a subset Y C X.
(i) U Xe=X and () X; = 0.

teT teT

Following [16], given a preordered set (X, 3) a subset A C X is
called decreasing if for every z, z € X it holds that (z 2 z)A(z € A) =
=z € A

Leaning on the concept of a decreasing set, a powerful tool to
deal with numerical representations of preordered sets was introduced
in [3]. This is the key concept of a decreasing scale (also called separable
system in [12]). Throughout the paper we shall use a particular case
of decreasing scales. Thus, we say that a family § = {G, : 7 € Q} is a
countable decreasing scale on a topological preordered space (X, T, 3) if
the following conditions hold:

(i) Gr is a decreasing subset of X for every r € Q.
(i) 6 ={G; : r € Q} is a scale on (X, 7).

The concept of a positive countable decreasing scale is defined in
the obvious analogous way. In the particular case when 7 is the discrete
topology on X, then a countable decreasing scale G = {G, : v € Q} will
~ be referred to as a countable decreasing pseudoscale on the preordered
set (X, 3).
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If X is any nonempty set endowed with a binary operation *, and
A and B are two nonempty subsets of X, then define A+« B = {ax*b:
ca€ A be B}

A countable decreasing scale G = {G, : r € Q} on a topological
preordered structure (X, 7, 3) is said to be separating if for every z,y €
€ X with z < y, there exist 71,79 € Q such that r; < 7 and z €
€ Gr,y & Gry.

Moreover G is said to be additive if it satisfies the following two
conditions:

L GgxGr CGgyr  (g,7€Q). :

2 (X\ Gy * (X \G) € (X\ Gpar) (g7 €0Q). |
Similar definitions are given for the case of positive countable decreasing
scales.

To conclude this section we furnish the following useful lemma
that interpretes scales as continuous real-valued functions, and vice
versa. (An analogous result would also furnish the equivalence between
the concept of a positive scale and that of a continuous real-valued
function taking values in (0, +00).)

Lemma 2.2. Let X be a nonempty set endowed with a topology T.
Then the following conditions hold:
(i) Given a continuous function v : X — R, the family F =

= {u"!(—00,q) : ¢ € Q} is a scale on (X, 7).

(i) Given a scale F = {X; : t € T} defined on (X,7), where T is a
dense subset of R, it holds that the map u : X — R defined by

u(z) =inf{t € T: z € X;} (z € X), is a continuous function.
Proof. (i) This follows from direct checking.

(ii) By definition of the concept of a scale, it is clear that the map
u: X — R is well-defined. It is now straightforward to prove the
continuity of u. (See [10], pp. 43-44 for details.) ¢

3. Continuous order-preserving maps through
the concept of a decreasing scale

In this section we make use of the concept of a decreasing scale to
obtain in a straightforward manner a characterization of the existence
of a continuous order-preserving function on a preordered topological
space (see also [3] or [12]). This result will be used in the next section.
Theorem 3.1 Let (X,7) be a nonempty topological space, endowed
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with a preorder 3 (not necessarily total). The following conditions are
equivalent:

(i) There exists a continuous order-preserving function u: (X,7,3) —
— R.

(ii) There ezists a separating countable decreasing scale G = {G, : r €

€ Q} on (X,7,3).

Proof. (i)=-(ii) Let u : X — R be a continuous order-preserving map.

Define, for every ¢ € Q, Gy = u™(~c0,q). It follows that Gq is
decreasing because u is order-preserving. Furthermore, it is also T-open
since u is continuous. In addition, for every p,q € Q such that p < ¢,
it follows that Gp C w™!(—00,p], because by continuity of u, the set
u~*(—00,p] is closed. Hence Gp C u~!(—c0,p] C u"(—o0,q) C Gy
Also, X = Upeq Gp since u is defined on the whole X, and ) = NpeaGp
because z ¢ Gy for any ¢ € Q such that ¢ < u(z).

Let now z,y € X be such that z < y. Since u is order-preserving,
it follows that u(z) < u(y). Hence we can find r1,r5 € Q such that
u(z) <71 <72 <uly). Thusz € G, , y ¢ Gr,. Therefore the family
G ={Gp : p € Q} is a separating countable decreasing scale.

(ii)=(i) Now suppose that G = {G, : r € Q} is a separating
countable decreasing scale on (X, 3). Given z € X, set u(z) =inf{q €
€Q:z € G.}. By Lemma 2.2, u is well-defined and continuous.

To conclude, let us prove that the map u just defined is order-
preserving: For every z,y € X with 2 < y and every ¢ € Q such
that y € G it follows that z € G, because G, is a decreasing set.
Consequently, u(z) < u(y). Also, given =, y € X such that z < y, and
r1,72 € Q such that 7y < ry; 2 € G,y, y ¢ Gy,, we have that u(z) <7
and also u(y) > r2 because u(y) < ry would imply that y € Gp for
some p € Q with p < ry, and thus Gp C Gy, by hypothesis, so that
Yy € Gr,, which is a contradiction. Therefore u(z) < rp < ry < uly)
and, in particular, u(z) < u(y). ¢
Remark 3.2. We do not ask the topology 7 to be a priori a natural
topology. However, it is important to notice that the existence of a
continuous order-preserving function u on (X,7,3) implies that the
topology 7 is a fortiori natural, because given z € X we have that the
contour sets L(z) = u™!(—o0,u(z)) and U(z) = uHu(z), +co) are
T-open by continuity of u. O

If we drop the continuity condition, we obtain the following result
as an immediate corollary of Th. 3.1.
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Corollary 3.3. Let X be a nonempty set, endowed with o preorder =
(not necessarily total). The following conditions are equivalent:

(i) There exists an order-preserving function u : (X,3) —R.

(ii) There exists a separating countable decreasing pseudoscale G =

={Gr: 7 €Q} on (X,3).

4. Continuous additive representations of pre-
ordered semigroups

The study of the existence of additive numerical representations
of ordered groups and semigroups has been considered since long in
the specialized literature. Thus, in a paper (see [13]) published early
in 1901, O. Hélder proved that a totally ordered group (G, %, 3) with
* monotone admits an additive numerical isotony if and only if it is
Archimedean (i.e.: it holds that for every z,y € G with z < y, z < T*T,
and y < y *y, there exists a strictly positive natural number 7 such
that y < n -z, where n -z stands for z % ... (n times)... %z (z € G)).

In what concerns a totally ordered semigroup (S, *, <) with the
binary operation * being monotone, an Archimedean-like condition that
also characterizes the existence of an additive numerical isotony was
obtained in 1950 by N. S. Alimov. (See [1]. See also [9] or [7].) Such
condition is the following one, that we call super-Archimedeanness:

< For every z,y € S with z < s+ z;y < y*y and = < y there
exists a strictly positive natural number n such that (n+1)-z < n - Y.
Also, for every z,t € S with 2%z < z;t+t <t and z < t there exists
k>0 (keN),such that k-2 < (k+1)-t. >

Observe that as a direct consequence of the existence of a numeri-
cal isotony it holds that an Archimedean totally ordered group (G, *, 3)
with * monotone is Abelian (i.e.: zxy =y*z (z,y € G)). Also, any
super-Archimedean totally ordered semigroup (S, *, 2) with * mono-
tone is commutative (i.e.: zxt =tz (2,t € S)). These properties can
actually be proved directly, without using the existence of an additive
numerical isotony representation (see, e.g. [5] or [6]).

For the case of a totally ordered group (G, *, 2) with * mono-
tone, the conditions of Archimedeanness and super-Archimedeanness
are equivalent. However, this is no longer true for the case of a totally
ordered semigroup (S, *, 3) with * monotone. An example is N'\ {0} x

L ]

x N\ {0} endowed with the sum + defined coordinatewise, and the
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lexicographic ordering. Observe that (1,0) < (1,1) but (n,n) < (n +
+1,0) for any positive n € N. In this general case of a totally ordered
semigroup (S, *,3) with * monotone, super-Archimedeanness always
implies Archimedeanness, but the converse is not true as last example
shows. (See [7] for more details.)

The existence of continuous and additive numerical isotonies rep-
resenting a totally ordered group or semigroup structure, with * mono-
tone and endowed with a topology 7, has also been analyzed in the
literature. (See e.g. [4].)

However, in those classical results concerning additive represent-
ability of groups or semigroups, the concept of a scale has not been
used yet.

A semigroup (S, *) endowed with a total preorder =< is said to be
positive if z < z*x for every z € S. It is obvious that if a totally ordered
positive semigroup (5, *,3) admits an additive numerical isotony wu,
then, a fortiori, it holds that u(z) > 0 for every z € S.

The following theorem improves Th. 3.1, now working with an
algebraic structure of which a semigroup is a particular case.
Theorem 4.1. Let S be a nonempty set endowed with o binary opera-
tion *, a topology T and a preorder 3 (not necessarily total). Then the
following conditions are equivalent: :

(i) There ezists a continuous and additive order-preserving function

u on (S, *,7,3),

(ii) There exists an additive separating countable decreasing scale G =

={Gr:7€Q} on (5,%,7,3).

Proof. (i)=-(ii) As in Th. 3.1, assume that there exists a continuous
and additive order-preserving function u : § — R on the structure
(S,%,7,3). Define G, = u~*((~oo,r)) for every r € Q.

Let us show that the scale G = {G, : r € Q} is indeed additive:
First notice that being z € Gp;y € G, (p, g € Q), we have that u(z) <
< p;u(y) < g. Thus u(z) +u(y) < p+g¢. But.u is additive, so we have
u(z *y) < p+ g or equivalently z*y € Gptq. Hence Gp x Gy C Gy
(p,g € Q). Also, we observe that being = ¢ Gpiy & Gq (p,g € Q),
it follows by definition of u, that w(z) > p;u(y) > ¢. Thus u(z) +
+u(y) > p+q. Then, by additivity of u, we obtain u(z*y) > p-+qor
equivalently T *y & Gpyq.

(ii)=>(i) Given the scale G define u(z) = inf{p € Q : z ¢ Gpt
so that u is a continuous order-preserving function. To conclude, it
is enough to prove that w is additive. Thus, being z,y € S observe
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that z € Gy, y € Gy = 2%y € Gpyq (z,y € S, p,qg € Q). Hence,
by definition of u, it is plain that u(z * y) < u(z) + u(y). Suppose
now that u(z * y) < u(z) + u(y) and let p,q € Q be chosen such that
p <u(z), ¢ <u(y), u(z *y) <p-+q. It follows then that z ¢ G, y ¢
¢ Gq, z#y € Gp4q, in contradiction with the additivity of G. Therefore
w(z *y) =u(z) +u(y) (z,y € 5). 0

Remark 4.2. Observe that in the proof of Th. 4.1 we do not ask =
to be associative or commutative. Neither we need =< to be total or
monotone with respect to *.

In the particular case when S is a positive semigroup, we can
replace “scale” by “positive scale” in the statement of Th. 4.1. The
proof is straightforward. O

We have already mentioned that if (S,*, ) is a totally ordered
semigroup with * monotone, super-Archimedeanness is a necessary and
sufficient condition for the existence of an additive numerical isotony
(see e.g. [1]).

Consequently, by Th. 4.1 it follows that in this case the existence
of an additive separating countable decreasing pseudoscale G = {Gr:
: 7 € Q} on (S,*,3) is equivalent to super-Archimedeanness. Let us
give now a direct proof of this fact for the particular case of a positive
semigroup. The proof for the general case is similar.

Proposition 4.3. Let (S, *, 3) be a positive totally ordered semigroup,
with the operation * being monotone. Then the following conditions are
equivalent: .
(i) There ezists a positive additive separating countable decreasing
pseudoscale G = {Gyr : 7 € QN (0,+00)} on (S, *,3).
(ii) The structure (S,*,3) satisfies the condition of super-Archime-
deanness.
Proof. (i)=(il) Let G = {G, : 7 € QN (0, +00)} be a positive additive
separating countable decreasing pseudoscale on (S, , 2). Letz,ye S
such that ¢ <y, z < z+z and y < y *y. By hypothesis there exist
p,q € QN (0,4c0) with p < ¢, such that z € Gp, v ¢ G,4. Hence,
there exist n > 0, n € N such that (n + 1)p < ng. By additivity of the
pseudoscale G, it is clear that z € Gp = (n+1) -z € Gnt1)piy & Gg =
= n-y & Gng. Consequently (n+1)-z < n-y since otherwise, G (nt1)p
being a decreasing set, we would have that n-y 3 (n+1)-z=n.yc
€ Gnt1)p © Gng, which is a contradiction.
(ii)=-(i) Suppose that (S, *, 3) is super-Archimedean Choose an

L I V]

element zo € S. For every p € QN (0, +00), set p = ™ with m,n € N
TL
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and define G, = {x € S :n-z < m-z5}. Observe that Gp is well-
defined, since by monotonicity of the operation, being a,b € S it holds
that a < b <= n-a < n-b for any positive natural number n. Let
us see now that p < g == G, € G,. To prove this, take a,b,c € N such
that p = 7 and ¢ = £. Obviously a < ¢, so that a - To < ¢+ zg. We have
alsothat 1 € G, <= b-z <a-zgand z € Gy <= b-z <c-zp,
whence it is plain that G, C G,. Each element Gp is a decreasing set
because being € S with z € G}, and y 3 z it follows that n - y3n-
" T <m - zo where p = T with m,n € N. Hence we have n-y <m . zq
by transitivity, and this is equivalent to say that y belongs to G,.

At this point, let us prove the additivity of the family G = {Gp:
:p € QN (0,400)} corresponding to the set of all subsets Gp just
defined. To this task, let p, g be positive rational numbers that we can
write as p = ¢£,¢q = £ for suitable a,b,c € N. If z ¢ Gp and y € G,
it follows, equivalently, that b-z < a -z and b - Yy < c-xg. Since
(S,*) is commutative because it is super-Archimedean, we have that
blz*xy)=(b-z)*(b-y) < (a+c) zo. Thus  * Y € Gpyq. Therefore
Gp * Gq C Gpiq. With similar arguments we can prove that (S\ Gp) *
*(S\ Gq) € (S\ Gpyg)-

Given any element z € S, three possibilities may occur: either
T < Zp, Or T =g Or else x9 < z. If z < zq it is plain that z € Gi. If
T = Zo, since Tg < g * o by the hypothesis made on S , it follows that
¢ € Ga. Finally, if 2y < z, by the Archimedean property we can find
n > 0,n € N such that z < n -z or, equivalently, z € G,,. So we have
that § = U Gp.

PEQN(D,+00)
With an analogous reasoning we can also prove that N Gp=
pEQN(0,+c0)
= {: Indeed, if zo < z we have that z ¢ G1 and if £ < g, by the
Archimedean property there exists n € N ,n > 0, such that zg < n - z.
Thus z ¢ G 1. Observe, in addition, that for every z € S it follows that
inf{r e QN (0,4+c0) : z € G} > 0.

At this point we have that G is a positive and additive countable
decreasing pseudoscale.

To conclude, let us prove that G is separating: Let z,y € S be
such that z < y. By the super-Archimedean property, there exists n €
€ N\ {0} such that (n+1) -z < n-y. Let Aly) > 0 be defined as
My) = inf{r € QN (0,+00) : y € G,}. Now choose rational numbers

p1,p2 € Q such that nA(y) < p; < ps < (n+ DMy). It is clear that
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/\(y)<p1 =y €Gn =n yenGa C Gy = (n+1)-z€Gp,. Also,
2 <My)=>y ¢ G 2. So we have n+1) -z € Cpl, Wthh easily

implies z € G 2L, and y gé G 22, and obviously -2+ < nﬁfl O

To conclude this sectlon We pay attentlon to the continuity of
additive numerical isotonies in the case of a totally ordered semigroup
(S, *,32), with * monotone, endowed with a natural topology.

When, in addition, the binary operation * : § x § — S, that
maps the pair (z,y) € S x S to the element z+y € S (z,y € 9), is
continuous (considering on S x S the product topology 7 x 7), then S
is said to be a totally ordered topological semigroup.

In the particular case of a totally ordered group (G,*,3) with =*
monotone, endowed with a natural topology 7, we say that the structure
is a tbtally ordered topological group if the binary operations * : G x
X G — G defined as above, and I : G — G defined by I(z) = —z
(z € G), where “—z” stands for the opposite element of  in (G, %), are
both continuous. '

In the main case of semigroups, the following remarkable result
arises.

Proposition 4.4. Every super-Archimedean totally ordered topological
semigroup (S, *, 7, 3) where * is monotone and T is a natural topology,
18 Tepresentable through a continuous and additive numerical 150tony.
Proof. See Th. 6 in [4], where it is proved a much stronger result,
that states that every additive numerical isotony representing a mono-
tone topological totally ordered semigroup (.5, *, 7, 3) must indeed be
continuous. ¢
Remark 4.5. Despite every additive numerical isotony representing
a momnotone topological totally ordered semigroup (S, *, 7, 3) must be
continuous, the analogous result for additive separating countable de-
creasing pseudoscales is not true. Actually on such structures we have
that an additive separating countable decreasing pseudoscale G may or
may not be an scale. An example is the additive set (R, +, <) of the
real numbers endowed with the usual ordering, on which we consider
the additive pseudoscale G = {(—oo0, q] g € Q} of decreasing (but not
open) subsets. [
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