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Abstract: If a finite abelian group is a direct product of its subsets such that
each subset (a) has a prime number of elements (b) contains the identity ele-
ment of the group, then at least one of the factors must be a subgroup. This
result is due to L. Rédei. The purpose of this paper is to show that Rédei’s
theorem can be proved using an earlier result of G. Hajés about certain zero
divisors. The remaining part presents an extension and an alternative proof
of Rédei’s theorem.

1. Introduction

Let G be a finite abelian group written multiplicatively with iden-
tity element e. If A;,..., A, are subsets of G such that the product
Ap--- Ay is direct and gives G, then we say that the equation G =
= A, --- A, is a factorization of G. In the most commonly encountered
situation G is represented as a direct product of its cyclic subgroups. In
this paper it will not be assumed that 4,,..., A, are subgroups of G.
A subset A of G is called cyclic if it is in the form
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A={ea,a? ... ,a" "1},
where 7 is a integer r > 2 and |a] > r. In 1942, in order to prove a
famous conjecture of H. Minkowski, G. Hajés [2] proved that if a finite
abelian group is factored into cyclic subsets, then at least one of the
factors must be a subgroup. Hajés’s original proof was not elementary
in the sense that it used group rings. Rédei [5] found an elementary
proof for Hajés’s theorem and later he was able to extend his proof for
the case when the appearing factors are not necessarily cyclic subsets.
In this paper we will show that the ideas in Hajés’s original proof
can be extended to prove Rédei’s theorem. Although this proof is not
elementary it has a fairly transparent structure.

2. Ahnihilators

Let A be a subset and let x be a character of the finite abelian
group GG. We will denote the sum

> x(a)

acA
by x(A). We are not going use the x(A) notation when A is the empty
set. Note that x(A) = |A| when x is the principal (or identity) character
of G. The set of characters x of G for which x(A) = 0 is called the
annihilator of A and we will denote it by Ann(A). For the sake of a
concise notation the cyclic set {e,a,a?,...,a" "1} will be denoted by
[a,r]. _

Let g1,...,9s be all the elements of G and let X1,---,Xs be all
the characters of G. By the standard orthogonality relations the matrix
[Xi(gj)] is orthogonal. In particular the columns of the matrix are
linearly independent. This gives that if A, B ¢ G such that x(4) =
= x(B) holds for each character x of G, then A = B.

Consider a factorization G = AB of G. Applying a character X
of G to this factorization gives that x(G) = x(AB) = x(A)x(B). For
the principal character this equation reduces to |G| = |A||B|. For the
nonprincipal characters we get 0 = x(A)x(B). Conversely, if |G| =
= |A||B| and 0 = x(A)x(B) holds for each nonprincipal character x
of G, then G = AB is a factorization of G. Further, if G = AB is
a factorization of G and |A] = |A/|, Ann(A) C Ann(4’) hold, then
G = A'B is a factorization of G. In other words in the factorization
G = AB the factor A can be replaced by the subset A’.
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We will use the following well known facts.

(i) The (n)th cyclotomic polynomial is irreducible over the (m)th
cyclotomic field provided m and n are relatively prime.

(ii) Let n be an integer greater than one and let p be the smallest
prime factor of n. Then less than p (n)th roots of unity are linearly
independent over the field of rationals. (For a proof see [9].)

Lemma 1. If A C G with e € A and |A| = p is the smallest prime
factor of |G|, then x(ajy) =1 for each x € Ann(A) and a € A.

Proof. Let A = {ag,a1,...,ap_1}, where ag = e. Pick a character x
from Ann(A). Now

p—1 p—1
0=x(4)=> x(a;) = > x(aipp)x(aiy)-
i=0 i=0

There exists a minimal nonnegative integer n such that each x(aifp) is
a power of the same primitive (p™)th root of unity, say p. If n = 0, then

p—1
0= ZX(aﬂp’)

i=0
which violates the independence of (X(a‘ilp'))s' Thus n > 1. Let
x(asp) = p* for 0 <4< p—1. We may suppose that
7'50:0, tlzl, OStQS"-Stp_l _<_pn—1.
Consider the polynomial

p—1 s—1
Alm) =Y ahx(agy) = Y 2™ N,

where rg,...,7s_1 are all the distinct numbers among tg,... o1
Since A; cannot be zero, A(z) is not the zero polynomial. The (p")th
cyclotomic polynomial

p—1
s TL—1
F(z)=) z*
i=0

is irreducible over the (p)th cyclotomic field. Clearly p is a common
root of F'(z) and A(z) and so F(z) divides A(z) over the (p')th cyclo-
tomic field. There is a polynomial B(xz) with coefficients from the (p’)th
cyclotomic field such that A(z) = F(z)B(z). From 0 < degA(z) < p"—
— 1 and degF(z) = (p — 1)p"7%, it follows that degB(z) < p™ ! — 1.
Consequently, the terms of B(z) occur among the terms of A(z). Let
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v be the number of terms in B(z). So p > s = pv gives that s = p and
v = 1. Further
1=t =p" L tg=2p" "%, ... tpo1 = (p—1)p" !

and A\g = -+ = Ap_1. Thusn =1 and \; = x(aijp) and t; = 1 for
0<i<p-—1. Finally, x(aopr) = 1 provides \; = 1for 0 <i <p—1.

This completes the proof. ¢
Corollary 1. Under the conditions of Lemma 1

(a) Ann(A) C Ann(A’), where A’ consists of the p-parts of the
elements of A,

(b) Ann(A) C Ann([a,p]) for each a € A\ {e}.
Proof. Only part (b) needs proof.

p—1
S =S =Sy
=0 i=0
. p1 ,
ZZX )—ZX x(lag, 1)
1=0 =0

foreach 1 <j<p-—1.

This completes the proof. ¢
Lemma 2. Let p and q be distinct primes. Let A C G withe € A and
|A| = p. If A contains only (p,q)-elements, then x(a),) = 1 for each
X € Ann(A4) and a € A.
Proof. Let A = {ao,a1,... ,ap-1}, where ag = e and let x € Ann(A).
There exist minimal nonnegative integers m and n such that

x(aipp) = p*, 0<u; <p™ -1,

x(aiq) = 0", 0<v; < g™ —1

for 0 <4 < p—1, where p and ¢ are primitive (p™)th and (¢")th roots
of unity. Consider the polynomial

o) =

We claim that m > 1. In order to prove the claim assume the contrary
that m = 0. Note that now n = 0 is not possible since in them =n =0
case we get the 0 = x(A) = A(p,o) = A(1,1) = p contradiction. Thus
n > 1. The equation 0 = x(A) = A(p,0) = A(1,0) shows that o is
a common root of the polynomials A(1,y) and the (¢™)th cyclotomic
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polynomial K (y). Thus A(1,y) = K(y)B(y). Since A(1,1) = p, A(1,7)
is not the zero polynomial. Therefore 0 < degA(l,y) < ¢® — 1 and
degK (y) = (¢ — 1)¢™"! implies that 0 < degB(y) < ¢"~! — 1. From
this it follows that the terms of B(y) occur among the terms of A(1,y)
and so B(y) has integer coefficients. Now p = A(1,1) = K(1)B(1) =
= ¢B(1) is a contradiction since'q does not divide p. Therefore m > 1.

Next we claim that A(z,0) is not the zero polynomial. To prove
the claim assume the contrary that A(z,o) is the zero polynomial. We
can write A(z,y) in the following form

p—1 w—1
Alz,y) = Zm“iy”i = Z =% By(y),
i=0 i=0

where tg, ... ,t,_1 are all the distinct numbers among ug, ... , Up—1. By
the indirect assumption B;(0) =0 for 0 <4 < w — 1 and consequently
n > 1. From K(y) | B;(y) it follows that ¢ ] B;i(1). Now

w—1
p=A(11) =} Bil)
i=0
leads to the contradiction that ¢ | p. Thus A(z,0) is not the zero
polynomial. By the minimality of m we may assume that
U =0,u=1,0<u < - <yp 3 <p™-1.
From this point the proof follows the proof of Lemma 1.
This completes the proof. ¢
Corollary 2. Under the conditions of Lemma 2
(2) Ann(A) C Ann(4'), where A’ consists of the p-parts of the
elements of A,
(b) Ann(A) C Ann([a,p]) for each a € A\ {e}.

3. Zero divisors

We will work in the group ring Z(G) whose elements are in the
form zygy + - - + 2595, where g1,... ,gs are all the elements of G and
T1,...,%s are integers. Characters of Z(G) are linear extensions of the
characters of G. We will introduce the following notations. Let A €
€ Z(G). The set of elements of G having nonzero coefficients in A will
be denoted by {A}. The span (or generatum) of {4} will be denoted
by (A). Finally, the number of the not necessarily distinct prime factors
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of (A) we will denote by 7(A). The next lemma is a generalization of
a zero divisor result of G. Hajés. Our proof follows Hajés's proof with
some necessary modifications.

Lemma 3. Let B, Ay,...,A, € Z(G) such that each A; is in one of
the following forms

(1) Ay =e—ay,
(2) Aj=eta+al+ - +alih,
(3) Ai=e+ai1+ -+ aip—1,

where p; is a prime. In the (3) case
(4) Ann(A;) C Ann(e+ aq; + a2, + - +aih)

for each 1 < j < p; — 1. Suppose that no factor A; can be omitted from
the equation

(5) BA{ - A,=0
andn > 1. Then
(6) r(B,A1,...,A)) —1(B) <n.

Proof. Note that since no factor A; can be cancelled from equation
(5), it follows that B 0 and A; # ke, where k is an integer.

Let n =1 and A; = e—a;. Now B(e—a1) = 0 gives that B =
= Ba,. Since B # 0, there are b,b’ € {B} with b = b'az, that is,
a; € (B). Therefore r(B, 4;) —r(B) < 1.

Let n =1 and

Ai=e+a+al+ - +adf

The equation

(7) Bled+ay+al+ - +a ) =0
gives that

Blai+al+---+ad H)=-B
from which it follows that o} € (B) for some 1 < i < p; — 1. If {4;}
is a subgroup of G, then (at) = {41} C (B) and we are done. If {A;}
is not a subgroup, then af' # e. Multiplying (7) by (e — a1) we get
B(e — af*) = 0 which gives ai* € (B). Now af*,a} € (B) implies that
{A:} C (B).

Let n =1 and
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Ar=etaii+- +ap 1.
The equation
(8) BA; =0

holds if and only if x(BA;) = 0 for each character x of G. By (4) the
factor A; can be replaced by

Ari=e+ay;+ aii T+t a:f’lz-_l
for 1<i<p;—1 So BA,; =0 and A;; cannot be cancelled. Thus
a1 € (B) for1 <i<p, — 1 which means that {4;} C (B).
We proceed by induction on n. From the equation
(BA;-+ A)Agi1- A, =0
we have that
(9) r(BAy - Ag, Asy, ... JAp) —T(BAy - As) <n—s
fori<s<n-—1.

If HC K C Gand L C G, then the index |(K,L) : (H,L)|
divides the index [(K) : (H)|. Thus r(K,L) —r(H,L) < r(K) — r(H).
Applying this observation in the case

H ={BA; - A},
K ={B}U{4:1}U - -U{A,},
L={As1}U---U{4,}
we obtain that
T(B, Ay, ... Ap) —1(BA1--- A5, Agiq, ... yAn) <
S T(B, Al) c. ,As) — ‘T'(BA]_ Tt As)

Adding this to (9) it follows that

(10) T(B,A1,...,An) —r(B,A45,... ,A,)) <n—s
and similarly A
(11) r(B,A1,...,A,) —7r(B,A,) <n—1.

If there is an A; with r(A;) = 1, say A4, then r(B,A;)—-r(B) < 1.
Adding this to the s = 1 case of (10) we get the desired result. Thus
7(A;) > 2 may be assumed for each 1 < i < n. The case when each
factor is in form (1) or (2) is settled by Hajés. For a fixed n we proceed
by induction on r(A4;)+- - -+7r(A,)+d, where d is the number of factors
Aj; that are not in form (1) or (2).
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Consider A, and distinguish three cases.
Let A, = e — a,. Multiply (5) by
e+an+a2 4+ - +ab
where p is a prime factor of |a,|. We have that
BA; - Ap1 A, =0,
where Al = e—af. After deleting the superfluous factors and renaming

this becomes BA;--- A;A!, = 0. Clearly A surely remains. Now
r(Al) +1=r(A,). By the inductive assumption

(12) r(B, Ar,... Ay, AL) —r(B) <t+1.

If ¢ > 1, then from (12) it follows that r(B,As,... ,A:) —r(B) < t
and adding this to the s = ¢t case of (10) we are done. If ¢ = 0, then
r(B,Al) —r(B) <1 and so r(B, A,) — r(B) < 1. Adding this to (11)
we have (6).
Let
An=e+an+al+---+abr L.
Multiplying (5) by (e — an) we have
BA;---A,_1 AL =0,

where A] = e — aPr. After canceling the superfluous factors we may
assume that

BA; - A AL = 0.
Now d decreased -so by the induction assumption
r(B,A1,..., A, AL) —r(B) <t+1.
Now as in the previous case we get the desired result.
Let

An =e-+ n,1 + et On,pp—1-
In (5) A, can be replaced by
An,i =e+ An i + a’i,i + -+ a:f:i_l-
After canceling the superfluous factors we may suppose that
BA;---AiAn ;=0

since A, ; cannot be cancelled. Now d is decreased so by the inductive
assumption

r(B,A1,..., A, Ani) —r(B) <t+ 1L
If t > 1 for some 1, then adding (B, A1,...,4:) —7(B) < t to the
s =t case of (10) we are done. Thus we may suppose that (B, An ;) —
—r(B) < 0foreach 1 < i < p, — 1. But now an; € (B) for each



Factoring a finite abelian group 87

1 <4 < py—1, that is, {An} C (B) whence 7(B, 4,) — r(B) = 0.
Adding this to (11) we get the desired result.
This completes the proof. ¢

4. Rédei’s theorem

We are now ready to prove Rédei’s theorem.
Theorem 1. Let

(13) G=A;---A,
be a factorization of the finite abelian group G, where e € A; and |4,

18 a prime for 1 <1 < n. Then one of the factors A; is a subgroup

of G.

This theorem actually implies a stronger form of itself. Namely,

there is a permutation Bj, ..., B, of the factors A;, ..., 4, such that
the partial products
(14) Bi, B1Bs,...,B1By---B,

form an ascending chain of subgroups of G. A proof may proceed by
induction on n considering a factor group with respect to an existing
subgroup factor.
Proof. First we prove the theorem for elementary p-groups. The |G| =
= p case is trivial. So we assume that n > 2. By Cor. 1, in factorization
(13) the factor A; can be replaced by a subgroup H. In chain (14)
consider the subgroup K = HA;---A,_;. In (13) A, can also be
replaced by a subgroup M. Since G = KM is a factorization of G, KN
N M = {e}. From the factorization G = A;--- A,_1 M it follows that
there is an index j such that MA; is a subgroup of G. If j # 1, then
KNMA; = A; is a subgroup and we are done. Thus we may assume
that N = M A, is a subgroup. If A, is not in N, then in (13) A, can
be replaced by a subgroup L such that LN N = {e}. As before we may
assume that LA; is a subgroup and so NN LA; = A; is a subgroup.
Thus we left with the A, C N case. Now N = A; A,, is a factorization.
This reduces the problem to the n = 2 case for which there are proofs
in [3] and [8] respectively.

Next we prove the theorem for p-groups. To do so consider a
counter example with minimal |G|. We know that G is not an elemen-
tary p-group. Consequently, there is a factor, say 4,, such that a € 4,
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and |a| > p. In (13) the factor A, can be replaced by [a,p]. To a subset
A of G we assign an element
i-Ya

acA

of Z(G). To the factorization G = A; - - - A,_1[a, p] we assign the equa-
tion

@:Zl...Zn_l(e+a+a2+...+ap-l)
in Z(G). From this by multiplying by (e — a) we get that 0 =
= A - -Zn_l(e — aP). After canceling and relabeling we may sup-
pose that 0 = A; -+ A, (e — aP), where m > 1 since (e — aP) surely
remains and since e — o # 0. Lemma 3 is applicable with the B = e
choice and gives that r(A41,... ,Amn,a?) <m -+ 1. Hence

(15) r(Ar,... Am) < m.

Let T'=A;--- Ay, and S = Ay -+ - A,. Restricting the factorization
G =TS to (T) we get the factorization (T') = G N (T) =T (SN (T)).
This shows that |T| divides |(T)], that is, p™ = |T| < ()| < p™.
It follows that 7" = (T') and so T' = A;---A,, is a smaller counter
example.

In the remaining part of the proof we may assume that G is not
a p-group. Call

™

[ 1T e

i=1acA;
the height of the factorization (13). Suppose that (13) is a counter
example with minimal |G| and with minimal height.

Let p be the smallest prime factor of |G|. If each factor of car-
dinality p has only p-elements, then they form a factorization of the
p-component of G. The p-component is a proper subgroup of G so it
provides a counter example with smaller order. Thus there is a factor,
say Ay such that |A;]| = p and A; contains not only p-elements. Let A}
be the set of the p-parts of the elements of 4;. In (13) the factor A,
can be replaced by A}. The height of the factorization decreased so by
the minimality of the counter example there is a subgroup among the
factors. This leads to a contradiction unless A} is a subgroup of G. In
the chain (14) there is a subgroup

Ky =AlA11- A As
such that
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p=A1=]4ia| = =41, # 4] =1
Note that K is a (p, g)-group. Let A} be the set of the g-parts of the
elements of As. Clearly, A5 is the ¢-Sylow subgroup of K. In (13) by

Cor. 2, the factor Ay can be replaced by A5. In the chain (14) there is
a subgroup

Ko = ApAs1 - Aoy As
such that
q=|Ao| = A2 =+ = Ao, ] # |4s].
Repeat this process. In the chain (14) there is a subgroup
Ki=AlAin - A A
such that
ALl = [Aei] = - = |Aer,| # |Absa]
and A;y1 coincides with one of the factors Ai, ..., A4, say with A;.
The orders of the elements make sure that A;.; cannot coincide with
a factor A;;. We assume that this is the first instance when such a
coincidence occur. Consider the subgroup H = K - - - K;. The product
of the distinct factors occurring among
AlaAl,ly Ce 7A1,7‘1;
Ag,Ag’l, C. ,Ag’m,

Ay Av1, oo Ay,
is equal to H. By the minimality of the counter example H = G. We
can draw the conclusion that A; contains only (p, ¢)-elements. There
is an element a in A; with |a| > p. In (13) A; can be replaced by
la,p]. From the factorization G = [a,p]As--- A, it follows the 0 =
= (e —aP)As - A, equation in Z(G). In the way we have seen in the
previous part we can get a smaller counter example.
This completes the proof. {

5. Periodic subsets

Let A be a subset of a finite abelian group G. We say that A is
periodic if there is a g € G such that A = Ag and g # e. We say that A
is normalized if e € A. If A is normalized and g is a period of A, then
g€ A
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Lemma 4. Let G be a finite abelian group and let G = AB be a
factorization of G. Suppose that A is periodic with period g and there
15 a b € B such that bg & B. Set

C = (B\{}) U {bg}.
Then G = AC is a factorization of G.
Proof. It is enough to prove that
(16) x(G) = x(AC) = x(A)x(C)
for each character x of G. We claim that this holds. In order to prove

the claim pick a character x of G.
If x is the principal (or identity) character of G, then (16) reduces

to
(17) Gl = |4][C].

From the factorization G = AB it follows that |G| = |A||B|. Using
the fact |B| = |C] we get (17) as required. For the remaining part of

the proof we may assume that y is not the principal character of G.
Now (16) reduces to

(18) 0 = X(A)x(C).

If x(A) = 0, then (18) clearly holds. So we may assume that x(A) # 0.
Applying x to the factorization G = AB gives that 0 = X(A)x(B). As
x(4) # 0 it follows that x(B) = 0. Applying x to the equation 4 = Ag
gives that x(A4)(1 — x(g)) = 0. As x(A) % 0 it follows that x(g) = 1.
Using x(B) = 0 and x(g) = 1 we get x(C) = 0. This implies (18) as
required. ¢
The next result is an extension of Rédei’s theorem.
Theorem 2. Let G be a finite abelian group and let

(19) G=A 4,0

be a normalized factorization of G. Suppose that each |A;| is a prime
and the subset A = Ai--- A, is periodic. Then one of the factors
A1, ..., Ay is a subgroup of G.

Proof. Assume the contrary that there is a counter example for the the-
orem. If C = {e}, then by Rédei’s theorem one of the factors Aq,... A,
is a subgroup of G. Thus we may assume that C # {e}. If n = 1, then
A; is a normalized periodic subset containing a prime number of ele-
ments and consequently A; is a subgroup of G. Thus we may assume
that n > 2.
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Let g be a period of A = A;---A,. Choose a ¢ € C'\ {e} and
set D = (C\ {c}) U{cg}. We claim that cg ¢ C. To prove the claim
assume the contrary that cg € C, that is, g € Cc™!.- Multiplying
the factorization G = AC by ¢~ ! we get the normalized factorization
G = Gc™! = A(Cc™'). This leads to the contradiction g € A and
g € Cc™ . Therefore cg € C as claimed.

By Lemma 4,

(20) G=A;  A,D

is a normalized factorization of G. Consider the factor A; in the factor-
izations (19) and (20). Suppose that |4;| = p, where p is a prime. By
Prop. 3 of [7], A; can be replaced B; such that B; is not a subgroup of
G and B; contains only (p, g)-elements, where ¢ is a prime. We would
like to point out that ¢ is not necessarily unique. Further the primes p
and g may vary with 1.

From factorizations (19), (20) we get the factorizations

(21) G=DB;---B,C,

(22) G =B ByD.
To the factorizations (21), (22) we assign the equations

=B - BT,

G=B;---B,D

in the group ring Z(G). A subtraction gives that
0= B Bplc—cg)

and then

(23) 0=DB;---Bple—g).

It can happen that the equation holds after canceling some of its
factors. Clearly (e — g) cannot be cancelled since By --- By # 0. All of

By,..., B, cannot be cancelled since (e —g) # 0. Thus we may assume
that after all possible cancellation
(24) 0=DBi--Bm(e—g)

since this is only a matter of renaming the factors in (23). Lemma 3 is.
applicable to (24) and gives that
r(B1,... ,Bm,g) <m+ 1.
It follows that 7(B1,...,Bm,g) < m and then r(Bi,... ,Bn) <
< m, that is, the order of H = (Bj, ..., Bp) is a product of at most m
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(not necessarily distinct) primes.
We claim that |H| is a product of exactly m primes. In order to
prove the claim set
T=D5B,-Bn, S=DBpy1--B,C.
Clearly G =T'S is a factorization of G. Restricting the factoriza-
tion G =TS to (T') we get that

(T)=Gn(T)=T(SN(T))
is a factorization of (T'). It follows that |T'| divides the order of (T).
Note that (T') C H. Thus |H| is a product of at least m primes.
Therefore the product Bj--- B, is a factorization of H. By

Rédei’s theorem one of the factors B, ... , By, is a subgroup of H and
so of G. This contradiction completes the proof. ¢

6. Non-periodic factors

After proving Rédei’s theorem for p-groups there are various ways
to extend the proof for all finite abelian groups. We will present a proof
which based on tactically replacing a product by a non-periodic subset.
We need two lemmas. The second lemma first was proved in [6].
Lemma 5. Let A be a nonempty subset of a finite abelian group G. If
for the subset

U={)a4
a€A
assigned to A it holds that U # {e}, then A is periodic.
Proof. Let A = {ai1,...,a,}. Since A is not empty, e € U. Choose
g € U\ {e}. There are elements by,... ,b, € A such that g = bja]’ =

= ... = bya-'. Note that by,...,b, are pair-wise distinct elements
of A. Clearly by,...,b, are all the elements of A. Consequently.

gA ={gai,...,gan} = {bra7tas,... ,bpa;tan} = {b1,... yon} = A

This completes the proof. ¢

Lemma 6. Let G be a finite abelian group. Let H be a subgroup of G.
Let A,B C G such that A C H, e € AN B, the product AB is direct,
A, B are not periodic, the elements of B are pair-wise incongruent
“modulo H. Then the set AB is not periodic.

Proof. Set C = AB and let g € G such that C = Cg. Let B =
= {b1,... ,bs}. Asthe product AB is direct the sets Aby, ..., Ab, form
a partition of C. In particular
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C=AbyU---U Ab,.
As AC Handby,...,b; are pair-wise incongruent modulo H, it follows
that the sets Abs, ... , Ab, are in distinct cosets modulo H. Multiplying
Aby, ..., Abs by g permutes these sets. For each i, 1 < i < s, there is
a j, 1 < j < s such that Ab;g = Ab;. From this we must get b;g = b;
otherwise A is periodic with period b; gb}l. Hence g = b;b; ! and so

ge ﬂ Bbv~ L.
beB
From this we must get g = e since otherwise by Lemma 5, B is periodic.
This completes the proof. ¢

Theorem 3. If Rédei’s theorem holds for each finite abelian p-groups,
then 1t holds for each finite abelian group.
Proof. Assume the contrary that there is a finite abelian group G such
that GG is not a p-group G has a factorization

(25) G=A; Ay,

where each A; is a normalized non-subgroup of G containing a prime
number of elements. We may assume that in this counter example n is
minimal and among these

111 e

=1 a€A4;

the height of the factorization is minimal.

Let p be the smallest prime divisor of |G|. There is a factor, say
Aj, such that |A;| = p and A; contains an element a whose order is not
a power of p. Let A} be the set of the p-parts of the elements of A;.
By Cor. 1, in (25) A; can be replaced by A} to get the factorization

G=AlAs--- A,
‘The height of this factorization is smaller than the height of (25). By
the minimality of the counter example one of the factors A}, As,... , 4,
is a subgroup of G. This is a contradiction unless A} = H is a subgroup
of G. As we have seen earlier there is a permutation Bs,... , B,, of the
factors As, ..., A, such that
Ki=H, Kas=HBs,...,K,=HBy---B,

is an ascending chain of subgroups of G. From the factorization K3 =
= K5 Bs3 it follows that the elements of B3 are incongruent modulo K.

Note that By C K>. Now Lemma 6 is applicable and gives that ByBs
is not periodic.
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From the factorization K4 = K3B, it follows that the elements

of B4 are incongruent modulo K3. We can see that BBz C K3 holds.
Lemma 6 shows that (B3 Bs)By is not periodic. Continuing in this way
finally we get that (Bs--- B,_1)By is not periodic.

By Cor. 1, in the factorization G = A;(Bsz---B,), A1 can be

replaced by [a, p] to get the factorization G = [a,p]Bs - - - B,. From this
it follows the contradiction that By --- B, is periodic with period aP.

The proof is complete. O
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